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Abstract. FL2-algebras are lattice-ordered algebras with two sets of
residuated operators. The classes RA of relation algebras and GBI of gen-
eralized bunched implication algebras are subvarieties of FL2-algebras.
We prove that the congruences of FL2-algebras are determined by the
congruence class of the respective identity elements, and we character-
ize the subsets that correspond to this congruence class. For involutive
GBI-algebras the characterization simplifies to a form similar to relation
algebras.
For a positive idempotent element p in a relation algebra A, the double
division conucleus image p/A/p is an (abstract) weakening relation al-
gebra, and all representable weakening relation algebras (RWkRAs) are
obtained in this way from representable relation algebras (RRAs). The
class S(dRA) of subalgebras of {p/A/p ∶ A ∈ RA,1 ≤ p2 = p ∈ A} is a
discriminator variety of cyclic involutive GBI-algebras that includes RA.
We investigate S(dRA) to find additional identities that are valid in all
RWkRAs. A representable weakening relation algebra is determined by
a chain if and only if it satisfies 0 ≤ 1, and we prove that the identity
1 ≤ 0 holds only in trivial members of S(dRA).
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1 Introduction

Tarski defined a relation algebra (A,∧,∨,¬,⊺,�, ; ,⌣ ,1,0) to be an algebra that
satisfies a short list of identities that hold in all algebras of binary relations on a
set: (A,∧,∨,¬,⊺,�) is a Boolean algebra, (A, ; ,1) is a monoid, ; and ⌣ distribute
over ∨, x;� = � = �;x, 0 = ¬1, x⌣⌣ = x, (xy)⌣ = y⌣x⌣ and x⌣ ⋅ ¬(xy) ≤ ¬y.

An interesting generalization is to consider algebras of weakening closed bi-
nary relations on partially ordered sets P = (P,≤). A relation R ⊆ P 2 is weakening
closed or a weakening relation if x′ ≤ x R y ≤ y′ implies x′ R y′, or equivalently,
≤;R;≤ ⊆ R. The collection of all weakening relations on P is denoted Wk(P). If
R is weakening closed, so is its complement-converse Rc⌣ = {(y, x) ∣ (x, y) ∉ R}.
This unary operation is denoted by ∼R.

Weakening relations are also closed under union, intersection, Heyting impli-
cation → (= residual of intersection), relation composition ; and residuals /, / of
composition. The partial order relation ≤ is a weakening relation and, since it is
the identity of composition, it is denoted by 1. The complement-converse of 1 is
denoted by 0. The full weakening relation algebra on a poset P is

Wk(P) = (Wk(P),∩,∪,→, P 2,∅, ; ,∼,1,0).
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The residuals /, / are omitted since they are definable via x/y = ∼(∼y;x) and x/y =
∼(y;∼x). The variety RWkRA of representable weakening relation algebras is
generated by the class {Wk(P) ∣ P is a poset}. When the poset is an antichain,
or equivalently, when ≤ is the identity relation then Wk(P) is the usual full
relation algebra Rel(P ) since in this case R → ∅ = Rc is the complement of
R, and ∼(Rc) = R⌣ is the converse of R. Hence RWkRA contains the variety
RRA of all representable relation algebras (which is generated by all full relation
algebras).

Some applications of weakening relation algebras were given by John Stell [22,
23] in the area of image processing and hypergraphs. Since the lattice reducts of
weakening relation algebras are Heyting algebras rather than Boolean algebras,
weakening relations can be thought of as intuitionistic relations.

The variety RWkRA retains many of the algebraic properties of RRA, as
shown in [8] and reviewed in Section 3. The aim of this paper is to investigate
the identities that hold in RWkRA. We do this in the more general context of
generalized bunched implication algebras, residuated lattices, and FL2-algebras
(defined below) in order to point out some of the syntactic symmetries of weaken-
ing relation algebras and to relate this variety to some other well-studied classes
of algebras.

A residuated lattice is of the form (A,∧,∨, ⋅, /, /,1) such that (A,∧,∨) is a
lattice, (A, ⋅,1) is a monoid, and for all x, y, z ∈ A the residuation property holds:

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x/z.

A full Lambek algebra or FL-algebra (A,∧,∨, ⋅, /, /,1,0) is a residuated lattice
with an additional constant 0, hence FL-algebras are also called pointed resid-
uated lattices. The residuation property implies that x(y ∨ z) = xy ∨ xz and
(x ∨ y)z = xz ∨ yz hence FL-algebras include idempotent semirings as reducts.
In fact any finite idempotent semiring expands uniquely to an FL-algebra in
which 0 is the bottom element. Hence FL-algebras are closely related to many
computational algebraic theories, such as Kleene algebras, Kleene lattices and
Pratt’s action algebras.

FL-algebras and their reducts cover the algebraic semantics of a large num-
ber of logics, including classical propositional logic, intuitionistic logic, relevance
logic, multi-valued logic, Hajek’s basic logic, abelian logic, BCK-logic and many
others. However they do not capture bunched implication logic or the logic
of relation algebras (also known as arrow logic). Bunched implication logic is
an integral part of separation logic, a Hoare logic for reasoning about pointer
structures and concurrent programs [19–21]. Generalized bunched implication
algebras were defined in [7] to provide a common algebraic version of bunched
implication algebras and relation algebras.

In this paper we introduce FL2-algebras in order to give a new definition
of relation algebras and bunched implication algebras that exposes interest-
ing symmetries of both algebraic theories. A FL2-algebra is of the form A =
(A,∧,∨,◇,→,←, t, f, ⋅, /, /,1,0) such that

At = (A,∧,∨,◇,→,←, t, f) and A1 = (A,∧,∨, ⋅, /, /,1,0)
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are both FL-algebras. We call At the logical reduct and A1 the dynamic reduct
of A. The class of all FL-algebras can be defined by identities, hence it and the
class FL2-algebras are varieties, denoted by FL and FL2 respectively. To reduce
the number of parentheses, we adopt the convention that ⋅ binds stronger than
/, / followed by ◇, ∧,∨ and →,←.

Define ¬x = x → f , ⌐x = f ← x, ∼x = x/0 and −x = 0/x. An FL2-algebra is
involutive if ∼−x = x = −∼x, f -involutive if ¬⌐x = x = ⌐¬x, and doubly involutive
if all four identities hold. An FL2-algebra is cyclic if ∼x = −x, f -cyclic if ¬x = ⌐x,
and doubly cyclic if both hold.

Relation algebras are well known examples of doubly cyclic FL2-algebras. In
fact they are term-equivalent to the subvariety defined by the identities x ∧ y =
x◇y (hence y←x = x→y and At is a Boolean algebra) and ¬∼(xy) = (¬∼y)(¬∼x).
The operation ¬∼x is the converse of relation algebras, usually written x⌣.

A generalized bunched implication (GBI-)algebra (A,∧,∨,→,⊺, ⋅, /, /,1) is de-
fined as a Brouwerian algebra (A,∧,∨,→,⊺) such that (A,∧,∨, ⋅, /, /,1) is a
residuated lattice. Equivalently a GBI-algebra is an FL2-algebra that satisfies
x ∧ y = x ◇ y, t = f and 0 = 1. A bunched implication algebra, or BI-algebra, is a
commutative GBI-algebra (i.e., xy = yx) that has been expanded by a constant
� denoting the least element of the lattice. Alternatively, it is an FL2-algebra
that satisfies x ∧ y = x ◇ y, f ≤ x, 0 = 1 and xy = yx. Since the logical constants
t, f are the top and bottom elements in this algebra they are usually denoted by
⊺, �.

An interesting subclass of cyclic GBI-algebras is the variety of symmetric
Heyting relation algebras or SHRAs [23], defined by adding the identity ∼¬(xy) ≤
(∼¬y)(∼¬x). This identity holds in all representable weakening relation algebras,
hence RWkRA is a subvariety of SHRA.

Another subvariety of FL2-algebras is the variety of skew relation algebras [6],
defined in this setting as Boolean involutive FL2-algebras. As mentioned before,
the variety of relation algebras is obtained by adding the identity (xy)⌣ = y⌣x⌣
where x⌣ = ¬∼x ([6], Cor. 29).

We provide a simpler characterization of the congruences of GBI-algebras in
Section 3 (using congruence terms that have only one parameter), which also
reveals hidden symmetries in the description given in [8]. Towards that goal,
we first provide this description in the more natural and symmetric setting of
FL2 in Section 2, and this is our main reason for introducing FL2. Equivalent
characterizations are provided in Lemma 3 (in a fully symmetric setting), which
then specialize to two distinct characterizations in Corollary 9 and Corollary 10
(one for the congruence filters of 1 and one for the congruence filters of ⊺).

All FL2-algebras can be constructed by selecting two pointed residuated lat-
tices that have a common underlying lattice. If the lattice is non-distributive,
then the resulting FL2-algebra is outside the variety of GBI-algebra. One of the
appeals of GBI-algebras in computer science is the fact that they provide the
means to study both the logical and the dynamic aspect of situations. Of course
in GBI the logical part is restricted to intuitionistic logic, but FL2 allows for
considering cases where the logical part is any substructural logic, such as linear
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logic, relevance logic or a particular fuzzy logic. Methods for combining logics
have been studied extensively, and FL2 is an example of fusion of logics as de-
scribed by Gabbay in [5]. The results in the first half of this paper provide some
insight into the algebraic structure of the fusion of two substructural logics.

The models of relevance logic RW, namely distributive cyclic involutive resid-
uated lattices, are exactly the implication subreducts of de Morgan BI-algebras,
namely the extension of BI where the dynamic part is involutive. In [3] it is shown
that the addition of a Boolean negation to de Morgan BI-algebras results in a
non-conservative extension called classical BI. A display calculus for this logic
shows remarkable symmetry between the classical logic part and the involutive
dynamic part of this logic. The setting of FL2 is well suited to studying weaker
versions of this logic that omit some rules like contraction and/or weakening. It
is also worth noting that classical BI-algebras coincide with commutative skew
relation algebras (defined in [6]).

In Section 4 we recall the definition of discriminator variety and some re-
sults about weakening relation algebras from [8]. Finally, Section 5 defines the
double-division conucleus construction and shows that the image of the variety
of relation algebras under this construction produces a class of GBI-algebras
that is a non-Boolean analogue to Tarski’s variety of abstract relation algebras.

Throughout the paper we make use of elementary properties of the residuals,
such as x(x/y) ≤ y, x ≤ xy/y, x(y ∨ z)w = xyw ∨ xzw and that residuals are
order-reversing in the “denominator” or antecedent and order-preserving in the
“numerator” or consequent.

2 Congruences of FL2-algebras

An algebraic theory determines a category in which all models of the theory are
objects and the morphisms are homomorphisms between the algebraic models.
The kernel {(x, y) ∶ h(x) = h(y)} of a homomorphism h ∶A→ B is a congruence
relation (i.e., an equivalence relation that is preserved by all algebraic operations)
on A, and an important step in understanding the structure of the category is
to be able to describe the lattice of congruences Con(A) on each object A.

An FL2-algebra A has two residuated lattices as reducts, hence any congru-
ence on A is a residuated lattice congruence. The description of congruences in
residuated lattices is due to Blount and Tsinakis [2]. Here we use a version of
this result that appears in [9].

An algebra is said to be c-regular if c is a constant in the algebra and each
congruence of the algebra is determined by its c-congruence class. Residuated
lattices are 1-regular since for a congruence θ on a residuated lattice L

xθy ⇐⇒ x/y ∧ y/x ∧ 1 ∈ [1]θ

where [1]θ = {z ∈ L ∶ zθ1} is the 1-congruence class of θ. If we define x ≤θ y by
x ≤ z and z θ y for some z ∈ L, or equivalently by xθw and w ≤ y for some w ∈ L,
then xθ y ⇐⇒ x ≤θ y and y ≤θ x, hence the above equivalence follows from the
observation that
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x ≤θ y ⇐⇒ 1 ≤θ y/x ⇐⇒ y/x ∧ 1 θ 1.

Instead of the right residual / one could also use the left residual / for this
equivalence. Rather than working with 1-congruence classes, it is convenient to
use certain filters.

Recall that a filter of a lattice L is a subset F such that x ∧ y, a ∨ x ∈ F for
all x, y ∈ F and a ∈ L. For x ∈ X ⊆ L let ↑x = {y ∈ L ∶ x ≤ y} be the principal
(lattice) filter generated by x and ↑X = ⋃x∈X ↑x.

A congruence filter of a residuated lattice or FL-algebra is a subset of the
form F = ↑([1]θ). This is a lattice filter since the congruence class of 1 is closed
under meet. It is also a union of θ-classes since ≤θ is transitive. The class [1]θ
can be recovered from F since [1]θ = {x ∶ x,1/x ∈ F}.

It is easy to check that

1, xy, λa(x) ∶= a/xa, ρa(x) ∶= ax/a ∈ F for all x, y ∈ F and a ∈ L.

Note that the closure of F under the conjugation terms ax/a, a/xa is equivalent
to the following normality conditions (where quantifiers range over F ):

(λa) ∀x ∃x′, ax′ ≤ xa and (ρa) ∀x ∃x′, x′a ≤ ax.

A filter F is said to satisfy (λ) if (λa) holds for all a ∈ L and likewise for (ρ).
The set of congruence-filters of L is denoted by CF(L).

Theorem 1 ([9]). For a residuated lattice or FL-algebra A, a subset F is a
congruence-filter if and only if F is a lattice filter and a submonoid of A that
satisfies (λ) and (ρ).

Moreover, Con(A) is isomorphic to the lattice CF(A) of congruence-filters
via the bijection θ ↦ ↑([1]θ) and F ↦ {(x, y) ∶ x/y, y/x ∈ F}.

Since there are two signatures for FL-algebras, there are two ways to charac-
terize the congruences of an FL2-algebra, either by congruence 1-filters ↑([1]θ)
or by congruence t-filters ↑([t]θ). We usually drop the prefix “congruence”, and
mostly work with 1-filters. However all results can be translated to t-filters by
interchanging the operation symbols of the two signatures.

For FL2 we need the following stronger t-normality conditions to determine
the 1-filters (the quantifiers range over the filters). For any a ∈ A,

(Ua) ∀x∃x1, x1a ≤ xt ◇ a, (U ′a) ∀x∃x2, ax2 ≤ a ◇ xt,
(Va) ∀x∃x3, x3t ◇ a ≤ ax, (V ′a) ∀x∃x4, a ◇ x4t ≤ xa.

A filter satisfies (U) if (Ua) holds for all a ∈ A, and the same for (U ′), (V ) and
(V ′). The conjunction of these four conditions is referred to as (UVa) or, if they
hold for all a, as (UV ).

Lemma 3 below shows that (UVa) is indeed stronger than (λa), (ρa). With
the help of normality we can derive several other variants of the inequations in
(UVa) such as ∀x∃x′, x′a ≤ a ◇ tx. We will use these variations occasionally in
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the following lemma about some useful two-parameter conditions. For a, b ∈ A
define

∀x∃x1, x2, x1(a ◇ b) ≤ xa ◇ b and x2(a ◇ b) ≤ a ◇ xb, (Qa,b)
∀x∃x1, x2, a ◇ x1b ≤ xa ◇ b and x2a ◇ b ≤ a ◇ xb, (Ra,b)
∀x∃x1, x2, x1(a→ b) ≤ a→ xb and x2(a← b) ≤ xa← b. (Sa,b)

Lemma 2. The condition (UV ) implies (Q), (R) and (S).

Proof. We first derive (Ra,b) from (V ′a) and (Ub). Given x ∈ F , there exist
x1, x4 ∈ F such that (reading from right to left)

a ◇ x1b ≤ a ◇ (x4t ◇ b) = (a ◇ x4t) ◇ b ≤ xa ◇ b.

By a similar calculation using (V ′b ) and (U ′a), there exist x2, x4 ∈ F such that
x2a ◇ b ≤ a ◇ x4t ◇ b ≤ a ◇ xb.

Next we derive (Qa,b) from (Rt,a) and (Rt,a◇b). Given x ∈ F , there exist
x1, x2 ∈ F with

x1(a ◇ b) = t ◇ x1(a ◇ b) ≤ x2t ◇ (a ◇ b) = (x2t ◇ a) ◇ b ≤ (t ◇ xa) ◇ b = xa ◇ b.

For (Sa,b) the relevant calculation shows there exist x1, x2, x3, x4 ∈ F such that

a ◇ x4(a→ b) ≤ a ◇ (a→ b)x3 ◇ t ≤ a ◇ (a→ b) ◇ x1t ≤ b ◇ x1t ≤ bx2 ◇ t ≤ xb,

hence for all x ∈ F there exists x1 ∈ F such that x1(a→b) ≤ a→xb. The remaining
inequalities are derived in a similar way. ⊓⊔

We also consider the conditions

(λ′a) ∀x∃x′, x′t ◇ a ≤ a ◇ xt and (ρ′a) ∀x∃x′, a ◇ x′t ≤ xt ◇ a.

As before, (λ′) means that (λ′a) holds for all a, and likewise for (ρ′).

Lemma 3. We have the following implications between the above conditions.

1. (U) and (V ) ⇒ (ρ) 2. (U ′) and (V ′)⇒ (λ)
3. (U ′) and (V )⇒ (ρ′) 4. (U) and (V ′) ⇒ (λ′).

Moreover, the following sets of conditions are equivalent:

5. (U), (U ′), (V ), (V ′), that is (UV )
6. (U), (V ), (λ), (λ′), (ρ′) 7. (U ′), (V ′), (ρ), (λ′), (ρ′)
8. (U ′), (V ), (λ), (ρ), (ρ′) 9. (U), (V ′), (λ), (ρ), (λ′).

Proof. For (1) we have for all x ∈ F there exist x1, x3 ∈ F such that x1a ≤ x3t◇a ≤
ax. For (2) there exist x2, x4 ∈ F such that ax2 ≤ a ◇ x4t ≤ xa. For (3), we have
x3t ◇ a ≤ ax2 ≤ a ◇ xt, while for (4) a ◇ x4t ≤ x1a ≤ xt ◇ a.
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That (5) implies (6) follows from (1-4). For the converse, (λ′), (U), (λ) imply
ax′′ ≤ x1a ≤ x′t◇a ≤ a◇xt, giving (U ′), and (λ), (V ), (ρ′) imply a◇x′t ≤ x3t◇a ≤
ax ≤ xa, yielding (V ′). The equivalence of (5) and (7) is analogous.

That (5) implies (8) follows from (1-4). For the converse, (ρ′), (U ′), (ρ) show
x′′a ≤ ax2 ≤ a◇x′t ≤ xt◇a, yielding (U), and (λ), (V ), (ρ′) show a◇x′t ≤ x3t◇a ≤
ax ≤ xa giving (V ′). Likewise (5) and (9) are equivalent. ⊓⊔

Theorem 4. For an FL2-algebra A, a subset F is the 1-filter of some congru-
ence θ of A if and only if F is a lattice filter and a ⋅,1-submonoid of A that
satisfies (UV ), or any of the equivalent conditions 6.-9. of Lemma 3.

Proof. Assume F = ↑([1]θ) is the 1-filter of some FL2-congruence θ. As observed
earlier, F is a lattice filter that contains 1, so if x, y ∈ F then there exist u, v ∈ [1]θ
with u ≤ x, v ≤ y and 1 ⋅1 θ uv ≤ xy, hence xy ∈ F showing that F is a submonoid.
Next we prove (Ua) x1a ≤ xt ◇ a. For a ∈ A and x ∈ F there exists y ∈ F such
that y ≤ x and y ∈ [1]θ. Now

1 θ y ⇒ t θ ty ⇒ a = t ◇ aθ yt ◇ a ⇒ 1 ≤ a/aθ (yt ◇ a)/a ≤ (xt ◇ a)/a.

Hence (xt ◇ a)/a ∈ F using the observation that if 1 ≤ uθv ≤ w then w ∈ ↑([1]θ).
Letting x1 = (xt ◇ a)/a, we obtain x1a ≤ xt ◇ a.

For (V ′a) a ◇ x4t ≤ xa we use the following calculation.

1 θ y⇒ aθ ya⇒ t ≤ a→ aθ a→ ya⇒ 1 ≤ t/t θ (a→ ya)/t ≤ (a→ xa)/t,

hence (a → xa)/t ∈ F , and choosing x4 = (a → xa)/t implies a ◇ x4t ≤ xa. The
conditions (U ′a) and (V ) are proved in a similar way.

Conversely, assume F is a lattice filter with 1, xy ∈ F for all x, y ∈ F and
(UV ) holds. Define θ = {(a, b) ∶ a/b, b/a ∈ F}. This relation is reflexive since
1 ∈ F , transitive since (x/y)(y/z) ≤ x/z, and obviously symmetric. Assuming
aθ b, it suffices to show

(a ∧ c)/(b ∧ c), (a ∨ c)/(b ∨ c), (a ◇ c)/(b ◇ c), (c ◇ a)/(c ◇ b) ∈ F,
ac/bc, ca/cb, (a/c)/(b/c), (c/a)/(c/b), (a/c)/(b/c), (c/a)/(c/b) ∈ F and

(a→ c)/(b→ c), (c→ a)/(c→ b), (a← c)/(b← c), (c← a)/(c← b) ∈ F

since interchanging a, b the same statements follow from b θ a, hence θ is com-
patible with all FL2 operations.

From aθ b we obtain a/b, b/a ∈ F and since F is a filter a/b ∧ 1 ∈ F . The
calculation for compatibility of meet is as follows:

(a/b ∧ 1)(b ∧ c) ≤ (a/b)b ∧ 1c ≤ a ∧ c

hence a/b∧ 1 ≤ (a∧ c)/(b∧ c) ∈ F . The calculation for join is the same, using the
distribution of ⋅ over ∨.

It is remarkable that all the remaining statements can be deduced from (UV ).
Lemma 3 shows that (λ), (ρ) follow and, by Lemma 2 conditions (Q), (R), (S)
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also hold. The implication a/b ∈ F ⇒ ac/bc ∈ F is easy since (a/b)bc ≤ ac follows
from (a/b)b ≤ a. However a/b ∈ F ⇒ ca/cb ∈ F uses (ρc) with x = a/b, so there
exists x′ ∈ F such that

x′cb = (x′c)b ≤ (c(a/b))b = c((a/b)b) ≤ ca

and therefore x′ ≤ ca/cb implies ca/cb ∈ F . Similarly the implication a/b ∈ F ⇒
(a/c)/(b/c) ∈ F is easy since a/b ≤ (a/c)/(b/c) holds, while for b/a ∈ F ⇒
(c/a)/(c/b) ∈ F we use (ρc/b) with x = b/a to get x′ ∈ F such that

x′(c/b)a ≤ (c/b)(b/a)a ≤ (c/b)b ≤ c

and then x′ ≤ (c/a)/(c/b) implies (c/a)/(c/b) ∈ F .
From a/b ∈ F and (Qb,c) we obtain x1 ∈ F such that x1(b◇c) ≤ (a/b)b◇c ≤ a◇c

hence (a ◇ c)/(b ◇ c) ∈ F . Similarly (Sc,b) is used to find x1 ∈ F such that
x1(c → b) ≤ c → (a/b)b ≤ c → a, which shows that (c → a)/(c → b) ∈ F . For
(a→ c)/(b→ c) ∈ F we use (Ra,b→c) and x = b/a ∈ F to get x1 ∈ F with

a ◇ x1(b→ c) ≤ (b/a)a ◇ (b→ c) ≤ b ◇ (b→ c) ≤ c

hence x1 ≤ (a→ c)/(b→ c) ∈ F . The remaining terms are shown to be in F by
mirror-image arguments, so θ is a congruence for the FL2-algebra A.

It remains to show that F = ↑([1]θ). If aθ 1 then by definition of θ, a = a/1 ∈ F
hence ↑([1]θ) ⊆ F . Conversely, given a ∈ F we need to find c ∈ F such that
1 θ c ≤ a. By assumption 1 ∈ F so we can take c = a∧ 1 ∈ F , in which case 1 ≤ 1/c.
It follows that 1/c and c/1 are in F , hence 1 θ c. ⊓⊔

Note that join is only used to prove compatibility of join, hence the result gen-
eralizes to a meet-semilattice version of FL2. The theorem also applies to the
FL-algebra subvariety defined by xy = x ◇ y (thus 1 = t, / =←, / =→), hence the
result implies Theorem 1. It is also possible to prove a congruence characteriza-
tion for nonassociative FL2-algebras using the techniques of [10].

Since relation algebras and bunched implication algebras are subvarieties of
FL2-algebras, the description of the congruence filters also applies to them. While
the congruences of relation algebras have been well understood since the 1950s
[16], for bunched implication algebras a description first appeared in [8]. However,
the description and the proof given here are both simpler and more general.
Because of the symmetry in the signature of FL2-algebras, we immediately get
the following result. Consider the conditions

(Ūa) ∀x∃x1, x1◇a ≤ (x◇1)a, (Ū ′a) ∀x∃x2, a◇x2 ≤ a(x◇1),
(V̄a) ∀x∃x3, (x3◇1)a ≤ a◇x, (V̄ ′a) ∀x∃x4, a(x4◇1) ≤ x◇a.

Collectively we refer to them as (UVa) or, if they hold for all a, as (UV ). Similarly
we have conditions (λ̄), (ρ̄), (λ̄′), (ρ̄′).

Corollary 5. For an FL2-algebra A, a subset G is the t-filter of some congru-
ence θ of A if and only if G is a lattice filter and a ◇, t-submonoid of A that
satisfies (UV ).
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Solving (Ua) for x1 yields x1 ≤ ua(x) ∶= (xt ◇ a)/a. Given that F is assumed
to be upward closed, demanding the existence of an element x1 ∈ F is equivalent
to asking that ua(x) is in F . Translating the remaining three conditions, we
obtain that they are equivalent to closure under the terms

ua(x) = (xt ◇ a)/a, u′a(x) = a/(a ◇ xt),
va(x) = (ax← a)/t, v′a(x) = (a→ xa)/t.

As noted above, condition (UVa) for a filter is equivalent to the filter being
closed under the unary terms ua, u′a, va and v′a. It is an interesting problem
to determine if these terms can be applied in a specific order, and how they
interact with submonoid generation and closure under meets. We leave this for
future research.

The condition (λa) can be expressed in a concise way by noting that

∀x ∈ F ∃x′ ∈ F, ax′ ≤ xa ⇐⇒ ∀x ∈ F, xa ∈ ↑(aF ) ⇐⇒ Fa ⊆ ↑(aF ).

Hence (λa), (ρa) are equivalent to ↑(aF ) = ↑(Fa). The same argument proves
the following result.

Corollary 6. A lattice filter F in an FL2-algebra satisfies (UVa) if and only if
↑(a ◇ Ft) = ↑(Fa) = ↑(aF ) = ↑(Ft ◇ a).

Likewise, ↑(a(F ◇ 1)) = ↑(F ◇ a) = ↑(a ◇F ) = ↑((F ◇ 1)a) is equivalent to the
condition (UVa) holding for F .

The characterization of congruences by 1-filters simplifies a bit when applied
to algebras where [1]θ has a least element for all congruences, as is the case
for finite algebras. An element c ∈ A is central if ca = ac for all a ∈ A, negative
if c ≤ 1 and idempotent if cc = c. A congruence element is a central negative
idempotent element. The join and the product of two congruence elements is
again a congruence element. It is a well known corollary of Theorem 1 that for a
finite residuated lattice or FL-algebra, the congruence lattice is dually isomorphic
to the lattice (CE(A), ⋅,∨) of congruence elements [9]. The dual isomorphism
between CE(A) and the filter lattice CF(A) is given by a↦ ↑a and F ↦ ⋀F .

In an FL2-algebra an element c is t-central if a ◇ ct = ac = ca = ct ◇ a for all
a ∈ A and 1-central if a(c◇1) = a◇c = c◇a = (c◇1)a. A 1-congruence element is a
t-central negative idempotent element and a t-congruence element is a 1-central
negative idempotent element.

Corollary 7. For an FL2-algebra A in which all 1-congruence classes have a
least element, the lattice CE1(A) of 1-congruence elements is dually isomorphic
to the lattice CF1(A) of 1-filter elements.

Let A be an FL2-algebra and A1 its FL-algebra reduct with ∧,∨, ⋅, /, /,1,0.
The isomorphism between the lattice CF(A1) of congruence filters and the lat-
tice Con(A1) of congruences restricts to an isomorphism between lattice CF1(A)
of 1-filters of A and its congruence lattice Con(A). The above characterization
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also applies to the t-filters of A, hence the lattice CFt(A) of t-filters is isomorphic
to Con(A) as well. The next result shows how to map between corresponding
1-filters and t-filters without having to construct the congruence relation. As in
Lemma 2, the condition (UV ) has the following consequence:

∀x∃x1, x2, x1 ◇ ab ≤ (x ◇ a)b and x2 ◇ ab ≤ a(x ◇ b). (Q′a,b)

Theorem 8. For FL2-algebras there is a one-one correspondence between 1-
filters and t-filters via the mutually inverse lattice isomorphisms F ↦ ↑(Ft) and
G↦ ↑(G ◇ 1).

Proof. Let G be a t-filter of an FL2-algebra, and define F = ↑(G◇1). Then 1 ∈ F
since t ∈ G, and for u, v ∈ F there exist x, y ∈ G such that x ◇ 1 ≤ u and y ◇ 1 ≤ v.
Using (Q′1,y◇1) there exists x′ ∈ G such that

x′ ◇ y ◇ 1 = x′ ◇ 1(y ◇ 1) ≤ (x ◇ 1)(y ◇ 1) ≤ uv,

and since G is closed under ◇, x′ ◇ y ∈ G implies uv ∈ F . Next we show (Ua)
holds for F . Since G is a t-filter, (UV ) holds for G. From u ∈ F we obtain x ∈ G
such that x ◇ 1 ≤ u. By (Ūt), (λ̄) and (V̄a) there exist x1, x3, x

′ ∈ G with

(x3 ◇ 1)a ≤ a ◇ x′ ≤ x1 ◇ a = (x1 ◇ t) ◇ a ≤ (x ◇ 1)t ◇ a ≤ ut ◇ a,

hence choosing u1 = x3 ◇ 1 we have found u1 ∈ F such that u1a ≤ ut ◇ a. The
conditions (U ′), (V ), (V ′) can be derived in a similar way. The proof that ↑(Ft)
is a t-filter for any 1-filter F follows by symmetry.

It remains to check that F = ↑(G ◇ 1) ⇐⇒ ↑(Ft) = G. Assume F = ↑(G ◇ 1)
and let x ∈ ↑(Ft). Then there exists u ∈ F such that ut ≤ x. Since u ∈ F we have
y◇1 ≤ u for some y ∈ G. By (Ūt) there exists y1 ∈ G such that y1 = y1◇t ≤ (y◇1)t.
It follows that (y ◇ 1)t ∈ G, and since (y ◇ 1)t ≤ ut ≤ x we have x ∈ G. This show
↑(Ft) ⊆ G. Now let x ∈ G, and note that by (V̄t) there exists x3 ∈ G such that
(x3 ◇ 1)t ≤ t◇x = x. Taking u = x3 ◇ 1 we have u ∈ F and ut ≤ x, hence x ∈ ↑(Ft).
We conclude that ↑(Ft) = G. The reverse implication follows by symmetry of
the signature. ⊓⊔

This correspondence restricts to a bijection between 1-congruence elements
c and t-congruence elements d: c↦ ct and d↦ d ◇ 1.

3 Congruences in GBI-algebras

The results in this section can be specialized to various subvarieties of FL2. For
example, for GBI-algebras, we can characterize the 1-filters by taking multipli-
cation to be ⋅ and meet to be ◇. Note that the constant t is denoted by ⊺ for
GBI-algebras because it is always the top element of the algebra. Since ∧ is
commutative, conditions (λ′), (ρ′) are automatically satisfied and (6) and (7) of
Lemma 3 apply. We state the characterization explicitly.
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Corollary 9. The 1-filters of a GBI-algebra A are the filter submonoids that
are closed under the terms

ua(x) = (x⊺ ∧ a)/a, va(x) = (a→ ax)/⊺ and λa(x) = a/xa,

or equivalently by the terms

u′a(x) = a/(a ∧ x⊺), v′a(x) = (a→ xa)/⊺ and ρa(x) = ax/a.

Equivalently, they are the filter submonoids that satisfy, for all a ∈ A,

(Ua) ∀x∃x1, x1a ≤ x⊺ ∧ a, (Va) ∀x∃x3, x3⊺ ∧ a ≤ ax, (λa) ∀x∃x′, ax′ ≤ xa

or equivalently the conditions

(U ′a) ∀x∃x2, ax2 ≤ a ∧ x⊺, (V ′a) ∀x∃x4 a ∧ x4⊺ ≤ xa, (ρa) ∀x∃x′, x′a ≤ ax.

Likewise, we can characterize the ⊺-filters by taking multiplication to be ◇
and meet to be ⋅, in which case (λ), (ρ) are automatically satisfied, the condition
of F being a submonoids with respect to ∧ holds, and (8) and (9) of Lemma 3
give short descriptions. To clarify that we are using a different interpretation of
the operations ⋅ and ◇, we place a bar over the terms and conditions. Conditions
(λ̄), (ρ̄) are satisfied by the commutativity of meet.

Note that translating the FL2 condition (V̄a) to a term produces v̄a(x) =
1→ (a ∧ x)/a (in the GBI language). This simplifies to v̄a(x) = 1→ (x/a) since
1→ (a ∧ x)/a = 1→ (a/a ∧ x/a) = (1→ a/a) ∧ (1→ x/a) and ⊺ ≤ 1→ (a/a).

Corollary 10. The ⊺-filters of a GBI-algebra A are the filters that are closed
under the terms

ū′a(x) = a→ a(x ∧ 1), v̄a(x) = 1→ (x/a) and λ̄′a(x) = 1→ a/(x ∧ 1)a,

or equivalently by the terms

ūa(x) = a→ (x ∧ 1)a, v̄′a(x) = 1→ (a/x) and ρ̄′a(x) = 1→ a(x ∧ 1)/a.

Equivalently, they are the filter submonoids that satisfy, for all a ∈ A,

(Ūa) ∀x∃x1, x1 ∧ a ≤ (x ∧ 1)a, (V̄ ′a) ∀x∃x4, a(x4 ∧ 1) ≤ x and

(ρ̄′a) ∀x∃x′, (x′ ∧ 1)a ≤ a(x ∧ 1),

or equivalently the conditions

(Ū ′a) ∀x∃x2, a ∧ x2 ≤ a(x ∧ 1), (V̄a) ∀x∃x3, (x3 ∧ 1)a ≤ x and

(λ̄′a) ∀x∃x′, a(x′ ∧ 1) ≤ (x ∧ 1)a.
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In a GBI-algebra, by Theorem 4 and Corollary 6 the 1-filters are the sub-
monoid filters F satisfying ↑(Fa) = ↑(aF ) = ↑(a ∧ F⊺), for all a ∈ A; an ele-
ment c is a 1-congruence element iff it is negative, idempotent and ⊺-central:
ca = ac = a ∧ c⊺, for all a ∈ A. Likewise, ⊺-filters are the filters G satisfying
↑(a(G∧1)) = ↑((G∧1)a) = ↑(G∧a), for all a ∈ A; an element d is a ⊺-congruence
element iff it is 1-central: a(c ∧ 1) = (c ∧ 1)a = c ∧ a, for all a ∈ A.

For involutive GBI-algebras the characterization simplifies even further. The
following result from [8] shows that the characterization of t-filters does not
require any parameters in this case.

Theorem 11. For an involutive GBI-algebra, a lattice filter F is a ⊺-filter if
and only if for all x ∈ F it follows that ¬∼x,¬−x,∼(⊺(−x)⊺) ∈ F.

Involutive GBI-algebras include all relation algebras and all representable
weakening relation algebras. Several results from relation algebras generalize to
the setting of involutive GBI-algebras and other varieties of bunched implication
algebras. For example, the term ∼(⊺(−x)⊺) in the previous result is the dual
of Tarski’s term ⊺x⊺ that is used to characterize congruence ideals in relation
algebras.

4 Discriminator varieties of GBI-algebras

Recall that an algebra is subdirectly irreducible if it has a smallest nontrivial con-
gruence. For FL2-algebras Theorem 4 and Corollary 5 imply that this property
is the same as having a smallest nontrivial 1-filter or, equivalently, a smallest
nontrivial t-filter. For example, this makes it easy to compute all finite subdi-
rectly irreducible bunched implication algebras. Since they have lattice reducts,
Jónsson’s Lemma [14] implies that two nonisomorphic finite subdirectly irre-
ducible BI-algebras generate distinct subvarieties, i.e., there exists an identity
that holds in one of them and fails in the other. The same observations apply to
finite FL2-algebras.

Relation algebras form a discriminator variety, which means that the variety
is generated by a class of algebras which have a ternary discriminator term
t(x, y, z) such that for all algebras in this generating class

t(x, y, z) =
⎧⎪⎪⎨⎪⎪⎩

x if x ≠ y
z otherwise.

For relation algebras such a term is given by

t(x, y, z) = ((⊺; (x⊕ y);⊺) ∧ x) ∨ (¬(⊺; (x⊕ y);⊺) ∧ z)

where x⊕ y = (x ∨ y) ∧ ¬(x ∧ y) is the symmetric difference operation.
Discriminator varieties are well behaved in the sense that all subvarieties are

also discriminator varieties (with the same term t) and all their subdirectly irre-
ducible members are simple, i.e., the congruence lattice has only two elements,
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namely the identity congruence and the top congruence that relates all pairs.
In addition, every subalgebra of a simple member is simple, and every finite
member is a direct product of simple members. For relation algebras, simplicity
is characterized by the Tarski rule x ≠ � ⇒ ⊺x⊺ = ⊺.

An interesting question is whether there are other prominent subvarieties
of FL2-algebras that are discriminator varieties. This is not the case for the
variety of BI-algebras since it contains the subvariety of Heyting algebras, defined
relative to FL2 by x ∧ y = xy = x ◇ y. Heyting algebras are not a discriminator
variety because, e.g., the 3-element Heyting algebra is not simple.

The full weakening relation algebras Wk(P) for any poset P satisfy the
Tarski rule (since composition and ⊺ are the same as for relation algebras), but
the term t(x, y, z) has to be constructed differently since negation is not classical.
The following dual form has the required property:

t′(x, y, z) = (c(x↔ y) ∧ z) ∨ (¬c(x↔ y) ∧ x)

where x↔y = (x→y)∧(y→x) and c(x) = ⊺/x/⊺. The term c is known as a (dual)
unary discriminator [12] since it satisfies c(⊺) = ⊺ and for x ≠ ⊺, c(x) = �, i.e.,
it behaves like a dual Tarski rule, also known as a Baaz Delta [1] in fuzzy logic.
Some concepts from relation algebra need to be dualized since in the theory of
relation algebras ideals and atoms are more suitable concepts, but in the weaker
(noninvolutive) theories of BI-algebras and FL2-algebras, filters are needed to
characterize the congruences. It is easy to check that t′ is a discriminator in all
full weakening relation algebras, hence the variety RWkRA generated by them is
a discriminator variety.

In [8] it is shown that RWkRA = SP ({Wk(P) ∶ P is a poset}), hence every
member of RWkRA is embedded in an algebra of relations and deserves to be
called representable. In other words, RWkRA is analogous to the variety RRA of
representable relation algebras. Since RRA is not finitely axiomatizable and can
be defined from RWkRA by adding a single equation, it follows that RWkRA is
also not finitely axiomatizable. A natural problem is to define a finitely based
variety WkRA analogous to Tarski’s variety RA of relation algebras. The variety
SHRA defined in [23] is too large since it fails some short identities that hold
in all full weakening relation algebras. It is also not known whether SHRA is a
discriminator variety.

In the next section we recall a construction from [8] that generalizes the
double coset construction of relation algebras. Applying this construction to RA
leads to a variety S(dRA) of cyclic involutive GBI-algebras that contains RA ∪
RWkRA and is properly contained in SHRA. Currently no (finite) axiomatization
is known for S(dRA) but we obtain several identities that hold in all its members.

5 The double division conuclei construction

The process of factoring a set by an equivalence relation is captured at the level of
relation algebras by a construction described in [15]. In a relation algebra A, let
e be an idempotent (ee = e) symmetric (e = e⌣) element and eAe = {exe ∶ x ∈ A}.
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Then eAe = (eAe,∧,∨,¬e, e⊺e,�, ⋅,⌣ , e,¬ee) is a relation algebra, where ¬ex =
¬x∧e⊺e. For group relation algebras this construction is known as a double coset
relation algebra, and in this case e ≥ 1. In [8] this construction is generalized to
residuated lattices and GBI-algebras for arbitrary positive idempotents p = p2 ≥
1. Given such an element p, let δp(x) = p/x/p and note that this double division
operation is a conucleus, i.e., an interior operator that satisfies δp(x)δp(y) ≤
δp(xy). This holds because δp(x) = δ′(δ′′(x)) where δ′(x) = p/x and δ′′(x) = x/p,
both of which are conuclei, and this property is preserved under composition. By
a version of [9, Prop. 3.41] without the identity, the conucleus image δ(A) of a
residuated lattice is a residuated lattice (δ(A),∧δ,∨, ⋅, /δ, /δ) possibly without an
identity, where x ∗δ y = δ(x ∗ y) for ∗ ∈ {∧, /, /}. For the conucleus image δp(A),
the element p is the identity element: p/x/p ≤ (p/x/p)p since p is positive, and
(p/x/p)pp = (p/x/p)p ≤ p/x hence (p/x/p)p ≤ p/x/p. An even easier way to show
this is to make use of the result from [8] that δp(A) = {pxp ∶ x ∈ A}.

The double division conucleus δp is of special interest for relation algebras
since a positive idempotent p in a full relation algebra Rel(P ) on a set P is a
preorder P = (P,⊑) (i.e., p = ⊑ is reflexive and transitive). If we assume p∧p⌣ = 1,
then P is a poset and it follows that the full weakening relation algebra Wk(P)
is equal to δp(Rel(P )). This shows that the variety RWkRA contains all double
division conucleus images of members of RRA. For any class K of GBI-algebras
we define dK = {δp(A) ∶ A ∈ K,1 ≤ p2 = p ∈ A}. In [8] it is proved that if V
is a variety of bounded GBI-algebras with ⊺/x/⊺ as unary discriminator on the
subdirectly irreducible members then S(dV) is a discriminator variety with the
same unary discriminator term. Applying this result to the variety RA results in
the discriminator variety S(dRA) that contains both RA and RWkRA.

For an element x in a GBI-algebra, define the domain d(x) = x⊺ ∧ 1 and the
range r(x) = ⊺x ∧ 1. In [13] it was shown that RWkRA satisfies the standard
domain and range identities d(x)x = x and xr(x) = x, as well as the identity
⊺x⊺x⊺ = ⊺x⊺. John Stell’s results in [23] about SHRA, together with the fact that
the latter contains RWkRA, imply that RWkRA satisfies the inequality ∼¬(xy) ≤
(∼¬y)(∼¬x). Mace4 [18] shows that these identities do not hold in all cyclic
involutive GBI-algebras. The 3-element Łukasiewicz algebra L = {0 < a < 1}
with aa = 0 is a commutative (hence cyclic) involutive BI-algebra and taking
x = a gives counterexamples for the first three identities below. The last identity
fails with x = 1 in the 4-element Boolean commutative involutive BI-algebra
B = {0 < 1,¬1 < ⊺} where (¬1)(¬1) = 1 and ∼1 = 1, ∼¬1 = ¬1.

Theorem 12. The identities

d(x)x = x, xr(x) = x, ⊺x⊺x⊺ = ⊺x⊺ and ∼¬(xy) ≤ (∼¬y)(∼¬x)

hold in S(dRA).

Proof. Let x be an element in δp(A) for some relation algebra A and positive
idempotent p ∈ A. The identity element of δp(A) is p, hence d(x) = x⊺∧ p. Since
p ≥ 1, d(x)x ≥ (x⊺ ∧ 1)x = x where the last equality holds because it already
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holds in RA. The opposite inequality holds since d(x) ≤ p, and p is the identity
element. The proof for r(x) is similar.

Although a conucleus can in principle map the top element of A to a smaller
element, this is not the case for δp since p⊺p = ⊺ is in the image of δp. Hence the
third identity is true since it evaluates the same way in A as in δp(A).

For the fourth identity, let x, y ∈ δp(A). Applying ∼ on both sides and revers-
ing the inequality ∼¬(xy) ≤ (∼¬y)(∼¬x) we get the equivalent version ¬x + ¬y ≤
¬(xy), where x + y = ∼((∼y)(∼x)) is the dual product. Since x ≤ ¬y ⇔ y ≤ ¬x
holds in Heyting algebras, the inequality becomes xy ≤ ¬(¬x + ¬y). The defini-
tion of ¬x in δp(A) is δp(xc) where xc is the complement in A. Hence we get the
equivalent version xy ≤ δp((¬x+¬y)c) = p/(¬x+¬y)c/p. Using residuation this is
equivalent to pxyp ≤ (¬x + ¬y)c and to xy ≤ (δp(xc) + δp(yc))c since xy ∈ δp(A),
hence pxyp = xy. Using de Morgan’s law xy = (xc+yc)c in RA and applying com-
plements on both sides the equation is equivalent to δp(xc) + δp(yc) ≤ xc + yc,
where the last inequality holds because δp is decreasing. ⊓⊔

These identities are easily derived from the equational basis of RA, but some
of these derivations make use of identities that do not hold in all algebras of weak-
ening relations. It would be interesting to find an equational basis for S(dRA).
The inequality in Theorem 12 might be part of such a basis, while the other
three identities are perhaps derivable from other identities that still need to be
discovered.

An example of an identity that holds in all relation algebras but is not pre-
served by double division conuclei is (x∧1)(y∧1) = x∧y∧1. Some new identities
have nontrivial models RWkRA. For example it is proved in [8] that 0 ≤ 1 holds
in Wk(P) if and only if P is a chain. Here we note that the opposite inequality
cannot hold in S(dRA).

Lemma 13. If A ∈ S(dRA) satisfies 1 ≤ 0 then A is trivial.

Proof. Suppose 1 ≤ 0 holds in δp(A) for some relation algebra A and positive
idempotent p ∈ A. Then p ≤ ∼p in A. Applying complementation on both sides
we get p⌣ ≤ pc, or equivalently p⌣ ∧ p = �. Since p is positive, 1 ≤ p⌣ hence it
follows that 1 = �, forcing A to be trivial. ⊓⊔

This shows that the 3-element Sugihara chain [9] is not in S(dRA) since it
satisfies 0 = 1. However the 4-element Sugihara chain is representable by the
following 4 relations on the rationals Q: {∅,<,≤,Q2}.

Another problem is to find small algebras that are in S(dRA) but not in
RWkRA. Of course many small nonrepresentable relation algebras are known,
but they must have at least 16 elements. It is currently not known if there are
smaller examples in S(dRA).

6 Conclusion

We have shown that several concepts from relation algebras can be lifted to more
general settings where they apply to other classes of algebras that occur in logic
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and computer science. While the variety of FL2-algebras is somewhat general, it
is a convenient setting for results about congruences since the symmetry of the
two sets of connectives allows for shorter proofs. Adapting the characterization
of FL2 congruences to GBI-algebras produces a description that is significantly
simpler than the previous results in [8]. The variety RWkRA of representable
weakening relation algebras is a subvariety of cyclic involutive FL2 and general-
izes RRA from relations over sets to weakening relations over posets. We defined
a discriminator variety S(dRA) of cyclic involutive GBI-algebras that contains
RA∪RWkRA and showed that it satisfies some identities that hold in both rela-
tion algebras and weakening relation algebras.

We thank the referees for the interesting comments and corrections that have
substantially improved this paper.
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