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Abstract. Separation algebras are models of separation logic and ef-
fect algebras are models of unsharp quantum logics. We investigate these
closely related classes of partial algebras as well as their noncommutative
versions and the subclasses of (generalized) (pseudo-)orthoalgebras. We
present an orderly algorithm for constructing all nonisomorphic general-
ized pseudoeffect algebras with n elements and use it to compute these
algebras with up to 10 elements.

1 Introduction

Separation algebras were introduced by Calcagno, O’Hearn and Yang [3] as
semantics for separation logic, and effect algebras were defined by Foulis and
Bennett [6] as an abstraction of unsharp measurements in quantum mechanics.
Detailed definitions are recalled in the next section, but we note here that they
are both cancellative commutative partial monoids and that every effect algebra
is a separation algebra. Hence results about separation algebras automatically
apply to effect algebras, and the in-depth study of effect algebras over the past
two decades provides insight into this particular subclass of separation algebras.
Lattice effect algebras, MV-effect algebras, orthoalgebras, orthomodular posets,
orthomodular lattices and Boolean effect algebras are all well known subclasses
of effect algebras, so positioning effect algebras as a subclass of separation alge-
bras provides many interesting algebraic models for separation logic.

In this paper, we are primarily interested in finite partial algebras since they
can be computed for small cardinalities, and browsing models with up to a dozen
elements is useful for investigating the structure of these finite algebras. To this
end, we develop an algorithm for computing finite effect algebras and some of
their noncommutative generalizations.

One of the aims of this paper is to increase awareness of the model the-
ory of partial algebras since it has been developed quite extensively, but is not
necessarily widely known. In the next section, we recall the basic notions of
weak/full/closed homomorphisms, subalgebras and congruences for partial alge-
bras. Examples from the classes of separation algebras and effect algebras are
discussed in Section 3. Many of the results about these algebras do not depend on
the commutativity of the partial binary operation +, hence we mostly consider
noncommutative versions and often write the operation as x ·y or xy rather than
x+y. Effect algebras without the assumption of commutativity were introduced
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by Dvurecenski and Vetterlein [5] under the name pseudoeffect algebras and have
been studied extensively since then.

Every partial algebra A can be easily lifted to a total algebra Â = A ∪ {u},
where the element u denotes undefined, and an operation on A produces u as
output whenever the operation is undefined. In particular, if any of the inputs
to the lifted operation are u, then the output is u. This map from partial to
total algebras is a functor between the respective categories, but it does not
preserve direct products of algebras, which means that the universal algebraic
theory of partial algebras is not subsumed by total algebras. Given a partial
monoid A = (A, ·, e), its lifted version is a well known total algebra called a
monoid with zero Â = (A, ·, e, 0). These algebras occur, for example, as reducts
of rings when + and − are removed from the signature. A monoid with zero
is cancellative if all nonzero elements can be cancelled on the left and right
of the multiplication operation. For partial algebras, a binary operation is left-
cancellative if whenever xy = xz are defined, then y = z. Right-cancellativity
is defined analogously. Hence a partial monoid is cancellative if and only if the
corresponding lifted total monoid with zero is cancellative.

Note that in the finite case these cancellative partial monoids are quite close
to groups. For example, given any element x in a finite cancellative total monoid
without a zero, the sequence x, x2, x3, . . . , xn, . . . must contain a duplicate when
n exceeds the cardinality of the monoid. Hence, xi = xj for some i > j and
by cancellativity xxi−j−1 = e, so x has an inverse. This well known argument
shows that the class of finite cancellative monoids coincides with the class of
finite groups. The significance of group theory in mathematics and its numer-
ous fundamental applications in the sciences are well established, and allowing
partiality of the binary operation leads to the class of finite cancellative partial
monoids that properly contains all finite groups, thus making it an important
class to study.

Complex algebras of separation algebras provide models of Boolean bunched
implication logic and, in the noncommutative case, models of Boolean residuated
lattices, also called residuated monoids in [8–10]. This indicates that separation
algebras are functional Kripke structures, and in the past decade the field of
modal logics and their Kripke semantics has been recognized as a branch of
coalgebra. This meshes well with recent approaches to separation algebras [4]
and effect algebroids [12]. We also highlight a method of [13] (Prop. 20) that
converts a generalized pseudoeffect algebra to a total residuated partially ordered
monoid by adding two elements ⊥,>, and we note that this totalization method
preserves the property of being involutive.

In Section 2 we give basic definitions of partial algebras, homomorphisms,
subalgebras, congruences and related concepts. Section 3 contains definitions and
results about generalized separation algebras and (generalized pseudo-)effect al-
gebras, and we map out some of the subclasses and implications between various
axioms. Section 4 covers the results leading to the orderly algorithm for con-
structing all finite generalized pseudoeffect algebras up to isomorphism. In the
subsequent section we prove new structural results about certain effect algebras
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that were suggested by the output of our enumeration program, and Section 6
concludes with some remarks and open problems.

2 Background on partial algebras

To facilitate our discussion of separation algebras and effect algebras, we begin
with a brief summary of partial algebras. More details can be found in [1, 2]. A
partial operation g of arity n on a set A is a function from a subset D(g) of An
to A. The set D(g) is the domain of g, and (a1, . . . , an) ∈ D(g) is also written as
g(a1, . . . , an) 6= u (but this is just convenient notation; u is not an element of A).
Two partial operations g, h on A are equal if D(g) = D(h) and g(a1, . . . , an) =
h(a1, . . . , an) for all (a1, . . . , an) ∈ D(g). The notation g : An ◦−→ A is used to
indicate that g is an n-ary partial function on A. If D(g) = An, then g is a total
operation, or simply an operation. If n = 0 then g is a constant operation, which
we always assume to be total. A signature is a function σ : F → N where F is a
set. The members of F are called (partial) operation symbols.

A partial algebra of type τ is a pair A = (A,FA) where A is a set and
FA = {fA : Aσ(f) ◦−→ A | f ∈ F} is a set of partial operations on A. If every
partial operation in FA is in fact total, then A is a total algebra. Examples of
partial algebras abound since any subset B of a total algebra A is the universe
of an induced partial algebra B, with partial operations fB given by fA re-
stricted to B, so for b1, . . . , bn ∈ B, fB(b1, . . . , bn) is undefined if and only if
fA(b1, . . . , bn) /∈ B. B is called a relative subalgebra of A, and A is a total ex-
tension of B. More natural examples are given by any field, such as the rational,
real or complex numbers, with a signature that includes −1 or division /, since
0−1 = u = x/0.

Terms, equations (= atomic formulas) and first-order formulas over a set of
variables X = {x1, x2, . . . } are defined inductively as for total algebras, but for
a term t we also write t = u or t 6= u depending on whether t is undefined or
defined. For a partial algebra A and an assignment a : X → A, the semantic
interpretation of a term t as a term function tA : An → A is defined inductively
by tA(a) = a(t) if t ∈ X, and for t = f(t1, . . . , tn),

tA(a) =

{
fA(tA1 (a), . . . , tAn (a)) if tAi (a) 6= u for all i = 1, . . . , n

u otherwise.

Hence if any subterm is undefined under the assignment, then the whole term is
undefined. An identity (i.e. universally quantified equation with no free variables)
s = t is satisfied by an algebra A, written A |= s = t if sA = tA, i.e., if the
term functions are equal. Note that this means both sides have to be defined or
both sides have to be undefined for any given input tuple. This interpretation of
an equation in partial algebras is called a strong identity or Kleene identity. An
even stronger form of satisfaction is given by existence identities: A |= s

e
= t if

sA = tA and D(sA) = A. Note that for an identity of the form x = t the concept
of strong identity and existence identity coincide since xA is always defined for
a variable x.
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A quasi-identity is a formula s1 = t1 & . . .& sm = tm =⇒ s = t, and is sat-
isfied in A if any assignment to the variables that satisfies s1 = t1, . . . , sm = tm
(both sides defined) also satisfies s = t (both sides defined). Under this in-
terpretation a quasi-identity with no premises (m = 0) is equivalent to an
existence identity. A (strong/existence/quasi)equational class K of partial al-
gebras is a class of algebras of the same signature such that for some set I of
(strong/quasi/existence) identities we have K = {A : A |= ε for all ε ∈ I}.

Direct products
∏
i∈I Ai are defined for partial algebras in exactly the same

way as for total algebras, with pointwise fundamental operations f(x1, . . . ,xn) =
(. . . , fAi(x1i, . . . , xni), . . . ) that are defined iff fAi(x1i, . . . , xni) is defined for all
i ∈ I. For a class K of partial algebras the class of products of members of K is
denoted by PK.

There are three notions of homomorphism, with the weakest one being stan-
dard relational homomorphism. A function h : A→ B is

– a (weak) homomorphism if for all f ∈ F ,

(a1, . . . , an) ∈ D(fA) implies h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)),

– full if for all f ∈ F , fB(h(a1), . . . , h(an)) = h(a0) implies there exists
(a′1, . . . , a

′
n) ∈ D(fA) such that h(ai) = h(a′i) for i = 0, . . . n,

– closed if for all f ∈ F ,

(h(a1), . . . , h(an)) ∈ D(fB) implies (a1, . . . , an) ∈ D(fA).

Note that if h is a closed homomorphism, then it is a full homomorphism. The
category of partial algebras with signature σ has morphisms given by the first
(weak) notion of homomorphism. For a class K of partial algebras the class of
homomorphic images is

HK = {B | h : A→ B is a surjective homomorphism for some A ∈ K}.

The class of full or closed homomorphic images of K are denoted by HfK and
HcK, respectively.

There are also three notions of a subalgebra A of B. Assuming A ⊆ B, a
partial algebra A is

– a weak subalgebra if for all f ∈ F ,

(a1, . . . , an) ∈ D(fA) implies fA(a1, . . . , an) = fB(a1, . . . , an),

– a relative subalgebra if for all f ∈ F , fA = fB�An , and
– a (closed) subalgebra if for all f ∈ F ,

(a1, . . . , an) ∈ An ∩D(fB) implies fA(a1, . . . , an) = fB(a1, . . . , an).

These notions correspond to the injection map i : A→ B being a weak/full/closed
homomorphism. The class of weak, relative or closed subalgebras of a class K
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of partial algebras are denoted SwK, SrK and SK respectively. As the notation
indicates, closed subalgebras are the standard concept for partial algebras.

A congruence θ on a partial algebra A is an equivalence relation such that
for all f ∈ F , a1θb1, . . . , anθbn and (a1, . . . , an), (b1, . . . , bn) ∈ D(fA) imply
fA(a1, . . . , an)θfA(b1, . . . , bn). A congruence is closed if (a1, . . . , an) ∈ D(fA)
implies (b1, . . . , bn) ∈ D(fA). The quotient algebra A/θ is defined on the set
A/θ = {[a]θ | a ∈ A} of equivalence classes by

fA/θ([a1]θ, . . . , [an]θ) = [fA(a′1, . . . , a
′
n)]θ

if (a′1, . . . , a
′
n) ∈ D(fA) and a1θa′1, . . . , anθa′n for some a′1, . . . , a′n ∈ A, and fA/θ

is undefined otherwise. The canonical map γ : A→ A/θ given by γ(a) = [a]θ is
a full homomorphism and, if θ is closed, then γ is a closed homomorphism. We
often write [a] rather than [a]θ when the confusion is unlikely.

For a set I, a filter F on I is a collection of subsets of I that is closed
under finite intersection and if X ∈ F and X ⊆ Y then Y ∈ F . On a product
A =

∏
i∈I Ai, a filter F on I induces a congruence θF by aθF b if and only if

{i ∈ I | ai = bi} ∈ F . The resulting quotient algebra A/θF is called a reduced
product. For a class K of partial algebras the class of all reduced products is
denoted by PrK.

For total algebras Birkhoff’s variety theorem says that V is an equational class
if and only if V is a variety, i.e., V = HSPK for some class K. Generalizations
of this result to partial algebras are summarized below.

Theorem 1 ([2]). Let V be a class of partial algebras.

1. V is an existence equational class if and only if V = HSPK for some K.
2. If V is a strong equational class then V = HcSPrK for some class K.
3. V is a quasiequational class if and only if V = SPrK for some class K.

A characterization for strong equational classes can be found in [14]. Since an
equational class is a variety, the three classes above are also referred to as exis-
tence varieties, strong varieties and quasivarieties of partial algebras.

3 Generalized separation algebras and some subclasses

A partial semigroup (S, ·) is a partial algebra with a binary operation that is
associative, i.e., the identity (xy)z = x(yz) holds. A partial monoid (M, ·, e) is
a partial semigroup with an identity element e such that xe = x = ex holds.
In fact, every variety of total algebras gives rise to a strong variety of partial
algebras, simply by reinterpreting the same defining identities. However, some
equational axioms only have total algebras as models. For example, the class
of groups can be axiomatized as monoids that satisfy xx−1 = e, where −1 is a
unary operation symbol. Then x = xe = x(yy−1) = (xy)y−1 is defined for all
values of x, y, hence the subterm xy is always defined. Consequently, the class
of all partial algebras that satisfy these group axioms is simply the class of all
(total) groups.



6 S. Alexander, P. Jipsen, N. Upegui

A generalized separation algebra, or GS-algebra, is a partial monoid that is
cancellative and conjugative, i.e., satisfies the axioms

left cancellativity xy = xz =⇒ y = z
right cancellativity xz = yz =⇒ x = y
conjugation ∃v(vx = y) ⇐⇒ ∃w(xw = y)

A separation algebra [3] is a commutative GS-algebra, i.e., the identity xy = yx
holds, making the conjugation axiom redundant. The category of generalized sep-
aration algebras with partial algebra homomorphisms has the category of (total)
groups as a full subcategory, and the same is true for the category of total can-
cellative conjugative monoids. This includes all free commutative monoids such
as the natural numbers with addition, but does not include any noncommutative
free monoid.

Theorem 2. The conjugation axiom is preserved by reduced products, but not
by subalgebras, even in the presence of cancellative monoid axioms. Therefore
the class of GS-algebras is not a quasivariety.

Proof. LetA =
∏
i∈I Ai be a product of GS-algebras, F a filter on I, and assume

[c][a] = [b] for some a, b, c ∈ A, where [x] = [x]θF . Therefore ciai = biis true for
all i in some set X ∈ F . Since Ai is conjugative, aidi = bi for some bi ∈ Ai and
all i ∈ X. Let dj = e for j ∈ I \X and define b′ by b′i = bi if i ∈ X, and b′i = ai
otherwise. Then [b′] = [b] and ad = b′, hence [a][d] = [b′] = [b]. The reverse
implication is similar, so the reduced product A/θF satisfies the conjugation
axiom.

Let A = {e, a, b, c, d} and define · on A by ex = x = xe for x ∈ A, ab = bc =
ca = d and in all other cases xy is undefined. It is easy to check that A = (A, ·, e)
is the smallest noncommutative generalized separation algebra. It has a closed
subalgebra given by B = {e, a, b, d} in which ab = d, but there is not element
x ∈ B such that xa = d, hence conjugation fails.

By the characterization theorem of quasivarieties for partial algebras, stated
in Theorem 1, the class of GS-algebras is not a quasivariety. ut

Note that the class of separation algebras is a quasivariety of partial algebras.
The following example demonstrates that conjugation is not preserved by

weak homomorphisms. Consider the following GE-algebra G and partial algebra
A,

G

·G e a b
e e a b
a a − −
b b − −

A

·A e a b
e e a b
a a − −
b b e −

The mapping that sends e, a and b in G to e, a and b in A, respectively, is a
weak homomorphism from G to A that does not preserve conjugation.



Effect algebras and separation algebras 7

A binary relation ≤ is defined by x ≤ y ⇐⇒ ∃v(vx = y), and the
conjugation axiom ensures that this binary relation could have also been de-
fined by ∃w(xw = y). An equivalent form of this axiom is xy = z =⇒
∃v, w(vx = yw = z). Reflexivity of ≤ follows from ex = x, and x ≤ y,
y ≤ z imply vx = y, wy = z for some v, w and therefore wvx = z, which
proves transitivity. Hence ≤ is a preorder, and its symmetrization is defined by
x ≡ y ⇐⇒ x ≤ y and y ≤ x. As usual, the equivalence classes [x] of ≡ are par-
tially ordered by [x] ≤ [y] ⇐⇒ x ≤ y. An element v is invertible if there exists
w such that vw = e = wv, and the set of invertible elements of a GS-algebra A
is denoted by A∗. The inverse of v, if it exists, is unique and is denoted by v−1.

Lemma 3. Let A be a generalized separation algebra. Then

1. A∗ is the bottom equivalence class [e] of the poset A/≡ = ({[x] : x ∈ A},≤),
2. A∗ = (A∗, ·, e,−1 ) is a (total) group and is a closed subalgebra of A,
3. x ≡ y holds if and only if x ∈ yA∗, and
4. ≡ is the identity relation if and only if e is the only invertible element.

Proof. 1. If x ≡ e then vx = e for some v ∈ A, so (vx)v = ev = ve. By
associativity, v(xv) = ve, and from cancellativity we conclude that x is invertible.
Conversely, we always have e ≤ x, and if x is invertible then x−1x = e, hence
x ≤ e, which proves that [e] = A∗ is the bottom element of A/≡. 2. It suffices
to show that · restricted to A∗ is a total operation. Given v, w ∈ A∗ there exists
u ∈ A such that uv = e. Thus (uv)w = w, and by associativity we get u(vw) = w,
which implies that vw is defined. 3. From x ≡ y we have xv = y and yw = x
for some v, w. Therefore ywv = y and xvw = x. By cancellativity it follows that
wv = e = vw, so w ∈ A∗. Now yw = x implies x ∈ {yz : z ∈ A∗} = yA∗.
Conversely, assume x ∈ yA∗, whence x = yv for some invertible element v. Then
xv−1 = y, so x ≡ y. 4. Note that ≡ is not the identity relation if and only if
x ≡ y for some x 6= y. By 2. this is equivalent to |A∗| > 1. ut

A generalized pseudoeffect algebra, or GPE-algebra, is a GS-algebra that is pos-
itive, i.e., xy = e =⇒ x = e, in which case y = e follows from ey = y.
Equivalently, a GPE-algebra is a GS-algebra in which ≤ is antisymmetric and
hence a partial order. A commutative GPE-algebra is called a generalized effect
algebra, or GE-algebra. As mentioned before, the conjugation axiom always holds
in commutative partial algebras, hence separation algebras and GE-algebras are
quasivarieties.

The following theorem shows that there is a close relationship between gen-
eralized separation algebras and generalized pseudoeffect algebras. In particular,
the result shows that every separation algebra can be collapsed in a unique way
to a largest generalized effect algebra. Hence a substantial part of the struc-
ture theory of separation algebras is covered by results about generalized effect
algebras.

Theorem 4. For a GS-algebra A,

1. the relation ≡ is a closed congruence,
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2. A/≡ is a GPE-algebra,
3. the congruence classes of ≡ all have the same cardinality, and
4. if h : A → B is a homomorphism and B is a GPE-algebra then there

exists a unique homomorphism g : A/≡ → B such that g ◦ γ = h (where
γ : A→ A/≡ is the canonical homomorphism γ(x) = [x]).

Proof. Let x ≡ y, z ≡ w and assume yw is defined. We want to show that xz is
defined and xz ≡ yw. Using the assumptions and conjugation, we obtain ux = y
and zv = w for some u, v, and, since yw is defined, (ux)(zv) = yw. By asso-
ciativity it follows that (u(xz))v = yw, hence xz is defined. Using conjugation
again, there exists r such that r(u(xz)) = yw, hence xz ≤ yw. Given that xz is
now known to be defined, a similar argument shows yw ≤ xz, so xz ≡ yw.

The quotient algebra is positive since if [x][y] = [e], then xy ≡ e. This gives
xyv = e for some v and therefore x ≤ e, from which [x] = [e] follows. Therefore
A/≡ is a GPE-algebra. For x ∈ A, x = x+ 0 and the map x 7→ x+ v for v ∈ A∗

is a bijection between [x] and [0]. Hence the congruence classes have the same
cardinality.

Now assume h : A→ B is a homomorphism and B is a GPE-algebra. Define
g : A/≡ → B by g([a]) = h(a). To prove that g is well defined, assume [a′] = [a],
or equivalently a ≡ a′. This means va = a′, so h(v)h(a) = h(va) = h(a′),
whence h(a) ≤ h(a′). Similarly h(a′) ≤ h(a), and since ≤ is a partial order in
any GPE-algebra, h(a) = h(a′) follows.

Now suppose g′ is a homomorphism that also satisfies g′ ◦γ = h. This means
g′([a]) = h(a) for all a ∈ A, so g′ = g. ut

Theorem 5. Let G be a group and B a GPE-algebra. Then A = G × B is a
GS-algebra with A∗ = G× {e}.

Proof. The product of GS-algebras is again a GS-algebra since by, Theorem 2,
this class of algebras is closed under reduced products. The element (g, e) ∈ A
has inverse (g−1, e), and there are no other inverses by Lemma 3.4. ut

Several of the prominent subclasses of GPE-algebras extend the signature of
these algebras with a constant 1 and unary operations ∼,− or ′. In the case of
commutativity it is also traditional to replace ·, e with +, 0 (or ⊕, 0).

Starting from GPE-algebras using the +, 0 signature, seven subclasses are
obtained by adding combinations of the following three independent axioms:

(comm) x+ y = y + x (commutativity)
(orth) x+ y = 1 ⇐⇒ y = x∼ ⇐⇒ x = y− (orthocomplementation)
(cons) x+ x 6= u =⇒ x = 0 (consistency)

In particular, adding these different combinations of the above axioms to a
GPE-algebra produces the following subclasses:
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Axioms Name Abbrev.
(comm) generalized effect algebra GE
(cons) generalized pseudo-orthoalgebra GPO
(orth) pseudoeffect algebra PE
(comm), (cons) generalized orthoalgebra GO
(comm), (orth) effect algebra E
(cons), (orth) pseudo-orthoaglebra PO
(comm), (cons), (orth) orthoaglebra O

In a pseudoeffect algebra, x∼ and x− are called the right and left complement
of x, and 1 is the top element. In fact any GPE-algebra with a top element,
denoted by 1, can be extended with these two unary operations such that (orth)
holds, and it is easy to check that they are total operations. For commutative
subclasses such as effect algebras, we always have x∼ = x− and in this case we
write x′ for the complement of x. From (orth) it follows that x∼− = x = x−∼,
so for effect algebras and orthoalgebras this is written as x′′ = x.

Below is a diagram that depicts the containment between these subclasses of
GPE-algebras. The initial addition of the three independent axioms is shown as
well as the larger classes of (generalized) separation algebras.

orthcomm cons

GS

Sep GPE

PEGPO

PO

GE

EGO

O

The two most studied subclasses of GPE-algebras are effect algebras (EA)
which satisfy (comm) and (orth), and orthoalgebras (OA) which satisfy (comm),
(orth) and (cons). The signature for effect algebras and orthoalgebras is +,′ , 0, 1.
Some examples of effect algebras are given below:

1. One-element effect algebra ({0},+,′ , 0, 0)

2. Two-element effect algebra ({0, 1},+,′ , 0, 1) where 0+x = x = x+0, 1+1 =
undefined, 0′ = 1, 1′ = 0.

3. The standard MV-effect algebra [0, 1]E = ([0, 1],+,′ , 0, 1) where x + y is
addition, but undefined if the result is bigger than 1, x′ = 1− x.

4. For any MV-algebra (A,⊕,¬, 0) define x+y =

{
x⊕ y if x ≤ ¬y
undefined otherwise

Then

(A,+,¬, 0,¬0) is called an MV-effect algebra.
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5. Let (G, ·,−1 , e,≤) be a partially ordered group and u ∈ G such that u ≥ e.
Then ([0, u], ·,∼ ,− , e, u) is an interval pseudoeffect algebra where · is unde-
fined if the result is outside of [0, u], x∼ = x−1u and x− = ux−1. If G is
abelian this construction produces an interval effect algebra.

6. Let (L,∨,∧,′ , 0, 1) be an orthomodular lattice, i.e., a lattice (L,∨,∧) that
satisfies x ∧ x′ = 0, x ∨ x′ = 1, x′′ = x, (x ∧ y)′ = x′ ∨ y′ and x ≤ y =⇒

x∨ (x′ ∧ y) = y. Define x+ y =

{
x ∨ y if x ≤ y′

undefined otherwise
. Then (L,+,′ , 0, 1)

is an orthoalgebra since it is consistent : if x+ x is defined then x = 0.

Examples of generalized separation algebras (that are not GPE-algebras) can
be constructed using Theorem 5.

All classes defined here are closed under products, but some of them are also
closed under certain amalgamated disjoint unions. The horizontal sum A + B
of PE-algebras A and B is the disjoint union of A− {0, 1} and B − {0, 1} with
new bottom and top added. The new operations ·,′ agree with ·,′ on A and B,
and, for a ∈ A−{0, 1}, b ∈ B−{0, 1}, the value of ab is undefined. The result is
again a PE-algebra, and, if A,B are effect algebras or orthoalgebras, the same
is true for A + B. Clearly horizontal sums can also be defined for arbitrary
families of PE-algebras. For the class of GPE-algebras or its subclasses one can
define a bottom sum that takes the disjoint union of the factors and identifies all
the bottom elements. The result is again a GPE-algebra, or a GE-algebra if all
summands are commutative. In Figure 1 we give some diagrams of finite effect
algebras and GPE-algebras to indicate the range of possible examples. A black
dot is used for elements that are equal to their complements, and other elements
are represented by open circles.

O1

0

O2

1

0

E3

1=2a

a

0

O2×O2

1=a + a′

a′a

0

E3 + E3

1=2a=2b

ba

0

E4

1=3a

a′=2a

a

0

O2×O2 + E3

1

ba′a

0

3E3

1

cba

0

E3 + E4

1

b′

b
a

0

E5

1

a′

b

a

0

Fig. 1. Effect algebras with up to 5 elements
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For a (pseudo)effect algebra A, let Ā denote the ′-free reduct. Applying
this to the 2-element orthoalgebra we obtain Ō2 = ({0, 1},+, 0), the 2-element
GE-algebra.

Ō2×Ō2

11=10 + 01

0110

00

Ō2 +0 Ō2.

ba

0

PO5

1

a∼aa−

0

PE6 = PO5 + E3

1

ba∼aa−

0

GPO6 = PO5 +0 Ō2

1=a+b=b+c=c+a

dcba

0

E′6

1

b′=a+b2a=2b=a′

ba

0

Fig. 2. Examples of GO-, GPO-, E-, GE- and GPE-algebras

4 An orderly algorithm for constructing generalized
pseudoeffect algebras

Examples of GPE-algebras can provide insight into their structure that may
not be apparent simply from studying their axioms. General purpose model
generators such as Mace4 [11] can be used to find all models of cardinality n
of a finitely axiomatized first-order theory. However, if a class has many models
even for small cardinalities, as is the case with GPE-algebras, this approach
becomes computationally unfeasible for n > 8. For this reason, it is helpful to
have a more efficient algorithm that can construct all GPE-algebras of a given
size. An orderly algorithm constructs nonisomorphic models of cardinality n+ 1
from models of cardinality n without checking for possible isomorphisms with
all other models of the same size. This reduces space and time requirements of
such algorithms and makes it possible to parallelize the model search.

A GPE-algebra of cardinality n is represented on the set A = {0, 1, . . . , n−1}
by the n × n table for its partial binary operation, where undefined entries are
marked with a special value not in A. The results below show how a GPE-table
of size n × n is constructed by adding a new maximal element n to an already
existing (n− 1)× (n− 1) table associated with a GPE-algebra of size n− 1. A
subset B of a poset is a downset if x ≤ y ∈ B implies x ∈ B.

Lemma 6. Let A = (A,+, 0) be a GS-algebra and B a nonempty downset with
respect to the preorder ≤. Then B = (B,+�B , 0) is a GS-algebra. If A is a
GPE-algebra, the same holds for B.
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Proof. Let B be a downset of A. For simplicity of notation, we will denote +�B ,
the restriction of + onto B, as +B . We need to check that B satisfies the axioms
for GS-algebras.

Identity element: Since 0 is the bottom element of A it follows that 0 is in
the downset B, hence it is also the identity element of B under the restriction
of + to B.

Cancellativity: Assume x+B y = x+B z is defined for some x, y, z ∈ B. Then
x + y = x + z is defined in A and x = y by cancellativity in A. Similarly, if
x+B y = z +B y, then x+ y = z + y in A and x = z by cancellativity in A.

Associativity: Assume x+B y and (x+B y)+B z are defined in B. Then x+y
and (x+ y) + z are defined in A. By associativity in A, it follows that y+ z and
x + (y + z) are defined in A, and (x + y) + z = x + (y + z). By substitution,
x+ (y+ z) = (x+B y) +B z. It remains to show that y+B z is defined in B. By
conjugation in A, there exists a w ∈ A such that x + (y + z) = (y + z) + w =
(x+B y) +B z. Therefore, y + z ≤ (x+B y) +B z ∈ B, so y +B z ∈ B since B is
a downset, and we can conclude that (x+B y) +B z = x+B (y +B z).

Conjugation: Assume x+B y is defined in B. Then x+ y is defined in A and
by conjugation in A, there exist u, v ∈ A such that x + y = u + x = y + v.
Hence u ≤ x+ y = x+B y ∈ B, so u ∈ B and u+B x = x+B y in B. Similarly,
there exists w ∈ A such that y + v = v + w = x+ y by conjugation in A. Thus,
v ≤ x+ y = x+B y ∈ B, so v ∈ B and y +B v = x+B y in B. ut

The next result shows what needs to be checked to extend a GPE-algebra
with a new maximal element n. The forward direction of the proof follows from
the assumption thatA is a relative subalgebra ofA′, and for the reverse direction
it suffices to check that the GPE-axioms hold in A′. The final statement of the
theorem follows from Lemma 6

Theorem 7. Let A = (A,⊕, 0) be a GPE-algebra and let A′ = A ∪ {n} for
n /∈ A. Then A′ = (A′,+, 0) is a GPE-algebra with A as a relative subalgebra
and n as maximal element if and only if the following conditions hold for all
x, y, z ∈ A

1. x+ y ∈ A if and only if x⊕ y is defined, in which case x+ y = x⊕ y,
2. n+ 0 = n = 0 + n,
3. x 6= 0 =⇒ n+ x and x+ n are undefined, and n+ n is undefined,
4. x+ y = n = x+ z =⇒ y = z and x+ y = n = z + y =⇒ x = z,
5. x+ y = n =⇒ u+ x = n = y + v for some u, v ∈ A, and
6. (x+ y) + z = n ⇐⇒ x+ (y + z) = n.

Furthermore, every GPE-algebra of cardinality n+ 1 has a relative subalgebra of
cardinality n.

Our algorithm uses the preceding result to construct all GPE-algebras of
cardinality n starting with the one-element GPE-algebra. This is done by a
backtracking search, ensuring that all possible one-point extensions of each al-
gebra are computed. To remove isomorphic copies efficiently, the binary oper-
ation is coded as a directed graph and a canonical labeling algorithm is used
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to map to a unique fixed representative of the isomorphism class of the di-
rected graph. Some optimizations are used for the cancellativity, conjugation
and associativity checks. The algorithm was implemented in Python and uses
a canonical labeling algorithm from the Sage computer algebra systems [15].
The number of algebras computed up to isomorphism in each subclass of GPE-
algebras are summarized in Table 1 and the partial algebras can be downloaded
from https://github.com/jipsen/Effect-algebras. For the class Sep of sep-
aration algebras and for the class of GS-algebras the Mace4 model finder [11]
was used.

n O PO GO GPO E PE GE Sep GPE GS
2 1 1 1 1 1 1 1 2 1 2
3 0 0 1 1 1 1 2 3 2 3
4 1 1 2 2 3 3 5 8 5 8
5 0 1 2 3 4 5 12 13 13 14
6 1 2 4 7 10 12 35 39 42 48
7 0 2 8 19 14 19 119 120 171 172
8 2 5 18 68 40 52 496 507 1020
9 0 4 42 466 60 84 2699 11742

10 2 10 156 8740 172 240 21888 322918
11 0 9 834 282 292496

Table 1. Number of partial algebras in each class

As indicated by Theorem 4, there are only a small number of GS-algebras
that are not GPE-algebras since the structure of a generalized separation algebra
is highly restricted by its group of invertible elements and the GPE-quotient
determined by this group.

5 Further results about GPE-algebras

The height of an element a in a finite GPE-algebra is the length of a maximal
path from 0 to a in the Hasse diagram of the partial order. A set of elements of
the same height make up a level. The atoms of a GPE-algebra are the elements
in level 1, i.e, they only have the bottom element 0 below them.

Lemma 8. Associativity holds automatically for naturally ordered partial alge-
bras that have two levels or less.

Proof. Level 1: If (x + y) + z is defined in a partial algebra with 1 level, then
x+ y = 0 or z = 0. If x+ y = 0, then x, y = 0 by positivity and so (0 + 0) + z =
z = 0 + (0 + z). If z = 0, then (x+ y) + 0 = x+ y = x+ (y + 0). In either case,
associativity holds.

https://github.com/jipsen/Effect-algebras
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Level 2: Now assume (x+ y) + z is defined in a partial algebra with level 2.
If (x+ y) + z has height 1, then it satisfies associativity by the same reasoning
as the first part of this proof. If (x + y) + z has height 2, then there are three
possibilities:

(i) x+ y has height 2 and z has height 0, in which case (x+ y) + 0 = x+ y =
x + (y + 0). (ii) x + y has height 0 and z has height 2, in which case x, y = 0
and so (0 + 0) + z = z = 0 + (0 + z). (iii) x + y and z both have height 1.
x+ y of height 1 implies that either x = 0 or y = 0. This means we either have
(0 + y) + z = y + z = 0 + (y + z) or (x+ 0) + z = x+ z = x+ (0 + z). ut

Lemma 9. A GPE-algebra is a GE-algebra if and only if it has a generating set
in which all elements commute.

Proof. Since GE-algebras are by definition commutative, the elements of any
generating set will commute trivially. Thus we only need to prove the reverse
implication, which we do by induction on the level n.

Let A be a GPE-algebra with a set of generators X such that for all x, y ∈ X
either x + y, y + x are both undefined or x + y = y + x. P (n): All levels up to
and including n are commutative.

P (2): Let x, y ∈ A and w.l.o.g., let x have height 2 and y have any height.
Then there exist atoms a, b ∈ X such that a+ b = x and elements c, d ∈ X ∪{0}
such that c+ d = y. If x+ y is defined, then by commutativity and associativity
of X ∪ {0}, we get that x+ y = (a+ b) + (c+ d) = (c+ d) + (a+ b) = y + x.

Now assume P (k) holds for all 2 ≤ n ≤ k.
P (k + 1): Let x, y ∈ A and w.l.o.g., let x have height k + 1 and y have any

height. Then there exist a, b, c, d ∈ A with heights less than k + 1 such that
a+ b = x and c+d = y. If x+y is defined, then by the inductive hypothesis and
associativity we have (a+ b) + (c+ d) = (c+ d) + (a+ b) and thus x+ y = y+ x
for any x on level k + 1 with x+ y defined. ut

It is an elementary result in group theory that every 1-generated group is
commutative. For GPE-algebras a similar result holds for 1- and 2-generated
algebras.

Theorem 10. Every 2-generated GPE-algebra is commutative.

Proof. Let A be a 2-generated GPE-algebra with atoms a 6= b. By symmetry, it
suffices to show that if a+ b is defined, then b+ a is defined and the two values
are equal. So assume a+ b is defined. Then, by conjugation, there exists a w ∈ A
such that a+ b = w+ a. It follows from the last equation that w ≤ a+ b, which
means w is either a+b, a, b or 0, since a, b are atoms. By cancellativity, w cannot
be 0, a or a + b, hence w = b and we have that a + b = b + a. Since the atoms
commute, the previous lemma implies that A is commutative. ut

Let L(n1, n2, ..., nk) denote the number of GPE-algebras (up to isomorphism)
with level structure (n1, n2, ..., nk) and n = 1+

∑k
i=1 ni number of elements. The

number of integer partitions for a positive integer n, also called the partition
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function, is the number of ways positive integers can sum to n, ignoring order,
and is denoted by p(n).

We now show that the number of GPE-algebras of height ≤ 2 with cardinality
n is given by the sum of the partition function from 1 to n. We first observe that
a partial operation + can be viewed as a coalgebra α : A → P(A2) where
α(x) = {(y, z) ∈ A2 | x = y + z}.

Lemma 11. For a GPE-algebra A and x ∈ A, the binary relation α(x) is a
permutation of its domain, hence in the finite case the domain is partitioned
into disjoint finite cycles.

Proof. The relation α(x) is a function on its domain since · is left-cancellative,
and injective since · is right-cancellative. By conjugation α(x) is surjective, hence
it is a permutation. Letting α act on the domain gives the partition into cycles.

ut

Lemma 12. For any GPE-algebra of size n ≥ 3, L(n − 2, 1) = L(n − 3, 1) +
p(n− 2).

Proof. Consider an algebra A = (A,+, 0) of size n − 1 with the level structure
given by (n−3, 1). Define a new algebra A′ = (A′,⊕, 0) of size n by A′ = A+0 Ō2

(see Fig. 2 for examples of the bottom sum +0). Then A′ is a GPE-algebra of
size n with a level structure given by (n − 2, 1). This means that at the very
least there are L(n− 3, 1) GPE-algebras of size n with level structure (n− 2, 1).

Now let A be a pseudoeffect algebras with level structure (n− 2, 1), and let
x be the top element. For every element y in the first level, there exists y′ such
that y+y′ = x, hence the domain of α is A. By Lemma 11, A is partitioned into
disjoint cycles, with one of the cycles being {0, x}. Therefore the remaining n−2
elements in level 1 are partitioned into cycles, and there are p(n − 2) different
possible partitions up to isomorphism. ut

Theorem 13. The number of GPE-algebra of cardinality n with level structure
(n− 2, 1) is

∑n
k=1 p(k).

Recall that the partial order on a GPE-algebra is given by a ≤ b ⇐⇒ ∃z (a+
z = b) ⇐⇒ ∃w (w+a = b). By cancellativity, z, w are unique, so we denote z =
a\b and w = b/a. Rump and Yang [13] define a two-point extension for a GPE-
algebra A that produces a total algebra A>⊥ = (A ∪ {⊥,>},≤, ·, e, \, /,⊥,>)
such that ≤ is the natural order, extended with ⊥ ≤ x ≤ >, let e = 0,

a · b =


a+ b if a+ b is defined
⊥ if a = ⊥ or b = ⊥
> otherwise

⊥\x = x/⊥ = x\> = >/x = > and if a � b then define a\b = ⊥ = b/a.
A residuated partially ordered monoid (A,≤, ·, e, \, /) is a poset (A,≤) and a

monoid (A, ·, e), and for all x, y, z ∈ A, xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ y ≤ z/x.
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Theorem 14 ([13]). Let A be a GPE-algebra. Then A>⊥ is a residuated po-
monoid, i.e., (A,≤) is a poset, (A, ·, e) is a monoid and xy ≤ z ⇐⇒ y ≤
x\z ⇐⇒ y ≤ z/x.

The preceeding result shows that every GPE-algebra is an interval in a total
residuated po-monoid that has a unit e as its unique atom.

A residuated po-monoid is involutive [7] if there exists an element d such that
the terms ∼x = x\d and −x = d/x satisfy −∼x = x = ∼−x. Then −d = e = ∼d
and x\y = ∼((−y)x), x/y = −(y(∼x)). Equivalently, (A,≤, ·, e, d,∼,−) is an
involutive residuated po-monoid if −∼x = x = ∼−x and xy ≤ d ⇐⇒ x ≤ −y.

Theorem 15. The two-point totalization of PE/PO-algebras, effect algebras and
orthoalgebras produces involutive residuated po-monoids.

Recall that a groupoid is a (small) category in which every morphism is an
isomorphism. While groups capture the symmetries of individual mathematical
objects, groupoids model symmetries of systems of related objects. For exam-
ple, the fundamental groupoid of a topological space captures more information
about the space than the fundamental group determined by a choice of base
point.

We end this section with a recent generalization of effect algebras that is
similar to modifications of separation algebras in [4] that allow several local
identity elements.

A pseudoeffect algebra is symmetric if x∼ = x−. Roumen [12] has taken the
important step of generalizing symmetric pseudoeffect algebras to effect alge-
broids. Here the concept is reformulated for a unisorted partial algebra.

An effect algebroid is a partial algebra (A,+,′ ) such that

(asso) (x+ y) + z = x+ (y + z)
(idenL) (x+ x′)′ + x = x
(orthL) x+ y defined and x+ y = x+ x′ implies y = x′

(orthR) x+ y defined and x+ y = y′ + y implies x = y′

(dbl) x′′ = x
(0-1) if x+ (x′ + x) is defined then x = (x′ + x)′.

For comparison with effect algebras and pseudoeffect algebras, we computed
the number of effect algebroids of cardinality n.

n = 1 2 3 4 5 6 7 8
Effect algebroids 1 2 3 7 12 27 49 114

An effect algebroid is a symmetric pseudoeffect algebra if and only if it satisfies
x+ x′ = y + y′. It is an effect algebra if, in addition, it satisfies x+ y = y + x.

6 Conclusion

Partial algebras are considerably more general than total algebras. The class
of generalized separation algebras and its subclass of generalized pseudoeffect
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algebras are closely related, but so far have been studied separately since they
arose in the unrelated areas of separation logic and quantum logic. We proved
that there is a canonical map from separation algebras to GPE-algebras and
computed finite GPE-algebras up to 10 elements (up to 11 elements for GE-
algebras). Insight from these finite models was used to prove that all 2-generated
GPE-algebras are commutative and to describe all GPE-algebras with a single
element on the second level.
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