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Abstract. Analogous to atom structures for relation algebras, we de-
fine partially ordered frames and prove they are duals for complete per-
fect distributive quasi relation algebras and distributive involutive FL-
algebras. We then extend this dual representation to all algebras and
their corresponding frames with a Priestley topology.
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quasi relation algebras up to 8 elements and provide representations for
some of them.
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1 Introduction

We investigate two classes of algebras which are connected to relation algebras:
distributive involutive FL-algebras (DInFL-algebras) and distributive quasi re-
lation algebras (DqRAs). This second class of algebras is a generalization of
relation algebras, which includes all relation algebras and all commutative dis-
tributive involutive residuated lattices.

Quasi relation algebras (qRAs) were first studied by Galatos and Jipsen [9].
One of the features of the variety is that they have a decidable equational the-
ory [9, Corollary 5.6]. Concrete distributive qRAs have been used to develop
a notion of representability [4] for DqRAs which mimics the intensely studied
concept of representability for relation algebras.

Our first goal is to describe dual frames for both DInFL-algebras and DqRAs.
We do this in Section 3. Studying these algebras via (partially ordered) frames is
motivated by the fact that a powerful tool for the study of finite relation algebras
has been the so-called atom structures. Any finite relation algebra can be studied
simply via an operation table of its atoms. Frames are useful for implementing
a decision procedure for DqRA since, e.g., tableaux methods build frame-based
counterexamples or prove that none exist.
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In applications to computing, relations are often treated in the setting of
heterogeneous relation algebras or within category theory as allegories. In the
current paper we consider only unisorted DqRAs and their frames, but it is
possible to adapt these concepts to the heterogeneous and categorical settings.

Another reason for wanting to develop frames is for the development of a
game-based approach to determine whether certain algebras are representable.
This has been done very successfully in the relation algebra case [21], [15] and
also more recently for weakening relation algebras [17].

Our setting for the dual frames are complete perfect algebras (i.e. the com-
pletely join-irreducible elements are join-dense and the completely meet irre-
ducible elements are meet-dense). All results obviously apply to the case of
finite algebras. We then extend our frame-based approach to a Priestley-style
representation in Section 4.

In the first part of Section 5 we present tables with the number of both
DInFL-algebras and DqRAs up to size 8. These were calculated using Prover9/
Mace4 [24]. We verified these numbers by calculating the numbers of correspond-
ing frames. In the remainder of Section 5, we consider cyclic DqRAs which are
{∨, ·, 1,∼}-subreducts of 16-element relation algebras. For the relation algebras
which are representable, this leads to representability of the term-subreduct. We
also identify the dual frames of particular DqRAs and relate them to the atom
structures of the relation algebras in which they can be embedded.

2 Background

An involutive full Lambek algebra (briefly InFL-algebra) A = (A,∧,∨, ·, 1,∼,−)
is a lattice (A,∧,∨) and a monoid (A, ·, 1) such that for all a, b, c ∈ A

a · b ≤ c ⇐⇒ a ≤ −(b · ∼c) ⇐⇒ b ≤ ∼(−c · a). (1)

Hence −(b · ∼c) and ∼(−c · a) are terms for the right residual c/b and the left
residual a\c respectively. It follows that −1 = ∼1 and this element is usually de-
noted 0. The operations −,∼ are called linear negations and are order-reversing
as well as involutive: −∼a = a = ∼−a. If the residuals and 0 are included in the
signature, then ∼,− can be defined by ∼a = a\0 and −a = 0/a, and we obtain
InFL-algebras (in a term-eqivalent form) if the identities −∼a = a = ∼−a hold.

The same variety can also be axiomatized by the following idempotent semir-
ing axioms [18]: an InFL-algebra A = (A,∨, ·, 1,∼,−) is a semilattice (A,∨) and
a monoid (A, ·, 1) such that · distributes over ∨ and a ≤ b ⇐⇒ a ·∼b ≤ −1 ⇐⇒
−b · a ≤ −1. Moreover −∼a = a = ∼−a, and if we define a ∧ b = −(∼a ∨ ∼b)
then (A,∧,∨) is a lattice. The operation + is defined by a+ b = −(∼b · ∼a), or
equivalently by a+ b = ∼(−b · −a) [12].

An InFL-algebra is cyclic if ∼a = −a, commutative if a · b = b · a and
distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A De Morgan lattice A = (A,∧,∨,¬) is a lattice (A,∧,∨) with a unary
operation that satisfies ¬¬a = a and

(Dm) ¬(a ∧ b) = ¬a ∨ ¬b.
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A De Morgan InFL-algebra A = (A,∧,∨, ·, 1,∼,−,¬) is a De Morgan lattice
(A,∧,∨,¬) and an InFL-algebra (A,∨, ·, 1,∼,−).

A quasi relation algebra (qRA for short) is a De Morgan InFL-algebra such
that the following identity holds:

(Dp) ¬(a · b) = ¬a+ ¬b.

Interesting qRAs that are not relation algebras include the finite Sugihara
chains (where ∼a = −a = a′). See Table 1 and [4, Figure 1] for further examples
of (non)cyclic qRAs.

In [9] the definition of qRAs included a third identity, (Di): ¬∼a = −¬a, but
we note here that it is implied by the above definition. The proof follows from
applications of (Dp) and (1) from above.

Lemma 1. The identities ∼1 = ¬1 = −1 and (Di) hold in any qRA.

A relation algebra is a cyclic DqRA if the linear negations ∼,− are defined
as complement-converse (¬a)⌣ = ¬(a⌣) and a cyclic DqRA is a relation algebra
if ¬ is complementation, i.e., a ∨ ¬a = ⊤ and a ∧ ¬a = ⊥.

The next result shows that qRAs can be obtained from commutative InFL-
algebras, and if the lattice reduct is distributive this provides examples of DqRAs.

Lemma 2. Commutative InFL-algebras are quasi relation algebras.

Proof. Commutative InFL-algebras satisfy a\b = b/a, hence they are cyclic.
Defining ¬a = ∼a, it is immediate that (Di) and (Dm) hold, and (Dp) follows
from the definition of a+ b = −(∼b · ∼a) and commutativity. ⊓⊔

DqRAs can also be obtained from term-subreducts of relation algebras with
respect to the signature {∨, ·, 1,∼} where, as before, ∼x = −x = (¬x)⌣. In the
case of representable relation algebras, these subreducts are known as (repre-
sentable) weakening relation algebras [10], [11], [17]. If the subreducts are com-
mutative, they are DqRAs by the preceding lemma. However, the next result
implies that one should start with nonsymmetric relation algebras if the aim is
to construct DqRAs that are not relation algebras.

An element a in a DqRA is said to be symmetric if ¬a = ∼a = −a. Since ¬
commutes with all basic operations, we get the following result.

Lemma 3. If all generators are symmetric in a cyclic DqRA, then the generated
term-subreduct with respect to the signature {∨, ·, 1,∼} is a relation algebra.

We now recall the definition of perfect distributive lattices. For a lattice A we
denote by J∞(A) and M∞(A) the completely join-irreducible and completely
meet-irreducible elements, respectively. A lattice A is perfect if for every a ∈ A,
we have a =

∨
{ j ∈ J∞(A) | j ⩽ a } =

∧
{m ∈ M∞(A) | a ⩽ m }, i.e., J∞(A)

is join-dense and M∞(A) is meet-dense. Some authors include completeness as
part of the definition of perfect, but we state it separately. In Section 3 we give
a representation for DInFL-algebras and DqRAs whose underlying lattices are
complete perfect distributive lattices. Some equivalences in the theorem below
are in the paper by Gehrke and Jónsson [13, Theorem 2.2].
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Theorem 4. For A a complete distributive lattice, the following are equivalent:

(1) A is completely distributive and J∞(A) is join-dense in A;
(2) J∞(A) is join-dense in A and M∞(A) is completely meet-dense in A;
(3) A is isomorphic to the lattice of up-sets of some poset P .

We remark that in a completely distributive lattice, all completely join-
irreducible elements are completely join-prime and all completely meet-irreducible
elements are completely meet-prime.

3 Frames for distributive quasi relation algebras and
distributive involutive FL-algebras

In this section, we present complete perfect DqRAs and complete perfect DInFL-
algebras by frames, similar to the frames of finite representable weakening rela-
tion algebras [17] and atom structures of atomic relation algebras [20].

The frames for DInFL-algebras are essentially Routley–Meyer style frames
from relevance logic [1], but with the relevant negation replaced by two linear
negations that are inverses of each other.

Definition 5. A DInFL-frame is a tuple W = (W, I,⪯, R,∼ ,− ) with W ̸= ∅,
a unary predicate I, a partial order ⪯ on W , a ternary relation R on W and
functions ∼ :W →W and − :W →W such that I is upward closed with respect
to ⪯ and the following conditions hold for all u, v, x, y, z ∈W :

(1) x ⪯ y ⇐⇒ ∃i (i ∈ I ∧Rixy)
(2) x ⪯ y ⇐⇒ ∃i (i ∈ I ∧Rxiy)
(3) x ⪯ y ∧Ruvx =⇒ Ruvy
(4) ∃s (Rxys ∧Rsuv) ⇐⇒ ∃t (Ryut ∧Rxtv)
(5) Rxyz∼ ⇐⇒ Rzxy−

(6) x∼− ⪯ x and x−∼ ⪯ x

The following lemma shows that − and ∼ are inverses of each other.

Lemma 6. Let W = (W, I,⪯, R,∼ ,− ) be a DInFL-frame. Then x∼− = x =
x−∼ for all x ∈W .

Proof. We only have to prove that x ⪯ x∼− and x ⪯ x−∼. We have x∼ ⪯ x∼,
so by (1) in Definition 5 there is some i ∈ I such that i ∈ I and Rix∼x∼. An
application of (5) gives Rxix∼−, and so, by (2), x ⪯ x∼−.

We also have x− ⪯ x−, so by (2) there is some i ∈ W such that i ∈ I and
Rx−ix−. Applying (5) to the latter gives Rixx−∼. Hence, by (1), x ⪯ x−∼. ⊓⊔

Using the above lemma we can show that − and ∼ are order-reversing maps.

Proposition 7. Let W = (W, I,⪯, R,∼ ,− ) be a DInFL-frame. If x ⪯ y then
y− ⪯ x− and y∼ ⪯ x∼.
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Proof. Assume x ⪯ y. Then by item (1) in Definition 5 there is some i ∈W such
that i ∈ I and Rixy. The latter is equivalent to Rixy−∼ by Lemma 6. Applying
(5) to this gives Ry−ix−. Therefore, by (2) y− ⪯ x−.

For the second inequality, by (2) there is some i ∈ W such that i ∈ I and
Rxiy. The latter is equivalent to Rxiy∼− by Lemma 6. Hence, by (5), Riy∼x∼,
and therefore, by item (1), y∼ ⪯ x∼. ⊓⊔

The next proposition says that the ternary relation R is order-reversing in the
first and second coordinates. Galatos [8, Definition 3.4] includes both conditions
of Proposition 8 in his dual structures for distributive residuated lattices. For us
they are provable from conditions (3) and (5) of Definition 5.

Proposition 8. Let W = (W, I,⪯, R,∼ ,− ) be a DInFL-frame.

(a) If x ⪯ y and Ryuv, then Rxuv.
(b) If x ⪯ y and Ruyv, then Ruxv.

Proof. For (a), assume x ⪯ y and Ryuv. Applying Proposition 7 to the first part
gives y∼ ⪯ x∼. The second part is equivalent to Ryuv∼− by Lemma 6, which
means Ruv∼y∼ (by (5) of Definition 5). Hence, since y∼ ⪯ x∼ and Ruv∼y∼, by
(3) of Definition 5, Ruv∼x∼. This gives Rxuv∼−, which is equivalent to Rxuv.

For (b), assume x ⪯ y and Ruyv. Then y− ⪯ x− (by Proposition 7) and
Ruyv−∼ (by Lemma 6). Hence, y− ⪯ x− and Rv−uy−, and so, by (3), Rv−ux−.
Applying (5) to this gives Ruxv−∼, which means Ruxv. ⊓⊔

Proposition 9. Let W = (W, I,⪯, R,∼ ,− ) be a DInFL-frame. Let Up (W,⪯)
be the set of all upsets of (W,⪯). For all U, V ∈ Up (W,⪯) define U ◦ V =
{w ∈W | (∃u ∈ U) (∃v ∈ V ) (Ruvw)}, ∼U = {w ∈W | w− /∈ U} and −U =
{w ∈W | w∼ /∈ U}. Then W+ = (Up (W,⪯) ,∩,∪, ◦, I,∼,−) is a DInFL-algebra.

Proof. We first check if Up (W,⪯) is closed under the above operations. It is
well-known (and easy to check) that Up (W,⪯) is closed under taking unions and
intersections. It follows that I ∈ Up (W,⪯) by assumption. Now let x ∈ U ◦ V
and y ∈ W . Assume x ⪯ y. Since x ∈ U ◦ V , there are u ∈ U and v ∈ V such
that Ruvx. Hence, by (3) of Definition 5, we get Ruvy, and so y ∈ U ◦ V . This
shows that U ◦ V ∈ Up (W,⪯).

Next let x ∈ ∼U and y ∈ W . Assume x ⪯ y. Since x ∈ ∼U , we have
x− /∈ U . Applying Proposition 7 to x ⪯ y, we obtain y− ⪯ x−. Hence, since
U ∈ Up (W,⪯), we have y− /∈ U . This gives y ∈ ∼U . Thus, ∼U ∈ Up (W,⪯)
for all U ∈ Up (W,⪯). Using Proposition 7 we can show in a similar way that
−U ∈ Up (W,⪯) for all U ∈ Up (W,⪯).

Next we show that I ◦ U = U ◦ I = U for all U ∈ Up (W,⪯). Let x ∈ I ◦ U .
Then there is some i ∈ I and u ∈ U such that Riux. Hence, by (1) of Definition 5,
u ⪯ x. But U ∈ Up (W,⪯), so x ∈ U .

Now let x ∈ U . We have x ⪯ x, so by (1) there is some i ∈ I such that Rixx.
Hence, x ∈ I ◦ U . Using (2) of Definition 5 we can show in a similar way that
U ◦ I = U for all U ∈ Up (W,⪯).

The associativity of ◦ follows from (4) in Definition 5.
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Finally, we prove that T ◦ U ⊆ V iff U ⊆ ∼ (−V ◦ T ) iff T ⊆ − (U ◦ ∼V ) for
all T,U, V ∈ Up (W,⪯). First, assume that T ◦ U ⊆ V . Let u ∈ U and suppose
u /∈ ∼ (−V ◦ T ). The latter gives u− ∈ (−V ◦ T ). Hence, there exist v ∈ −V and
t ∈ T such that Rvtu−, and so by (5), Rtuv∼. Since t ∈ T and u ∈ U , we have
v∼ ∈ T ◦ U , which means v∼ ∈ V . This gives v /∈ −V , a contradiction.

Conversely, assume U ⊆ ∼ (−V ◦ T ). Let w ∈ T ◦U . Then there exists t ∈ T
and u ∈ U such that Rtuw. Since u ∈ U , we have u ∈ ∼ (−V ◦ T ). Hence,
u− /∈ −V ◦ T . This implies that for all x, y ∈ W , if y ∈ T and Rxyu− then
x /∈ −V . Now Rtuw is equivalent to Rtuw−∼ by Lemma 6, which is equivalent
to Rw−tu− by (5). Since t ∈ T , we have w− /∈ −V . Hence, w−∼ ∈ V , and so
w ∈ V . This shows that T ◦ U ⊆ V .

Now assume T ◦ U ⊆ V and let t ∈ T . Suppose t /∈ − (U ◦ ∼V ). Then
t∼ ∈ U ◦ ∼V . Hence, there exists u ∈ U and v ∈ ∼V such that Ruvt∼. We thus
have t ∈ T , u ∈ U and Rtuv−. This gives v− ∈ T ◦ U , and so v− ∈ V . Thus,
v /∈ ∼V , a contradiction.

Conversely, assume T ⊆ − (U ◦ ∼V ) and let w ∈ T ◦ U . This implies there
are t ∈ T and u ∈ U such that Rtuw. Since t ∈ T , we get t ∈ − (U ◦ ∼V ), and
so t∼ /∈ U ◦ ∼V . Hence, for all x, y ∈ W , if x ∈ U and Rxyt∼, then y /∈ ∼V .
Now Rtuw is equivalent to Rtuw∼−, which in turn is equivalent to Ruw∼t∼.
Therefore, since u ∈ U , we get w∼ /∈ ∼V . This gives w∼− ∈ V , thus w ∈ V . ⊓⊔

The algebra W+ in Proposition 9 is called the complex algebra of W. It is
easy to check that W+ is complete and perfect.

Recall that for any complete perfect distributive lattice A = (A,∧,∨), the
map κ : J∞ (A) → M∞ (A) defined by κ (j) =

∨
{a ∈ A | j ̸⩽ a} is an order

isomorphism. (cf. [6, Section II.5]). We now define two useful unary operations on
the completely join-irreducibles of a complete perfect distributive InFL-algebra.

Definition 10. For every completely join-irreducible a of a complete perfect
DInFL-algebra A, define a∼ = ∼κ (a) and a− = −κ (a).

Since κ maps completely join-irreducibles to completely meet-irreducibles
and − and ∼ are order-reversing, we obtain the following lemma.

Lemma 11. Let A = (A,∧,∨, ·, 1,∼,−) be a complete perfect DInFL-algebra.
If a is a completely join-irreducible, then so are a∼ and a−.

The following propositions adapt a well-known method (see [5]) for obtaining
dual frames from complete perfect algebras:

Proposition 12. Let A = (A,∧,∨, ·, 1,∼,−) be a complete perfect DInFL-
algebra. Let J∞(A) be the set of completely join-irreducibles of A. Set I1 =
{i ∈ J∞(A) | i ⩽ 1} and, for all a, b, c ∈ J∞(A), define ⪯ = ⩾, R·abc iff c ⩽ a·b,
a∼ = ∼κ (a) and a− = −κ (a). Then the structure A+ = (J∞ (A) , I1,⪯, R·,

∼ ,− )
is a DInFL-frame.

Proof. First, to see that I1 is upward closed w.r.t. ⪯, let i ∈ I1 and j ∈ J∞ (A),
and assume i ⪯ j. Then i ⩽ 1 and j ⩽ i. Hence, j ⩽ 1, and so j ∈ I1.
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Next we show that A+ satisfies (1) of Definition 5. Let a, b ∈ J∞ (A) and
assume a ⪯ b. Then b ⩽ a. Since A is completely join-generated by J∞ (A), we
have b ⩽ 1 · a =

∨
{j ∈ J∞ (A) | j ⩽ 1} · a =

∨
{j · a | j ∈ J∞ (A) and j ⩽ 1}.

Now b is completely join-prime, so we have b ⩽ i · a for some i ∈ J∞ (A) such
that i ⩽ 1. Hence, there is some i ∈ J∞ (A) such that i ∈ I1 and R·iab.

Conversely, let i ∈ J∞ (A) such that i ∈ I1 and R·iab. Then i ⩽ 1 and
b ⩽ i · a. From i ⩽ 1, we obtain i · a ⩽ 1 · a = a, and so b ⩽ i · a = a. This shows
that a ⪯ b. The proof of (2) is similar.

For (3), assume a ⪯ b and R·cda. Then b ⩽ a and a ⩽ c · d, and so b ⩽ c · d,
which shows that R·cdb.

Condition (4) follows from the associativity of the monoid operation.
We now show that R·abc

∼ iff R·cab
− for all a, b, c ∈ J∞ (A). First assume

R·abc
∼. Then c∼ ⩽ a · b, and so ∼κ(c) ⩽ a · b. Since − is order-reversing and

− and ∼ are inverses of each other, we have − (a · b) ⩽
∨
κ(c) To prove that

R·cab
−, we have to show that b− ⩽ c · a, i.e., −κ(b) ⩽ c · a. This is equivalent to

showing that ∼ (c · a) ⩽ κ(b) Hence, if we can show that b ̸⩽ ∼ (c · a), we would
be done. So suppose b ⩽ ∼ (c · a). Then b ⩽ ∼ (−∼c · a), and so a · b ⩽ ∼c by
(1) in Section 2, which means c ⩽ − (a · b). We thus obtain c ⩽ κ(c). Therefore,
since c is completely join-prime, there is some s ∈ A such that c ⩽ s and c ̸⩽ s,
a contradiction. The converse implication can be proved in a similar way.

Finally, we have to show that a∼− ⪯ a and a−∼ ⪯ a for all a ∈ J∞ (A).
We will show a∼− ⪯ a for all a ∈ J∞ (A) and leave the other case for the
reader. Proving that a∼− ⪯ a is equivalent to showing that a ⩽ a−∼, which is
equivalent to a ⩽ ∼κ (a−) Since − is order-reversing and ∼ and − are inverses of
each other, this is equivalent to showing that κ (a−) ⩽ −a. That is, we have to
show that b ⩽ −a for all b ∈ A such that a− ̸⩽ b. Let b be an arbitrary element
of A such that a− ̸⩽ b. For the sake of a contradiction, suppose b ̸⩽ −a. Then
a = ∼− a ̸⩽ ∼b. Since a− ̸⩽ b, we have ∼b ̸⩽ κ (a). Hence, ∼b ̸⩽ c for all c ∈ A
such that a ̸⩽ c. But a ̸⩽ ∼b, so in particular, ∼b ̸⩽ ∼b, a contradiction. ⊓⊔

The next theorem shows that every complete perfect DInFL-algebra is iso-
morphic to the complex algebra of its DInFL-frame of completely join-irreducibles.

Theorem 13. If A = (A,∧,∨, ·, 1,∼,−) is a complete perfect DInFL-algebra,
then A ∼= (A+)

+.

Proof. The fact that the map ψ : A → Up (J∞ (A) ,⪯) defined by ψ (a) =
{j ∈ J∞ (A) | j ⩽ a} is a lattice isomorphism is well known (cf. [14]).

First, we note that ψ (1) = {j ∈ J∞ (A) | j ⩽ 1} = I1. For the monoid oper-
ation, first let i ∈ ψ (a · b). Then i ∈ J∞ (A) and i ⩽ a · b. Since A is completely
join-generated by J∞ (A), we have

i ⩽ a · b =
∨

{j ∈ J∞ (A) | j ⩽ a} ·
∨

{k ∈ J∞ (A) | k ⩽ b}

=
∨{

j ·
∨

{k ∈ J∞ (A) | k ⩽ b} | j ∈ J∞ (A) and j ⩽ a
}

=
∨

{j · k | j, k ∈ J∞ (A) , j ⩽ a and j ⩽ k}
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Since i is completely join-prime, it follows that i ⩽ j · k for some j, k ∈ J∞ (A)
such that j ⩽ a and k ⩽ b. Hence, j ∈ ψ (a), k ∈ ψ (b) and R·jki, which shows
that i ∈ ψ (a) ◦ ψ (b).

For the other inclusion, let i ∈ ψ (a) ◦ ψ (b). Then there are j ∈ ψ (a) and
k ∈ ψ (b) such that R·jki. Hence, j ⩽ a, k ⩽ b and i ⩽ j · k. From the first part
we get j · k ⩽ a · k and from the second part we get a · k ⩽ a · b. It follows that
i ⩽ j · k ⩽ a · k ⩽ a · b, and so i ∈ ψ (a · b).

Next we show that ψ (∼a) = ∼ψ (a). First, let j ∈ ψ (∼a). Then j ∈ J∞ (A)
and j ⩽ ∼a. For the sake of a contradiction, suppose j /∈ ∼ψ (a). Then we have
j− ∈ ψ (a), and so j− ⩽ a. Since j ⩽ ∼a and − is order-reversing, we obtain
a = −∼a ⩽ −j. Hence, −κ (j) = j− ⩽ −j, which means j ⩽ κ (j). Since j
is completely join-prime, there is some s ∈ A such that j ⩽ s and j ̸⩽ s, a
contradiction. It must therefore be the case that j ∈ ∼ψ (a).

For the other inclusion, let j ∈ ∼ψ (a). Then j− /∈ ψ (a), and so j− =
−κ (j) ̸⩽ a, which gives ∼a ̸⩽ κ (j). Hence, ∼a ̸⩽ s for all s ∈ A such that
j ̸⩽ s. Therefore it must be the case that j ⩽ ∼a; for otherwise, ∼a ̸⩽ ∼a, a
contradiction. Thus j ∈ ψ (∼a). The proof that ψ (−a) = −ψ (a) is similar. ⊓⊔

As mentioned, the complex algebra of a DInFL-frame W = (W, I,⪯, R,∼ ,− )
is a complete perfect DInFL-algebra. The following proposition says that a
DInFL-frame is isomorphic to the frame of completely join-irreducibles of its
complex algebra. It is well known that J∞ (W+) = {↑x | x ∈W} the set of all
principal upsets ↑x = {y ∈W | x ⪯ y}. The standard map x 7→ ↑x gives us the
required isomorphism.

Theorem 14. If W = (W, I,⪯, R,∼ ,− ) is a DInFL- frame, then W ∼= (W+)+.

We now equip DInFL-frames with additional conditions to dually represent
DqRAs.

Definition 15. A DqRA-frame is a tuple W = (W, I,⪯, R,∼ ,− ,¬ ) such that
(W, I,⪯, R,∼ ,− ) is a DInFL-frame and the following additional conditions hold
for all x, y, z ∈W :

(7) x¬¬ = x
(8) x ⪯ y =⇒ y¬ ⪯ x¬.
(9) Rxyz− ⇐⇒ Ry∼¬x∼¬z¬.

As in the case of qRAs, we can deduce that x∼¬ = x¬− for all x ∈W .

Lemma 16. Let W = (W, I,⪯, R,∼ ,− ,¬ ) be a DqRA-frame. Then x∼¬ = x¬−

for all x ∈W .

Proof. We first show that x∼¬ ⪯ x¬−. Since x−∼ ⪯ x−∼, there exists i ∈ W
such that i ∈ I and Rx−∼ix−∼ by (2). Applying (5) to the second part gives
Rx−x−∼i−, and so, by (9), Rx−∼∼¬x−∼¬i¬. Hence, using Lemma 6, we obtain
Rx∼¬x¬i¬−∼. Another application of (5) yields Ri¬−x∼¬x¬−. Therefore, by (9),
Rx∼¬∼¬i¬−∼¬x¬¬, and so, by (7) and Lemma 6, Rx∼¬∼¬ix. Since i ∈ I, we can
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1

A1 1 ∼ ¬
1 1 1 1

2

L3 a 1 ∼ ¬
a a 1 1
1 a ⊤ a a

S3 1 a ∼ ¬
1 1 ⊤ a a
a ⊤ ⊤ 1 1

1+1

A2 1 a ∼ ¬
1 1 a 1 1
a a 1 a a

A3 1 a ∼ ¬
1 1 a 1 1
a a ⊤ a a

A4 1 a ∼ ¬
1 1 a a a
a a 1 1 1

A5 1 a ∼ ¬
1 1 a a a
a a 1 1

A6 e f ∼ ¬
e e e e
f f f f

A7 e f ∼ ¬
e e e f
f f f e

3

L4 b a 1 ∼ ¬
b b 1 1
a b ab a a
1 b ab ⊤ b b

A8 b a 1 ∼ ¬
b b 1 1
a ab ab a a
1 b ab ⊤ b b

S4 0 1 a ∼ ¬
b b b ⊤ a a
1 b 1b ⊤ 1 1
a ⊤ ⊤ ⊤ b b

A9 b 1 a ∼ ¬
b 1 b ⊤ a a
1 b 1b ⊤ 1 1
a ⊤ ⊤ ⊤ b b

Table 1. DqRA-frames for distributive quasi relation algebras of cardinality ≤ 4. A
string of elements denotes the join of them and ⊤ is the join of all join-irreducibles.

apply (2) again to get x∼¬∼¬ ⪯ x. Hence, by (7) and (8), x¬ ⪯ x∼¬∼¬¬ = x∼¬∼.
Using Proposition 7 and Lemma 6 we obtain x∼¬ = x∼¬∼− ⪯ x¬−.

Now x ⪯ x¬¬ by (7), so there is some i ∈ W such that i ∈ I and Rxix¬¬.
Hence, by (7) and Lemma 6, we have R¬−∼¬i¬−∼¬x¬¬. Applying (9) to this
gives Ri¬−x¬−x¬−, and so Rx¬−x¬i¬−∼ by (5). Thus, by (7) and Lemma 6,
Rx¬−¬−∼¬x¬¬−∼¬i¬. Applying (9) again gives Rx¬¬−x¬−¬−i−, and therefore,
Rx−x¬−¬−i−. By (5), Rx¬−¬−ix−∼, which means Rx¬−¬−ix. We thus get
x¬−¬− ⪯ x. Hence, x∼ ⪯ x¬−¬−∼ = x¬−¬, and so x¬− = x¬−¬¬ ⪯ x∼¬. ⊓⊔

The following lemma shows that x∼¬ = x¬− is equivalent to x−¬ = x¬∼, as
expected. The proof is left for the reader.

Lemma 17. Let W = (W, I,⪯, R,∼ ,− ,¬ ) be a DqRA-frame. Then x∼¬ = x¬−

for all x ∈W iff x−¬ = x¬∼ for all x ∈W .

The above lemma allows us to prove the following result.

Proposition 18. Let W = (W, I,⪯, R,∼ ,− ,¬ ) be a DqRA-frame. Let Up (W,⪯)
is the set of all upsets of (W,⪯). For all U, V ∈ Up (W,⪯), define ◦, ∼ and
− as in Proposition 9 and ¬ by ¬U = {x ∈W | x¬ /∈ U}. Then the structure
W+ = (Up (W,⪯) ,∩,∪, ◦, I,∼,−,¬) is a DqRA.

Proof. Since (Up (W,⪯) ,∩,∪, ◦, I,∼,−) is a DInFL-algebra (Proposition 9), it
will follow that W+ is a DqRA if we can show that ¬U ∈ Up (W,⪯) for all
U ∈ Up (W,⪯), ¬ is involutive, and (Dm) and (Dp) hold. Using the fact that ¬
is order-reversing, we can show that if U ∈ Up (W,⪯), then ¬U ∈ Up (W,⪯).

Next we show that ¬ is involutive. Let U ∈ Up (W,⪯). Then x ∈ ¬¬U iff
x¬ /∈ ¬U iff x¬¬ ∈ U iff x ∈ U . Here the last equivalence follows from (7).

For (Dm), let U, V ∈ Up (W,⪯). Then x ∈ ¬ (U ∩ V ) iff x¬ /∈ U ∩ V iff
x¬ /∈ U or x¬ /∈ V iff x ∈ ¬U or x ∈ ¬V iff x ∈ ¬U ∪ ¬V .

Finally, we show that W+ satisfies (Dp). Let U, V ∈ Up (W,⪯). To see that
¬ (U ◦ V ) ⊆ ∼ (−¬V ◦ −¬U), suppose x /∈ ∼ (−¬V ◦ −¬U). Then we have
x− ∈ −¬V ◦ −¬U . This means there exist v ∈ −¬V and u ∈ −¬U such that
Rvux−. Applying condition (9) to Rvux− gives Ru∼¬v∼¬x¬. From v ∈ −¬V
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and u ∈ −¬U we get v∼¬ ∈ V and u∼¬ ∈ U . Hence, x¬ ∈ U ◦ V , and so
x /∈ ¬ (U ◦ V ).

For the other inclusion, suppose x /∈ ¬ (U ◦ V ). Then x¬ ∈ U ◦ V . This
means there exist u ∈ U and v ∈ V such that Ruvx¬. Now u = u∼−¬¬ by
(7) and Lemma 6. By Lemma 17, u∼−¬¬ = u∼¬∼¬, and hence u = u∼¬∼¬.
Likewise, v = v∼−¬¬ = v∼¬∼¬. We thus have u∼¬∼¬ ∈ U , v∼¬∼¬ ∈ V and
Ru∼¬∼¬v∼¬∼¬x¬. Applying (9) to this gives Rv∼¬u∼¬x−. From u∼¬∼¬ ∈ U
and v∼¬∼¬ ∈ V we get u∼¬ ∈ −¬U and v∼¬ ∈ −¬V . It thus follows that
x− ∈ −¬V ◦ −¬U , and so x /∈ ∼ (−¬V ◦ −¬U). ⊓⊔

Definition 19. For every completely join-irreducible a of a complete perfect
DqRA A, define a¬ = ¬κ (a).

Lemma 20. Let A = (A,∧,∨, ·, 1,∼,−,¬) be a complete perfect DqRA. If a is
a completely join-irreducible, then so is a¬.

Proposition 21. Let A = (A,∧,∨, ·, 1,∼,−,¬) be a complete perfect DqRA.
Let J∞(A) be the set of completely join-irreducibles of A. Define I1, ⪯, R·, ∼,
− as in Proposition 12 and for all a ∈ J∞ (A), define a¬ = ¬κ(a). Then the
structure A+ = (J∞ (A) , I1,⪯, R·,

∼ ,− ,¬ ) is a DqRA-frame.

Proof. We only have to prove that A+ satisfies conditions (7) to (9) of Defini-
tion 15. We first show that a¬¬ = a. To prove that a ⪯ a¬¬, we have to show that
¬κ (a¬) ⩽ a, i.e., ¬a ⩽ κ (a¬). If we can show that a¬ ̸⩽ ¬a, we would be done,
so suppose a¬ ⩽ ¬a. Then ¬κ(a) ⩽ ¬a, and so a ⩽ κ (a) Since a is completely
join-prime, there is some s ∈ A such that a ⩽ s and a ̸⩽ s, a contradiction.

To prove that a¬¬ ⪯ a, we have to show that a ⩽ ¬κ (a¬), which is equivalent
to showing that κ (a¬) ⩽ ¬a. Let b be an arbitrary element of A such that a¬ ̸⩽ b.
Then ¬κ(a) ̸⩽ b, and therefore ¬b ̸⩽ κ(a) This means ¬b ̸⩽ s for all s ∈ A such
that a ̸⩽ s. It follows that it must be the case that b ⩽ ¬a; for otherwise, a ̸⩽ ¬b,
which means ¬b ̸⩽ ¬b, a contradiction. Since b was an arbitrary element of A we
have b ⩽ ¬a for all b ∈ A such that a¬ ̸⩽ b, and hence κ (a¬) ⩽ ¬a, as required.

To see that ¬ is order-reversing, assume a ⪯ b. Then we have b ⩽ a. We have
to show that a¬ ⩽ b¬; that is, we have to show that ¬κ(a) ⩽ ¬κ(b). This is
equivalent to showing that κ(b) ⩽ κ(a). Let s be an arbitrary element of A such
that b ̸⩽ s. Then it must be the case that a ̸⩽ s; for otherwise, b ⩽ a ⩽ s, a
contradiction. It follows that s ⩽ κ(a). Hence, since s was arbitrary, s ⩽ κ(a)
for all s ∈ A such that b ̸⩽ s. This proves that κ(b) ⩽ κ(a), as required.

Finally, we show that R·abc
− iff R·b

∼¬a∼¬c¬ for all a, b, c ∈ J∞ (A). Let
a, b, c ∈ J∞ (A). Then R·b

∼¬a∼¬c¬ iff c¬ ⩽ b∼¬ · a∼¬ iff ¬κ(c) ⩽ b∼¬ · a∼¬ iff
¬ (b∼¬ · a∼¬) ⩽ κ(c) iff ¬ (b∼¬)+¬ (a∼¬) ⩽ κ(c) iff ¬¬κ (b∼)+¬¬κ (a∼) ⩽ κ(c)
iff κ (b∼) + κ (a∼) ⩽ κ(c) iff ∼ (−κ (a∼) · −κ (b∼)) ⩽ κ(c) iff −κ (c) ⩽ −κ (a∼) ·
−κ (b∼) iff c− ⩽ a∼− ·b∼− iff R·abc

−. The 4th equivalence follows from (Dp). ⊓⊔

Theorem 22. If A is a complete perfect DqRA, then A ∼= (A+)
+.

Proof. All that is left here to do is to show that the map ψ : A→ Up (J∞ (A) ,⪯)
defined by ψ (a) = {j ∈ J∞ (A) | j ⩽ a} preserves ¬, and the proof of this is
analogous to the proof that ψ (∼a) = ∼ψ (a). ⊓⊔
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Theorem 23. If W = (W, I,⪯, R,∼ ,− ,¬ ) is a DqRA-frame, then W ∼= (W+)+.

4 Priestley-style representation for DInFL-algebras and
DqRAs

Our goal in this section is to use the results of Section 3 to define Priestley spaces
with additional structure that will be dual to DInFL-algebras and DqRAs. Since
the signatures of both DInFL-algebras and DqRAs do not include lattice bounds,
our dual spaces will in fact be doubly-pointed Priestley spaces. That is, the
partially ordered set must have both a least and greatest element. Such spaces
have also been called bounded Priestley spaces (cf. Section 1.2 and Theorem 4.3.2
of Clark and Davey [3]). More recent papers by Cabrer and Priestley (cf. [2])
refer to the spaces as doubly-pointed.

We recall that a partially ordered topological space (X,⩽, τ) is totally order-
disconnected if whenever x ⩽̸ y there exists a clopen up-set U of X such that
x ∈ U and y /∈ U . A doubly-pointed Priestley space is a compact totally order-
disconnected space with bounds 0 ̸= 1. When recovering an unbounded distribu-
tive lattice from a doubly-pointed Priestley space, the proper, non-empty, clopen
upsets form a lattice [3, Theorem 1.2.4].

We note two examples that show the importance of this version of Priestley
duality for our setting. The integers (with + as the monoid operation) are a
commutative distributive residuated lattice and hence a DInFL-algebra. As the
underlying lattice is unbounded, we cannot represent it as the clopen upsets of
a Priestley space (X,⩽, τ) as this would introduce bounds ∅ and X. Secondly,
consider the two-element Sugihara monoid S2 and the homomorphism h(1) = 1
and h(0) = 0 into the four-element Sugihara monoid S4 (whose elements are
a < 0 < 1 < b). The usual dual of a homomorphism h would be h−1, but this
might not be defined if the dual spaces of the algebras consisted of the usual
prime filters. In particular, ↑b is a prime filter of S4, but h−1(↑b) = ∅ is not a
prime filter of S2.

Given a DInFL-algebra or DqRA A, we will call F ⊆ A a generalised prime
filter if F is a prime filter, F = A or F = ∅. This terminology follows, for
instance, Fussner and Galatos [7], although we note that there they only allow
F = X as their algebras have a top element, but not a bottom element. (Their
dual spaces are hence pointed Priestley spaces rather than doubly-pointed Priest-
ley spaces.)

We first state some necessary results about generalised prime filters. The
proof of the lemma below follows from a standard argument, using the involu-
tiveness of A and considering the special cases of F = A and F = ∅.

Lemma 24. Let A = (A,∧,∨, ·, 1,∼,−) be a DInFL-algebra. If F is a gener-
alised prime filter of the lattice reduct of A, then so are F∼ = {∼a | a /∈ F} and
F− = {−a | a /∈ F}.

The following lemma is a restatement of [8, Lemma 3.5] but for generalised
prime filters (see also [25, Lemma 2.2]). The proof follows [8, Lemma 3.5] with
straightforward adaptations to account for the empty set and the whole algebra.



12 A. Craig, P. Jipsen, C. Robinson

Lemma 25. Let F,G,H be filters (possibly empty or total) of a distributive
residuated lattice such that H is a generalised prime filter and F ◦ G ⊆ H.
Then there exist generalised prime filters F ′ and G′ such that F ′ ◦ G ⊆ H and
F ◦G′ ⊆ H.

A doubly-pointed DInFL-frame will be a DInFL-frame where the poset is
bounded, and the set I is a proper, non-empty upset. We use Lemmas 24 and 25
to show that that the set of generalised prime filters can be equipped with the
necessary structure to be a doubly-pointed DInFL-frame.

Proposition 26. Let A = (A,∧,∨, ·, 1,∼,−) be a DInFL-algebra. Let WA be
the set of generalised prime filters of the lattice reduct of A. For all F,G,H in
WA, define F ∈ I iff 1 ∈ F , F ⪯ G iff F ⊆ G, R (F,G,H) iff for all a ∈ F and
all b ∈ G we have a · b ∈ H, F∼ = {∼a | a /∈ F} and F− = {−a | a /∈ F}. Then
the structure F(A) = (WA, I,⪯, R,∼ ,− ,∅, A) is a doubly-pointed DInFL-frame.

Proof. The relation ⪯ is clearly a partial order. To see that I is a upset of (W,⪯),
let F ∈ I and assume F ⪯ G. Then 1 ∈ F ⊆ G, so G ∈ I. Since ∅ /∈ I and
A ∈ I, it is a proper, non-empty subset of WA.

Conditions (1) and (2) of Definition 5 can be proven using Lemma 25 and
the filter ↑1. Condition (3) follows easily from the fact that the order on WA is
set containment. For (4), see [8, Theorem 3.7(2)], but apply Lemma 25 above.

Next we show that (5) holds, i.e. that R (F,G,H∼) iff R (H,F,G−). Assume
R (F,G,H∼). If at least one of F,G or H is empty, then R(H,F,G−) is trivially
satisfied. Now assume they are all non-empty and let a ∈ H and b ∈ F . We must
show that a · b ∈ G−. Suppose a · b /∈ G−. Then ∼ (a · b) ∈ G. Hence, since b ∈ F
and R (F,G,H∼), we get b · ∼ (a · b) ∈ H∼. This means − (b · ∼ (a · b)) /∈ H.
Now a · b ⩽ a · b, so we have a ⩽ − (b · ∼ (a · b)). Thus, since a ∈ H and H is
upward closed, we get − (b · ∼ (a · b)) ∈ H, a contradiction.

Conversely, assume R (H,F,G−). Again, if any of F,G or H are empty,
R(F,G,H∼) is trivially satisfied. Let a ∈ F and b ∈ G. We have to show that
a · b ∈ H∼. Suppose a · b /∈ H∼. Then − (a · b) ∈ H, and so, since a ∈ F and
R (H,F,G−), we have − (a · b) · a ∈ G−. This means ∼ (− (a · b) · a) /∈ G. Now
a · b ⩽ a · b, so we have b ⩽ ∼ (− (a · b) · a), and therefore, since G is upward
closed and b ∈ G, we have ∼ (− (a · b) · a) ∈ G, a contradiction.

For (6), to see that F∼− ⊆ F , let a ∈ F∼−. Then a = −b for some b /∈ F∼.
Hence, ∼a = ∼−b = b, and so ∼a /∈ F∼. This means −∼a = a ∈ F . A similar
proof gives F−∼ ⊆ F . The cases F = ∅ and F = A are trivial. ⊓⊔

Recall from Proposition 9 the definitions of U ◦ V , ∼U and −U . We remark
that (3) below is equivalent to both maps x 7→ x∼ and x 7→ x− being continuous.

Definition 27. A DInFL-space (W, I,⪯, R,∼ ,− , τ) is a doubly-pointed DInFL-
frame with a compact totally order-disconnected topology τ satisfying:

(1) I is clopen.
(2) If U and V are clopen proper non-empty up-sets, then U ◦ V is clopen.
(3) If U is a clopen proper non-empty up-set, then ∼U and −U are clopen.
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For a DInFL-algebra A, we consider the structure W(A) = (F(A), τ) where
τ is the topology on the set of generalised prime filters with subbasic open sets
of the form Xa = {F ∈ WA | a ∈ F} and Xc

a = {F ∈ WA | a /∈ F}. For a
DInFL-frame W, we denote by KW the set of clopen proper non-empty upsets
of W and define A(W) to be the algebra (KW,∩,∪, ◦, I,∼,−).

Proposition 28. If A is a DInFL-algebra, then W(A) is a DInFL-space and
if W is a DInFL-space then A(W) is a DInFL-algebra.

Proof. The fact that W(A) has an underlying DInFL-frame structure is the
result of Proposition 26 and the compact totally order-disconnectedness follows
from the Priestley duality. By definition, I = X1 so it is clopen. For (2), the
fact that U ◦ V is clopen follows from, for instance, [16, Theorem 6.3], noting
that for any a ∈ A, we have ∅ /∈ Xa and A ∈ Xa. Let U be a clopen proper
non-empty upset. From the duality we have that U = Xa = {F ∈ WA | a ∈ F}
for some a ∈ A. Now −U = {F | F∼ /∈ U} = {F | a /∈ F∼} = {F | ∼−a /∈ F∼}.
But ∼−a /∈ F∼ iff −a ∈ F . Hence −U = X−a, which is clopen. A similar proof
shows that ∼U is clopen.

For a DInFL-space W, the lattice structure of A(W) follows from Priestley
duality. The algebra structure follows from the definition of a DInFL-space,
Proposition 9 and the fact that the elements of KW are special upsets. ⊓⊔

Theorem 29. Let A be a DInFL-algebra and W a DInFL-space. Then we have
A ∼= A(W(A)) and W ∼= W(A(W)).

Proof. The standard maps a 7→ Xa and x 7→ {U ∈ KW | x ∈ U } give us the
required isomorphisms. ⊓⊔

Here we will define the dual spaces of DqRAs. They will be topologised
versions of the DqRA frames from Section 3.

Lemma 30. Let A = (A,∧,∨, ·, 1,∼,−,¬) be a DqRA. If F is a generalised
prime filter of the lattice reduct of A, then so is F¬ = {¬a | a /∈ F}.

As for DInFL-frames, we will consider doubly-pointed DqRA-frames, which
have the additional constraint that I must be proper and non-empty.

Proposition 31. Let A = (A,∧,∨, ·, 1,∼,−,¬) be a DqRA and let WA be the
set of all generalised prime filters of the lattice reduct of A. Define I, ⪯, R,
− and ∼ as in Proposition 26 and for all F ∈ WA, define F¬ = {¬a | a /∈ F}.
Then the structure (WA, I,⪯, R,∼ ,− ,¬ ,∅, A) is a doubly-pointed DqRA-frame.

Proof. We must show that (7), (8) and (9) from Definition 15 hold. For (7), since
¬¬a = a, we have a ∈ F iff ¬a /∈ F¬ iff ¬¬a ∈ F¬¬ iff a ∈ F¬¬.

To see that F ⪯ G implies G¬ ⪯ F¬, assume F ⊆ G and let a ∈ G¬. The
latter implies that a = ¬b for some b /∈ G. Hence, ¬a = ¬¬b = b, and therefore
¬a /∈ G. Since F ⊆ G, we have ¬a /∈ F , and so ¬¬a ∈ F¬, which means a ∈ F¬.

Finally, we show (9), i.e. that R (F,G,H−) iff R (G∼¬, F∼¬, H¬). Assume
that R (F,G,H−). Notice that if G∼¬ = ∅ or F∼¬ = ∅, or H¬ = A, then
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R (G∼¬, F∼¬, H¬) is trivially satisfied. Hence let a ∈ G∼¬ and b ∈ F∼¬. We
have to show that a · b ∈ H¬. Since a ∈ G∼¬, there is some c ∈ A such that
c /∈ G∼ and a = ¬c. Hence, ¬a = ¬¬c = c, and so ¬a /∈ G∼. This implies
that −¬a ∈ G. Likewise, since b ∈ F∼¬, we have −¬b ∈ F . Therefore, by our
assumption that R (F,G,H−), we get −¬b · −¬a ∈ H−. It must therefore be
the case that ∼ (−¬b · −¬a) /∈ H. Applying (Dp), we get ¬ (a · b) /∈ H, which
means a · b ∈ H¬, as required.

Conversely, assume R (G∼¬, F∼¬, H¬). If F = ∅, G = ∅ or H = ∅ then
R(F,G,H−) is trivially true. So, let a ∈ F and b ∈ G. We must show that
a · b ∈ H−. Since a ∈ F , we have ∼a /∈ F∼, and so ¬∼a ∈ F∼¬. Hence, by (Di),
−¬a ∈ F∼¬. Likewise, since b ∈ G, we can show that −¬b ∈ G∼¬. It thus follows
from our assumption that −¬b · −¬a ∈ H¬, which means ¬ (−¬b · −¬a) /∈ H.
This gives −¬ (−¬b · −¬a) ∈ H−, and therefore, by (Di), ¬∼ (−¬b · −¬a) ∈ H−.
Applying (Dp) to this, we get ¬¬ (a · b), i.e., a · b ∈ H−. ⊓⊔

We now define the Priestley-style dual objects of DqRAs. As before, for U
an upset of a DqRA frame, we have ¬U = {x ∈W | x¬ /∈W}.

Definition 32. A DqRA-space (W, I,⪯, R,∼ ,− ,¬ , τ) is a doubly-pointed DqRA-
frame with a compact totally order-disconnected topology τ which satisfies:

(1) I is clopen.
(2) If U and V are clopen proper non-empty up-sets, then U ◦ V is clopen.
(3) If U is a clopen proper non-empty upset, then ∼U , −U and ¬U are clopen.

We extend the maps A and W to DqRAs and DqRA-spaces, and denote these
extensions by Aq and Wq.

Proposition 33. For a DqRA A, let Wq(A) = (WA, I, R,∼ ,− ,¬ ,∅, A) and
for a DqRA-space W, let Aq (W) = (KW,∩,∪, ◦, I,∼,−,¬). Then Wq (A) is a
DqRA-space and Aq (W) is a DqRA.

Proof. Most of the work has been done by Proposition 28. If U is a clopen proper
non-empty upset, then U = Xa for some a ∈ A. Then ¬U = {F | F¬ /∈ U} =
{F | a /∈ F} = {F | ¬¬a /∈ F¬} = {F | ¬a ∈ F} = X¬a. To show Aq (W) is a
DqRA, we use Proposition 18 to show that ¬U has the required properties. ⊓⊔

The same maps from Theorem 29 are used to prove the theorem below.

Theorem 34. For any DqRA A and DqRA-space W, we have A ∼= Aq(Wq(A))
and W ∼= Wq(Aq(W)).

Based on the results of Urquhart [25] and Jipsen and Litak [16], the mor-
phisms for DqRA-spaces will need to be continuous, order-preserving, bound-
preserving maps that satisfy properties 6,7 and 10 from [16, p.17]. Additionally,
such a morphism should preserve ∼, − and ¬ (hence they would not need to
satisfy 8, 9 from [16]). We delay a detailed study of morphisms for future work.
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5 Applications to finite models

5.1 Counting DInFL-frames and DqRA-frames

Using our descriptions of DInFL-frames and DqRA-frames from Section 3 we
are able to calculate the number of algebras with eight elements or less for both
DInFL-algebras and DqRAs. Further, we are able to classify them in terms of
their lattice structure.

We note that amongst the DInFL-algebras, only one seven-element algebra
is non-cyclic, and only one eight-element algebra is non-cyclic. Their dual frames
are ▷◁ and X, respectively. For DqRAs, there are two seven-element non-cyclic
algebras (both have ▷◁ as their dual frame), and two eight-element non-cyclic
algebras (both with X as their dual frame).

1 2 1+1 3 4 1+2 2×2 5 ▷◁ 6

1+1+1 1+3 N X P d(2×2) 7

Fig. 1. Posets of join-irreducibles for self-dual distributive lattices of cardinality ≤ 8

Poset 1 2 1+1 3 4 1+2 2×2 5 ▷◁ 6 1+1+1 1+3 N X P d(2×2) 7

DInFL-frames 1 2 5 4 8 10 16 17 11 38 25 25 22 21 28 70 91
DqRA-frames 1 2 6 4 8 10 23 17 12 36 31 25 22 23 26 106 81

Size of algebra 1 2 3 4 5 6 7 8
Number of DInFL-algebras 1 1 2 9 8 43 49 282

Number of DqRAs 1 1 2 10 8 50 48 314

Table 2. Number of nonisomorphic quasi relation algebras of cardinality up to 8

5.2 Representions for some small quasi relation algebras

In this subsection we use DqRA-frames to describe the DqRAs that are {∨, ·, 1,∼}-
subreducts of small relation algebras. We refer to these algebras as DqRA-
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subreducts. Moreover, we only present information on DqRAs that are not re-
lation algebras and, for now, we do not consider the more general concept of
representation that is defined in [4].

·1 a r s
a 1 r s
r r r ⊤
s s ⊤ s

·2 a r s
a 1a r s
r r r ⊤
s s ⊤ s

·3 a r s
a 1 r s
r r s 1a
s s 1a r

·4 a r s
a 1a r s
r r s 1a
s s 1a r

·5 a r s
a 1 r s
r r rs ⊤
s s ⊤ rs

·6 a r s
a 1a r s
r r rs ⊤
s s ⊤ rs

·7 a r s
a 1rs a a
r a r 1rs
s a 1rs s

·8 a r s
a ⊤ a a
r a r 1rs
s a 1rs s

·9 a r s
a 1rs a a
r a s 1
s a 1 r

·10 a r s
a ⊤ a a
r a s 1
s a 1 r

·11 a r s
a 1rs a a
r a rs 1rs
s a 1rs rs

·12 a r s
a ⊤ a a
r a rs 1rs
s a 1rs rs

·13 a r s
a ⊤ ar a
r a r ⊤
s as 1rs s

·14 a r s
a 1rs ar as
r ar r ⊤
s as ⊤ s

·15 a r s
a ⊤ ar as
r ar r ⊤
s as ⊤ s

·16 a r s
a 1rs ar as
r ar rs ⊤
s as ⊤ rs

·17 a r s
a ⊤ ar as
r ar rs ⊤
s as ⊤ rs

·18 a r s
a 1 s r
r s a 1
s r 1 a

·19 a r s
a 1 s r
r s ars 1rs
s r 1rs ars

·20 a r s
a 1a rs rs
r rs a 1a
s rs 1a a

·21 a r s
a 1a rs rs
r rs ar ⊤
s rs ⊤ as

·22 a r s
a 1a rs rs
r rs ars ⊤
s rs ⊤ ars

·23 a r s
a 1rs as ar
r as ar 1rs
s ar 1rs as

·24 a r s
a ⊤ as ar
r as ar 1rs
s ar 1rs as

·25 a r s
a 1rs as ar
r as ars 1rs
s ar 1rs ars

·26 a r s
a ⊤ as ar
r as ars 1rs
s ar 1rs ars

·27 a r s
a 1rs ars ar
r as ar ⊤
s ars 1rs as

·28 a r s
a ⊤ ars ar
r as ar ⊤
s ars 1rs as

·29 a r s
a 1rs ars ar
r as ars ⊤
s ars 1rs ars

·30 a r s
a ⊤ ars ar
r as ars ⊤
s ars 1rs ars

·31 a r s
a ⊤ ars ars
r ars a 1a
s ars 1a a

·32 a r s
a 1rs ars ars
r ars ar ⊤
s ars ⊤ as

·33 a r s
a ⊤ ars ars
r ars ar ⊤
s ars ⊤ as

·34 a r s
a 1rs ars ars
r ars as 1a
s ars 1a ar

·35 a r s
a ⊤ ars ars
r ars as 1a
s ars 1a ar

·36 a r s
a 1rs ars ars
r ars ars ⊤
s ars ⊤ ars

·37 a r s
a ⊤ ars ars
r ars ars ⊤
s ars ⊤ ars

Table 3. Atom structures (= frames) for the 37 nonsymmetric RAs of cardinality 16.
The identity atom 1 is not shown, a string of elements denotes the join of them, and
∼a = 1rs, ∼r = 1ar, ∼s = 1as.

We consider small relation algebras with up to 16 elements, with the aim
to compute all {∨, ·,∼}-subreducts of these algebras that are proper quasi rela-
tion algebras. Since symmetric relation algebras satisfy x = x⌣, it follows that
∼x = ¬x, hence the subreducts of such algebras only produce relation algebras.
This means we only need to consider nonsymmetric relation algebras. In Roger
Maddux’s book [22] there are lists of all finite integral relation algebras with up
to 5 atoms. Recall that a relation algebra is integral if the identity element is
an atom. For nonsymmetric ones with up to 4 atoms, these relation algebras are
denoted 13, 23, 33, 137 − 3737.

We begin by recalling some information on the smallest nonrepresentable re-
lation algebras. Lyndon [19] showed that all relation algebras with 8 elements
or less are representable, and McKenzie [23] found a 16-element relation al-
gebra (now referred to as 1437 in Roger Maddux’s list [22]) that is nonrepre-
sentable. There are 10 further algebras in the list of 37 that are nonrepresentable:
1637, 2137, 2437 − 2937, 3237, 3437. The representations of the remaining 26 rela-
tion algebras were found by Steven Comer and Roger Maddux (see [22]).
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We now describe the maximal subreducts of these 37 relation algebras that
are proper qRAs When they occur as a subreduct of a representable relation
algebra, they are themselves representable (indicated by bold names below).

The frames for the first type of subreducts are based on the poset 1+1+2, and
there are 20 (nonisomorphic) frames of this kind. The corresponding DqRAs have
12 elements forming the lattice 2×2×3 and occur as subreducts of the relation
algebras 137, 237, 537, 637, 737, 837, 1137, 1237, 1437, 1537, 1637, 1737, 2037,
2137, 2237, 3137, 3237, 3337, 3636, 3737.

In each case the 2-element chain in the frame is given by s ≺ r (or isomor-
phically by r ≺ s). To see that this frame corresponds to a subreduct of the
listed relation algebras, it suffices to check that s ≤ x · y =⇒ r ≤ x · y for all
x, y ∈ {a, r, r ∨ s}, while this formula fails for the other 17 nonsymmetric inte-
gral relation algebras with 16 elements (see Table 3). Hence there are at least
16 representable DqRA with poset 1+1+2 as their frame. Using the representa-
tion game in [17] it has been checked that the DqRA-subreduct of McKenzie’s
algebra 1437 is not representable, but for 1637, 2137, 3237 it has not (yet) been
determined if the DqRA-subreduct is representable.

Ten of the remaining 17 relation algebras in the list have a maximal DqRA-
subreduct with 1+3 as poset: 1337, 1937, 2337, 2437, 2537, 2637, 2737, 2837, 2937,
3037.

In this case, the poset of the frame satisfies s ≺ a ≺ r (or isomorphically
r ≺ a ≺ s), and such a frame corresponds to an 8-element subreduct of a relation
algebras if it satisfies s ≤ x · y =⇒ a ∨ r ≤ x · y and a ≤ x · y =⇒ r ≤ x · y for
all x, y ∈ {r, a ∨ r, a ∨ r ∨ s}.

Note that the algebras 1337, 2737−3037 are noncommutative, but the DqRA-
subreducts are commutative, hence they can be expanded to DqRAs. Four of
the relation algebras in this list are representable, but the DqRA-subreducts of
1937 and 3037 are isomorphic, so this gives representations for three 8-element
DqRAs. Other representable 8-element DqRAs can be found as subalgebras of
the sixteen 12-element DqRAs described above.

Finally, 7 algebras do not have subreducts that produce proper quasi relation
algebras: 337,437,937,1037,1837, 3437,3537.

6 Conclusion

We have found first-order axiomatizations for DInFL-frames and DqRA-frames
that are dual to complete perfect distributive involutive FL-algebras and dis-
tributive quasi relation algebras respectively. By adding Priestley-space topolo-
gies to these frames we obtain dual spaces for these algebras without requiring
them to be complete and perfect. For small nonsymmetric relation algebras,
DqRA-frames have been used to provide representations for 16 DqRAs with 12
elements and for 3 DqRAs with 8 elements.
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