
Commutative doubly-idempotent semirings
determined by chains and by preorder forests

Natanael Alpay and Peter Jipsen

Chapman University, Orange, CA, USA

Abstract. A commutative doubly-idempotent semiring (cdi-semiring)
(S,∨, ·, 0, 1) is a semilattice (S,∨, 0) with x ∨ 0 = x and a semilattices
(S, ·, 1) with identity 1 such that x0 = 0, and x(y ∨ z) = xy ∨ xz holds
for all x, y, z ∈ S. Bounded distributive lattices are cdi-semirings that
satisfy xy = x ∧ y, and the variety of cdi-semirings covers the variety of
bounded distributive lattices. Chajda and Länger showed in 2017 that
the variety of all cdi-semirings is generated by a 3-element cdi-semiring.
We show that there are seven cdi-semirings with a ∨-semilattice of height
less than or equal to 2. We construct all cdi-semirings for which their
multiplicative semilattice is a chain with n + 1 elements, and we show
that up to isomorphism the number of such algebras is the nth Catalan
number Cn = 1

n+1

(
2n
n

)
. We also show that cdi-semirings with a complete

atomic Boolean ∨-semilattice on the set of atoms A are determined by
singleton-rooted preorder forests on the set A. From these results we
obtain efficient algorithms to construct all multiplicatively linear cdi-
semirings of size n and all Boolean cdi-semirings of size 2n.
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1 Introduction

The structure of distributive lattices is well understood since every distributive
lattice is a subalgebra of a product of the 2 element lattice, i.e., a subalgebra of
a Boolean lattice. The situation is more complicated for idempotent semirings
(A,∨, ·, 0, 1), defined by the identities

(x ∨ y) ∨ z = x ∨ (y ∨ z) x ∨ y = y ∨ x x ∨ 0 = x x ∨ x = x x0 = 0 = 0x

(xy)z = x(yz) x1 = x = 1x (x ∨ y)z = xz ∨ yz x(y ∨ z) = xy ∨ xz.

Note that xy stands for x · y, x0 = 1 and xn+1 = xnx. The subclass of com-
mutative doubly idempotent semirings, or cdi-semirings for short, is obtained by
adding the identities xy = yx and x2 = x. Even for this much smaller class
of cdi-semirings there is no general structure theory. The classes of idempotent
semirings and cdi-semirings are defined by a list of identities, hence they are
varieties, i.e., closed under products, subalgebras and homomorphic images.

Since we are also assuming · is commutative and idempotent, there are two
underlying semilattice orders x ≤ y ⇐⇒ x ∨ y = y and x ⊑ y ⇐⇒ xy = x.
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A cdi-semiring is a bounded distributive lattice if and only if the two orders
coincide, or equivalently if the absorption laws x∨xy = x and x(x∨y) = x hold.
While the variety of cdi-semirings is quite special, it includes all distributive
lattices and is small enough that there is hope for a general description of its
finite members.

The aim of this paper is to give structural descriptions for some subclasses
of cdi-semirings. In particular, we show in Section 2 that there are, up to iso-
morphism, only seven cdi-semirings of height 2. In Section 3 we give a complete
description of the finite cdi-semirings for which the monoidal semilattice order
⊑ is a chain (i.e., linearly-ordered). Finally, in Section 4 we describe all finite
Boolean cdi-semirings by certain preorder forests on the set of atoms.

Recall that Kleene algebras are idempotent semirings with a unary operation
x∗ such that (i) 1 ∨ x ∨ x∗x∗ = x∗, (ii) xy ≤ y =⇒ x∗y = y and (iii)
yx ≤ y =⇒ yx∗ = y hold. It is well known that the class KA of all Kleene
algebras is not closed under homomorphic images, hence (ii), (iii) cannot be
replaced by identities and the class KA of Kleene algebras is only a quasivariety.
Our first observation is that the results in this paper also apply to a special class
of Kleene algebras.
Lemma 1. Let V be the variety of idempotent semirings that satisfy x2 ≤ 1∨x,
and define a unary ∗ on members of V by the term x∗ = 1∨x. Then V ⊆ KA, and
cdi-semirings are precisely the members of V that satisfy the identities xy = yx
and x2 = x.

Proof. We first prove that V ⊆ KA by showing that x2 ≤ 1 ∨ x and x∗ = 1 ∨ x
imply (i)-(iii) in the definition of Kleene algebras. Let A ∈ V and x, y ∈ A. Then

1 ∨ x ∨ x∗x∗ = 1 ∨ x ∨ (1 ∨ x)(1 ∨ x) = 1 ∨ x ∨ x2 = 1 ∨ x = x∗.

Assuming xy ≤ y, we have y∨xy = y and x∗y = (1∨x)y = y∨xy = y. Similarly
yx ≤ y ⇒ yx∗ = y.

For the last part, observe that all cdi-semirings are members of V since x2 = x
implies x2 ≤ 1 ∨ x. ⊓⊔

There are two 3-element cdi-semirings, and in [1] it is proved that the variety
CDI of cdi-semirings is generated by one of them, denoted by S3, (the other one
is the 3-element distributive lattice). In the literature of semirings there are sev-
eral definitions depending on whether the algebra contains an identity and/or
a zero element. S. V. Polin [10] studied minimal varieties of semirings without
0, 1 as constant operations. A variety is minimal if it has no proper subvarieties
other than the variety of one-element algebras. Polin showed there are 8 mini-
mal varieties of semirings (without 0,1) generated by 2-element semirings and 2
countable sequences of minimal varieties of rings generated by finite prime fields
and by finite prime additive cyclic groups with constantly zero multiplication. If
the constants are included, then there are still the two countable sequences and
only one more minimal variety: the variety of bounded distributive lattices.

McKenzie and Romanovska [6] proved that the variety of doubly idempotent
semirings without 0, 1 has exactly 4 proper subvarieties: the trivial variety, the
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variety of distributive lattices (without constants for top, bottom), the variety
of semilattices (defined by xy = x∨y), and the join of the previous two varieties,
called distributive bisemilattices and defined as commutative doubly idempotent
semirings (without constants) where x ∨ yz = (x ∨ y)(x ∨ z). When 0 is in the
signature of semirings with 0 ∨ x = x and x0 = 0, then the distributivity of ∨
over · implies the absorption laws since

x ∨ xy = (x ∨ x)(x ∨ y) = x(x ∨ y) = (x ∨ 0)(x ∨ y) = x ∨ 0y = x ∨ 0 = x.

Hence the variety of distributive bisemilattices with 0 coincides with the variety
of distributive lattices with 0. Likewise the identity xy = x∨ y implies 0 = x0 =
x ∨ 0 = x hence the variety of semilattices coincides with the trivial variety. So
with constants, the variety CDI has only two subvarieties, namely the variety
of bounded distributive lattices, generated by the 2-element lattice 2 and the
variety of one-element algebras.

2 Cdi-semirings of height two

Recall that in an idempotent semiring S, the join-semilattice order is denoted
by x ≤ y. If (S,≤) is a linear order (or chain for short) then the height of S is
|S| − 1. In general the height of an idempotent semiring is the maximal height
over all subchains of (S,≤). The top element in the ≤-order is denoted by ⊤.

It follows from a result of D. Stanovsky [11] about idempotent residuated
lattices that there are only a small number of cdi-semirings of height 2. The
proof below is self-contained and constructs all nonisomorphic cdi-semirings of
height ≤ 2.

Recall that an atom of a poset with bottom element 0 is an element a ̸= 0
such that x < a implies x = 0.

1

1

2

1

0

3

1

a

0

2× 2

1

ba

0

S3,≤

⊤
1

0

S3,⊑

⊤
1

0

S4,≤

⊤
a1

0

S4,⊑

⊤
a

1

0

S5,≤

⊤
ba1

0

S5,⊑

⊤
ba

1

0

Fig. 1. All cdi-semirings of height 2 or less, ordered by ≤ and ⊑, with 1 marked by •.
The top row are bounded distributive lattices, hence ≤ and ⊑ coincide.
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Theorem 2. There are, up to isomorphism, seven cdi-semirings of height two
or less (Fig. 1).

Proof. Let S be a cdi-semirings of height ≤ 2. For any elements x, y ∈ S such
that x ∈ {0, 1} or y ∈ {0, 1} the multiplication xy is fixed by the semiring axioms
and xx = x, hence the structure of S is determined by the join-semilattice order
and the products of distinct elements x, y ∈ S \{0, 1}. If S has height 0, it is the
one-element semiring (0 = 1), and if S has height 1, it is the 2-element lattice
with 0 ̸= 1. In the remaining cases, S has height 2, so let A be the set of atoms
of S.

If |A| = 1, then S has three elements and either A = {1} or A = {a} for
some a ̸= 1. Therefore S is S3 or 3.

If |A| = 2, then A = {1, a} for some a ̸= 1 or A = {a, b} for a ̸= 1 and b ̸= 1.
In the first case a⊤ = a(1∨ a) = a∨ a = a, and in the second case a, b ≤ ⊤ = 1,
hence ab ≤ a, b and it follows that ab = 0. Therefore S is S4 or 2× 2.

If |A| ≥ 3, then we have distinct elements a, b, c ∈ A. If ⊤ = 1 then as in the
previous case ab = 0 and similarly ac, bc = 0. We also have b∨ c = 1 since S has
height 2. But now 0 = ab ∨ ac = a(b ∨ c) = a1 = a contradicts the assumption
that a is an atom, hence we conclude that ⊤ ̸= 1 and therefore 1 is an atom.
Since S has height 2, we have a ∨ 1 = ⊤ = b ∨ 1 and

ab ∨ b = ab ∨ 1b = (a ∨ 1)b = (b ∨ 1)b = b ∨ b = b.

It follows that ab ≤ b, and similarly ab ≤ a, hence ab = 0. In the case when
A = {1, a, b} we again have a⊤ = a as well as b⊤ = b, therefore S is S5.

In all other cases |A| > 3, hence we have distinct 1, a, b, c ∈ A and a∨ 1 = ⊤.
The same argument as above shows that ab = 0 and ac = 0, so

0 = ab ∨ ac = a(b ∨ c) = a⊤ = a(a ∨ 1) = a ∨ a = a

which again contradicts the assumption that a is an atom, so no further cdi-
semirings of height 2 exist. ⊓⊔

3 Catalan semirings

As mentioned in the introduction, cdi-semirings have a multiplicative semilattice
order defined by x ⊑ y if and only if x · y = x. A cdi-semiring is called a Catalan
semiring if this multiplicative order is a chain. A search with Prover9/Mace4 [5]
shows there are 1, 1, 2, 5, 14, 42 such cdi-semirings of size up to 6. This sequence
coincides with the sequence of Catalan numbers Cn = 1

n+1

(
2n
n

)
[8] and our next

result shows that this coincidence continues for all n. Using a result of [2] we
construct all finite Catalan semirings by defining a Catalan sum © on this class.
To distinguish the operations and constants in several semirings, we superscript
them with the name of the semiring.

Let A and B be two Catalan semirings and define C = A © B to be the
structure over the disjoint union of A and B given in the following way. Then
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0C = 0A, 1C = 1A and the operations are given by

x∨Cy =



x ∨A y if x, y ∈ A\{0}
x ∨B y if x, y ∈ B

1B ∨B y if x ∈ A\{0}, y ∈ B

1B ∨B x if x ∈ B, y ∈ A\{0}
y if x = 0A

x if y = 0A

x·Cy =



x ·A y if x, y ∈ A\{0}
x ·B y if x, y ∈ B

y if x ∈ A\{0}, y ∈ B

x if x ∈ B, y ∈ A\{0}
0A if x = 0A or y = 0A

Recall that for two partially ordered sets P1, P2 the ordinal sum P1 ⊕ P2

is given by the disjoint union of P1, P2 with every element of P1 below every
element of P2. Using this construction, the multiplicative semilattice of C is
simply the ordinal sum {0A} ⊕ (B,⊑)⊕ (A \ {0A},⊑), and the join-semilattice
of C is described by Figure 2. Note that if A or B is a one-element algebra, the
underlying lattice of A © B is the ordinal sum of the lattices of A and B.

The next lemma is proved in [2] for finite commutative Catalan idempotent
residuated lattices. Every finite idempotent semiring uniquely expands to a finite
residuated lattice, hence we can state the result in the following way.

Lemma 3. (i) If A,B are finite Catalan semirings then A © B is a Catalan
semiring of size |A|+ |B|.

(ii) Suppose C is a finite Catalan semiring of cardinality n ≥ 2. Then C = A©B
for a unique pair A,B of smaller Catalan semirings.

Proof. (i) Assume that A,B are finite Catalan semirings and let C = A © B.
Then by construction, C has a linear monoidal order ⊑C, and ≤C is a join-
semilattice order (Figure 2). Hence ·C and ∨C are associative, commutative and
idempotent. The least element of the lattice order (C,≤C) is the least element
of the monoidal order (C,⊑C). Thus all we need to prove in order to show that
C is a Catalan semiring is distributivity, i.e. x(y ∨ z) = xy ∨ xz. In principle
there are eight cases to check, but when x, y, z are all in either A or B then
distributivity holds. By commutativity of ∨ there are four cases left to check:

1. Let x ∈ A \ {0A}, and y, z ∈ B. Then x(y ∨ z) = x(y ∨B z) = y ∨B z and
xy ∨ xz = y ∨B z since y, z ⊑ x.

2. Let y ∈ A \ {0A} and x, z ∈ B. Then x(y ∨ z) = x(1B ∨B z) and xy ∨ xz =
x ∨B xz = x(1B ∨B z).

3. Let x, y ∈ A \ {0A}, and z ∈ B. Then x(y ∨ z) = x(1B ∨B z) = 1B ∨B z and
xy ∨ xz = xy ∨B z = 1B ∨B z.

4. Let y, z ∈ A \ {0A}, and x ∈ B. Then x(y ∨ z) = x(y ∨A z) = x and
xy ∨ xz = x ∨B x = x.

Finally, when one of x, y, z is 0A then the distributivity also holds.
(ii) Assume C is a finite nontrivial Catalan semiring, hence the ⊆-semilattice

order is a chain. Let b ∈ C be the unique atom in this chain, and define the sets
B = {x ∈ C : b ≤ x} and A = C \ B. The operations ·,∨ are defined on A
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and B by restriction from C. To show that these operations are well defined,
it suffices to show that A,B are closed under ·C,∨C. This is true for ·C since
x ·C y ∈ {x, y}. Moreover, B is closed under ∨C since it is upward closed.

Suppose that b ≤ x ∨ y and x ̸= 0C ̸= y. Since b is an atom of (C,⊑), we
have b ⊑ x, y. If xy = x, then b = xb ≤ x(x ∨ y) = x2 ∨ xy = x ∨ x = x by
distributivity and idempotency. Similarly, if xy = y then b ≤ y. Also, if x = 0C

then b ≤ x ∨ y = y, and if y = 0C then b ≤ x ∨ y = x. Hence if x ∨ y ∈ B,
then x ∈ B or y ∈ B, thus A is closed under ∨C. Let A and B be the Catalan
semirings with the operations ·,∨ induced by restriction of ·C,∨C. Note that
0A = 0C and 0B = b. The identity elements A,B are defined below.

We now want to show that B is an interval of (C,⊑C). If b′ ∈ B then b ≤ b′,
and b ⊑ x ⊑ b′ implies that b = xb ≤ xb′ = x, hence x ∈ B. Since C is finite, it
follows that for some c ∈ C we have B = {x : b ⊑ x ⊑ c}. Hence for every x ∈ B
we have xc = x, i.e., 1B = c is the identity of B. If 1C ∈ B, then c = 1C and
A = {0C} and otherwise 1C is the identity of A. The elements of A \ {0C} are
linearly ordered by ⊑C and they are above the interval of (B,⊑).

Let x ∈ A \ {0C}, then cx = c and 0C ≤ c. For y ∈ B if x ≤ y, then
c = cx ≤ cy = y, hence c is above every element of A and any element of B
that is above some element of A \ {0C} is above c. Moreover, for y ∈ B and
x ∈ A \ {0C}, we have x ≤ x∨ y ∈ B. Thus c ≤ x∨ y and therefore c∨ y ≤ x∨ y.
Since x ≤ c, we have x∨y ≤ c∨y, hence x∨y = c∨y. It follows that C = A©B.

⊓⊔

For n, i > 0, the Catalan semiring Cn
i is defined to be the ith Catalan semiring

with n elements, starting with the one-element Catalan semiring C1
1. The next

Catalan semiring would be C2
1 = C1

1 © C1
1, the two-element distributive lattice.

The two 3-element cdi-semirings are C3
1 = C1

1 © C2
1 and C3

2 = C2
1 © C1

1. In
general, the Catalan semirings Cn

i of size n are built by constructing all Catalan
sums of algebras A and B of size n − k and k respectively, as k ranges from 1
to n− 1 (see Figure 2). This yields the following result.

Theorem 4. The number of Catalan semirings with n+ 1 elements, up to iso-
morphism, is the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

Proof. Let CS(n) denote the number of Catalan semirings of cardinality n. The
result is proved by induction. The sequence ⟨Ci : i ≥ 0⟩ of Catalan numbers
is determined recursively by C0 = 1 and Cn+1 =

∑n
i=0 CiCn−i. Obviously,

CS(1) = 1 = C0. Suppose now that n ≥ 1 and CS(n) = Cn−1. Using the
preceding lemma and the induction hypothesis, we have that

CS(n+1) =

n∑
k=1

CS(k) ·CS(n+1− k) =

n∑
k=1

Ck−1Cn−k =

n−1∑
i=0

CiCn−1−i = Cn.

⊓⊔

The number of algebras for each size (up to isomorphism), along the number
of cdi-semirings and distributive lattices, tell us how many cdi-semirings are
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≤
0B

1B1A

BA © =

≤
0A

≤
0A

0B

1B

1C

A

B

⊑

B

A \ {0A}

0B

0A

1B

1C = 1A

Fig. 2. The Catalan sum C = A © B

described using the result. As one can see from the table figure below, this
results helps us to understand a big potion of the cdi-semirings for small number
of elements.

# of elements n = 1 2 3 4 5 6 7 8
# of distr. lattices 1 1 1 2 3 5 8 15
# of Catalan semirings 1 1 2 5 14 42 132 429
# of cdi-semirings 1 1 2 6 20 77 333 1589

Table 1. Number of algebras up to isomorphism with n elements

The construction of finite Catalan semirings is very efficient and can be imple-
mented, for example, with the following short Python program that computes all
Catalan semirings of size ≤ n. The output (after conversion to TikZ) is shown
in Figure 3. The black dot marks the identity element and the elements are
numbered in increasing order of the multiplicative semilattice. Note that these
algebras are rigid (i.e., have trivial automorphism group) and are all pairwise
nonisomorphic.
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Fig. 3. ≤-order of Catalan semirings of size ≤ 6
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def catalan_sum(A,B):
# A,B are tuples with A[0] a list of upper covers, topologically sorted
# A[1]=[s[0],...,s[n-1]] a permutation of range(n) s.t. x*y=x iff s[x]<=s[y]
# A[2]=[p[0],...,p[n-1]] a list of coordinates p[i]=(x,y) for display

m = len(A[0])
n = len(B[0])
id_B = B[1].index(n-1)
uc = [A[0][0]+([m] if n!=1 or m==1 else [])] + A[0][1:-1]\

+ ([A[0][-1]+[id_B+m]] if m!=1 else [])\
+ [[x+m for x in u] for u in B[0]]

s = [0] + [x+n for x in A[1][1:]] + [x+1 for x in B[1]]
x = A[2][-1][0] if m==1 or n==1 else max([p[0] for p in A[2]]) + 1
y = (A[2][-1][1] + 1) if m==1 or n==1 else \

max(1, A[2][-1][1] - B[2][id_B][1] + 1)
pos = A[2] + [(B[2][0][0]+x, 1 if m!=1 and n!=1 else B[2][0][1]+y)] + \

[(p[0]+x,p[1]+y) for p in B[2][1:]]
return (uc,s,pos)

def catalan_semirings(n):
# calculate all Catalan semirings of size 1 to n

if n==0: return [[([[]],[0],[(0,0)])]]
CL = catalan_semirings(n-1)
return CL + [[catalan_sum(A,B) for i in range(len(CL))

for A in CL[i] for B in CL[n-1-i]]]

4 Boolean cdi-semirings and directed graphs

An idempotent semiring is Boolean if its join-semilattice is the reduct of a
Boolean algebra. In this section we analyze the structure of finite Boolean cdi-
semirings. We use ideas from the theory of Boolean algebras with operators and
relation algebras [3,4] to recover the semiring operations from a ternary rela-
tion on the atoms of the Boolean algebra. Lemma 5 below is a standard result
that states this works in general for nonassociative nonunital complete atomic
Boolean idempotent semirings. These algebras are also known as nonassociative
atomic Boolean quantales. A nonassociative quantale B = (B,

∨
, ·) is a complete

join-semilattice (B,
∨
) with a binary operation · such that x(

∨
Y ) =

∨
y∈Y xy

and (
∨
Y )x =

∨
y∈Y yx for all x ∈ B and Y ⊆ B. A quantale in addition satisfies

the identity (xy)z = x(yz). By completeness, every quantale has a least and a
greatest element, denoted by 0 and ⊤ respectively. The complete distributivity
of · over

∨
implies x0 = 0 = 0x. If it also has a left identity 1x = x and/or right

identity x1 = x then it is a left/right unital quantale. Hence a join-complete
idempotent semiring is the same as a unital quantale. As for semirings, a quan-
tale is Boolean if its join-semilattice order is that of a complete Boolean algebra,
and atomic if every nonzero element has an atom below it. The set of atoms of
B is denoted by At(B).

Lemma 5. 1. Let B be a nonassociative atomic Boolean quantale with A =
At(B) and define a ternary relation R ⊆ A3 by R(x, y, z) ⇐⇒ x ≤ yz.
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Then for all b, c ∈ B,

bc =
∨

{x : ∃y ≤ b∃z ≤ c R(x, y, z)}.

2. Suppose R ⊆ A3 is a ternary relation on a set A, and define B = (P(A),
∪
, ·)

where for Y, Z ∈ P (A)

Y · Z = {x : ∃y ∈ Y ∃z ∈ Z R(x, y, z)}.

Then B is a nonassociative atomic Boolean quantale.

As in the theory of Boolean algebras with operators or modal logic, the re-
lational structure A = (A,R) from the preceding lemma is called the atom
structure or Kripke frame of the Boolean quantale B. Correspondence theory
from modal logic also applies to Boolean quantales. For example, B is commu-
tative if and only if R(x, y, z) ⇔ R(x, z, y) for all x, y ∈ At(B). It is convenient
to split associativity into two inequalities (ab)c ≤ a(bc), called subassociativity,
and (ab)c ≥ a(bc), called supassociativity, where a, b, c ∈ B.

Theorem 6. Let B be a nonassociative atomic Boolean quantale with R defined
on A = At(B) as in the preceding lemma. Then for x, y, z ∈ A, B is

(i) mult. idempotent ⇔ R(x, x, x)& (R(x, y, z) ⇒ x = y or x = z)

(ii) subassociative ⇔ (R(u, x, y)&R(w, u, z) ⇒ ∃v(R(v, y, z)&R(w, x, v)))

(iii) left unital ⇔ ∃I ⊆ A(x = z ⇔ ∃y ∈ I R(x, y, z))

(iv) right unital ⇔ ∃I ⊆ A(x = y ⇔ ∃z ∈ I R(x, y, z))

Proof. (i) Assume B in multiplicatively idempotent, let x, y, z ∈ A = At(B) be
atoms and assume x ≤ yz. Then y ∨ z = (y ∨ z)2 = y2 ∨ yz ∨ z2 = y ∨ z ∨ yz.
Therefore yz ≤ y ∨ z. Since x ≤ yz we have x ≤ y ∨ z, and we assumed x, y, z
are atoms, hence it follows that x = y or x = z.

Now suppose R(x, x, x) and (R(x, y, z) ⇒ x = y or x = z) holds for all atoms
x, y, z ∈ A. Then by Lemma 5.1, for any c ∈ B we have c ≤ cc since R(x, x, x)
holds for all atoms x ≤ c. Now let x be an atom such that x ≤ c · c. Again by
Lemma 5.1, x ≤ y · z for some atoms y, z ≤ c, therefore R(x, y, z) holds and by
assumption x = y or x = z. Hence x ≤ c and it follows that cc = c.

(ii) Since all variables in subassociativity are distinct, this property holds for
all elements of B if and only if it holds for all atoms. Now let x, y, z ∈ A. Then
(xy)z ≤ x(yz) is equivalent to w ≤ (xy)z ⇒ w ≤ x(yz) for all w ∈ A. This in
turn is equivalent to

∃u ∈ A (u ≤ xy & w ≤ uz) ⇒ ∃v ∈ A (v ≤ yz & w ≤ xv).

The first existential quantifier can move out of the premise to the front of the
formula and switches to a universal quantifier, hence the formula translates to
the given condition for R.
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(iii) If B is left unital then it has a 1 such that 1b = b for all b ∈ B and we
can define I = {z ∈ A : z ≤ 1}. For atoms x, z ∈ A if x = z then x = 1z ≤ 1z,
so by Lemma 5.1 there exists an atom y ∈ I such that x ≤ yz, which shows
R(x, y, z). Conversely, assume x ≤ yz where y ∈ I. Then yz ≤ 1z = z implies
x ≤ z and since both are atoms, x = z. This proves the forward direction of (iii).

Now assume a set I ⊆ A with the given property exists and define 1 =
∨

I.
It suffices to show that z = 1z for all atoms z ∈ A since this equality lifts to
all of B. Let x ≤ 1z, then by Lemma 5.1 x ≤ yz for some y ∈ I. Hence x = z,
which shows that z is the only atom below 1z. It follows that z = 1z.

(iv) This proof is similar to (iii). ⊓⊔

From now on a ternary relation R is called commutative, (multiplicatively)
idempotent, subassociative or (left/right) unital if its corresponding Boolean
quantale has the same property.

We now observe that if multiplication is idempotent then the ternary relation
can be replaced by two reflexive binary relations P and Q. In the commutative
case they coincide, so the structure of nonassociative Boolean cdi-semirings is
determined by a single reflexive relation Q. The proof follows directly from the
formula R(x, y, z) ⇒ x = y or x = z.

Lemma 7. An idempotent ternary relation R ⊆ A3 is definitionally equivalent
to a pair of reflexive binary relations P,Q ⊂ A2 via the definitions

(Pdef) P (x, y) ⇔ R(x, y, x) (Qdef) Q(x, y) ⇔ R(x, x, y)

(Rdef) R(x, y, z) ⇔ (x = y & Q(y, z)) or (x = z & P (z, y)).

Moreover, the relation R is commutative if and only if P = Q.

The existentially quantified subassociative property for ternary relation is not
easy to work with, hence it is noteworthy that, in the presence of idempotence,
subassociativity can be replaced by the following three universal formulas for P
and Q.

Theorem 8. An idempotent ternary relation R ⊆ A3 is subassociative if and
only if the corresponding reflexive relations P,Q satisfy

(P1) P (x, y) & P (y, z) ⇒ P (x, z) i.e. P -transitivity
(P2) Q(x, y) & Q(x, z) ⇒ Q(y, z) or P (z, y)

(P3) P (x, y) & Q(y, z) & x ̸= y ⇒ P (x, z)

To characterize supassociativity of R, it suffices to interchange P , Q in these
conditions to obtain (P′

1), (P′
2), (P′

3). Hence R is associative if and only if P , Q
satisfy all six conditions.

Proof. Suppose (P1)–(P3) hold and recall that subassociativity of R is given by

R(u, x, y)&R(w, u, z) ⇒ ∃v(R(v, y, z)&R(w, x, v)).
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Assume R(u, x, y) and R(w, u, z) holds. From (Rdef) we get

[u = x & Q(x, y) or u = y & P (y, x)] and
[w = u & Q(u, z) or w = z & P (z, u)].

We consider 4 cases, with the aim of showing that in each case there exists a v
that satisfies the conclusion of subassociativity, i.e.,

[(A) v = y & Q(y, z) or (B) v = z & P (z, y)] and
[(C) w = x & Q(x, v) or (D) w = v & P (v, x)].

Case 1: Suppose u = x, Q(x, y), w = u and Q(u, z). Then we have u = x = w,
Q(x, y) and Q(x, z). From (P2) we deduce Q(y, z) or P (z, y), and we want to find
v such that [(A) or (B)] and [(C) or (D)]. If Q(y, z) holds, we choose v = y, then
(A) and (C) hold, and if P (z, y), we choose v = z, then (B) and (C) hold.

Case 2: Suppose u = y, P (y, x), w = u and Q(u, z). Then u = w = y
and P (y, x) and Q(y, z) holds. Taking v = y we get v = y and Q(y, z) and
w = v and P (v, x). Hence (A) and (D) are true.

Case 3: Suppose u = x, Q(x, y), w = z and P (z, u), hence P (z, x). First,
assuming z ̸= x, we have P (z, x), Q(x, y) so by (P3) it follows that P (z, y). Now
choosing v = z shows (B) and (D) hold.

If remains to handle the case when z = x. Since Q(x, y) and Q(x, x) hold,
(P2) implies Q(y, x) or P (x, y). In case Q(y, x) holds we choose v = y to get (C)
and (A) (since z = x). In the other case P (x, y) holds, and then we choose v = x
to get (B) and (D).

Case 4: Suppose u = y, P (y, x), w = z and P (z, u), hence P (z, y). From (P1)
(transitivity) we deduce P (z, x). Now taking v = z we see that (B) and (D) are
true.

Hence in all four cases we have proved subassociativity.
Conversely, assume that subassociativity holds for R:

R(u, x, y)&R(w, u, z) ⇒ ∃v(R(v, y, z)&R(w, x, v)).

We show that (P1)–(P3) hold.
For (P1) assume P (x, y) and P (y, z). Then we have R(x, y, x) and R(y, z, y)

by definition of P . Matching R(y, z, y) & R(x, y, x) to the premise of subasso-
ciativity with u := y, x := z, w := x and z := x, there exists v such that
R(v, y, x) and R(x, z, v) holds. By idempotence of R and Theorem 6(i) it follows
that x = z or x = v hold and hence we get P (x, z) (from x = z or from (Pdef)
and R(x, z, x)).

For (P2) assume Q(x, y) and Q(x, z). By definition of Q we get R(x, x, y) and
R(x, x, z). Let u := x and w := x, then by subassociativity there exists v such
that R(v, y, z) and R(x, x, v) holds. By idempotence there are two options for v:
if v = y we have Q(y, z) and if v = z we have P (z, y). Hence (P2) holds.

For (P3) assume Q(y, z) and P (x, y) and x ̸= y hold. From the definition of
Q and P we get R(y, y, z) and R(x, y, x). Let u := y, x := y, y := z, w := x and
z := x, then by subassociativity there exists v such that R(v, z, x) and R(x, y, v)
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hold. Since x ̸= y, it follows from R(x, y, v) and by mult. idempotent that v = x,
so P (x, z) follows from the first conjunct. Hence (P3) is true. ⊓⊔

Corollary 9. An atomic Boolean idempotent quantale is determined by two
reflexive binary relations P , Q on its set of atoms such that the condition (P1),
(P2), (P3), (P′

1), (P′
2), (P′

3) from the previous theorem hold.

However the conditions (P1), (P2), (P3) are nonintuitive, and it is fortunate
that in the commutative case they reduce to a much simpler pair of axioms.
Recall that a preorder is a reflexive transitive binary relation and a partial order
is a preorder that is antisymmetric: P (x, y) & P (y, x) ⇒ x = y. A forest is a
partial order such that

(∗) P (x, y) & P (x, z) ⇒ P (y, z) or P (z, y)

i.e., all the elements above a given element are linearly ordered. A forest can
have many connected components, each of which is a tree. If each tree has a
top element (called the root) then forest is said to be rooted. Finite forests are
always rooted and they are easy to enumerate up to isomorphism. In fact they
are in one-one correspondence with finite trees since one can add a new root to
convert any forest into trees with one more element. The number of finite trees
with n unlabeled elements (i.e., up to isomorphism) is the sequence A00081 [7].

A preorder P ⊂ A2 is determined by the equivalence relation ≡ = P ∩ P−1

and the induced partial order on the set of equivalence classes P/ ≡.
A preorder forest is a preorder that satisfies property (∗) and it is rooted if

each component has a largest equivalence class. Finite preorder forests are always
rooted, and the number of finite preorder forests with n unlabeled elements (i.e.,
up to isomorphism) is also easy to count, given by the sequence A052855 [9].
Finally, a preorder forest is said to have singleton roots if it is rooted and all
largest equivalence classes contain only one element.

Theorem 10. Atomic Boolean commutative idempotent unital quantales are
definitionally equivalent to preorder forests with singleton roots.

In the finite case these algebras are Boolean cdi-semirings, hence all finite
Boolean cdi-semirings can be constructed by enumerating preorder forests with
singleton roots.

Proof. Let P,Q be the reflexive binary relations on the atoms that exist by
idempotence. From commutativity it follows that P = Q hence (P2) reduces to
(∗) and (P1) implies (P3). This means the relation P is a preorder forest. For
any atom z below 1, P (z, x) implies R(z, x, z), and it follows from unitality that
x = z. Hence z is a unique maximal element of the preorder.

Conversely, from a preorder forest with singleton roots we define I to be the
set of all roots of the forest to get a unit element for the quantale. ⊓⊔

Fig. 4 shows the preorder forests with singleton roots up to cardinality 4.
They correspond to Boolean semirings of size 2, 4, 8 and 16. It is interesting
to note that there are 1, 2, 5, 14, . . . such semirings of each size, but this is not
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related to the Catalan numbers since the sequence continues with 41 followed
by 127 (while the Catalan numbers are 42, 132).

Note that every finite forest is a preorder forest with singleton roots, and
it is interesting to investigate the multiplicative semilattices obtained from spe-
cific finite forests. As a simple example, the forests where each component is a
singleton poset correspond to cdi-semirings that are Boolean lattices.

◦◦

◦◦

◦◦ ◦◦
◦◦

◦◦◦

Fig. 4. Preorder forests with singleton roots represented by black dots

5 Conclusion

In the theory of rings and other algebras, multiplicatively idempotent elements
often play a central role in controlling some structural aspects of the algebra.
The structure of idempotent semirings in general is quite challenging, but with
suitable restrictions some nice characterizations can be found. Here we consid-
ered commutative doubly idempotent semirings of height ≤ 2, or with a mul-
tiplicative linear order or with a Boolean join-semilattice. In each case it was
possible to give detailed descriptions of the finite members that allow them to
be enumerated easily up to isomorphism. It is likely that some of the techniques
explored here can be applied to larger classes of idempotent semirings by, for
example, weakening the assumption of commutativity or allowing distributive
join-semilattices.
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