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RESIDUATED FRAMES WITH APPLICATIONS TO

DECIDABILITY

NIKOLAOS GALATOS AND PETER JIPSEN

Abstract. Residuated frames provide relational semantics for substructural

logics and are a natural generalization of Kripke frames in intuitionistic and

modal logic, and of phase spaces in linear logic. We explore the connection
between Gentzen systems and residuated frames and illustrate how frames

provide a uniform treatment for semantic proofs of cut-elimination, the fi-

nite model property and the finite embeddability property, which imply the
decidability of the equational/universal theories of the associated residuated

lattice-ordered groupoids. In particular these techniques allow us to prove
that the variety of involutive FL-algebras and several related varieties have

the finite model property.

Substructural logics and their algebraic formulation as varieties of residuated
lattices and FL-algebras provide a general framework for a wide range of logical
and algebraic systems, such as

Classical propositional logic ↔ Boolean algebras
Intuitionistic logic ↔ Heyting algebras
 Lukasiewicz logic ↔ MV-algebras
Abelian logic ↔ abelian lattice-ordered groups
Basic fuzzy logic ↔ BL-algebras
Monoidal t-norm logic ↔ MTL-algebras
Noncommutative mult. add. linear logic ↔ InFL-algebras
Full Lambek calculus ↔ FL-algebras

and lattice-ordered groups, symmetric relation algebras and many other systems.
In this paper we introduce residuated frames and show that they provide rela-

tional semantics for substructural logics and representations for residuated struc-
tures. Our approach is driven by the applications of the theory. As is the case
with Kripke frames for modal logics, residuated frames provide a valuable tool for
solving both algebraic and logical problems. Moreover we show that there is a
direct link between Gentzen-style sequent calculi and our residuated frames, which
gives insight into the connection between a cut-free proof system and the finite
embeddability property for the corresponding variety of algebras.

After an overview of residuated structures and certain types of closure oper-
ators called nuclei, we define residuated frames and Gentzen frames (Section 2),
and provide several examples. We then prove a general homomorphism theorem in
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the setting of Gentzen frames (Thm. 2.6) and apply it to the particular examples.
Results in Section 3 include the cut-elimination property for several logical sys-
tems, the decidability of logics and of varieties of residuated structures, the finite
model property, and the finite embeddability property. The homomorphism theo-
rem generalizes and simplifies ideas found in several papers [2–4, 19, 20, 24, 26, 27]
that address the above types of problems in otherwise seemingly unrelated ways.
Thus the notion of residuated frame provides a unifying framework for the analysis
of various logical and algebraic properties and for their proof in a general setting.

Ono and Komori [20], and later Okada and Terui [19], prove cut-elimination
and decidability for the full Lambek calculus (and other systems) using monoid
semantics and phase spaces. Blok and van Alten [3, 4] prove the finite embed-
dability property for several classes of residuated structures using a combinatorial
argument, and Belardinelli, Jipsen, Ono [2] and Wille [26] give algebraic proofs of
cut-elimination and decidability for FL-algebras and involutive residuated lattices.

We present a common generalization of these results, and use it to prove several
new results. In particular, we consider all subvarieties of residuated lattice-ordered
unital groupoids (r`u-groupoids) defined by an equation using the symbols {∨, ·, 1}
and prove cut elimination for sequent calculi associated with these equational classes
(Cor. 3.13). We apply this result to obtain the finite model property for many of
these classes (essentially those where the defining equation corresponds to a sequent
rule whose premises are no more complex than its conclusion, see Thm. 3.15).
For integral r`u-groupoids we are able to prove the stronger finite embeddability
property for all subvarieties defined by a {∨, ·, 1}-equation (Thm. 3.18), which
implies that the universal theory of each of these classes is decidable. Note that
Farulewski [11] and Buszkowski [7] prove the finite embeddability property for all
residuated groupoids, all distributive lattice-ordered residuated groupoids and all
lattice-ordered residuated groupoids with boolean or intuitionistic negation.

In Sections 4 and 5 we adapt our techniques to involutive residuated structures,
and prove new results about them, including the finite model property of involutive
FL-algebras and its generalizations (Cor. 5.7, 5.9). This extends the cut-elimination
results of Abrusci [1], and the decidability of cyclic FL-algebras proved by Yetter
[27] and Wille [26].

Similar generalized Kripke frames have been introduced and applied to resid-
uated structures independently by Gehrke [17] and in algebraic form by Dunn,
Gehrke and Palmigiano [10]. The connections of this approach to ours is discussed
in more detail after the definition of residuated frames in Section 2. Our somewhat
more general perspective is required to establish the fundamental link between
Gentzen sequent calculi and residuated frames.

1. Residuated structures and nuclei

A residuated lattice, in the generality of [6], is of the form A = (A,∧,∨, ·, \, /, 1)
where (A,∧,∨) is a lattice, (A, ·, 1) is a monoid and residuation holds:

(res) for all x, y, z ∈ A xy ≤ z iff x ≤ z/y iff y ≤ x\z.

Here ≤ denotes the lattice order and xy stands for x · y. The operations of A are
called meet, join, multiplication, left and right division, and multiplicative unit,
respectively. Residuation (res) can be reformulated in equational form [6], so the
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class RL of residuated lattices is a variety. We recall some basic results on residuated
lattices; for more on residuated structures we refer the reader to [18] and [12].

Lemma 1.1. Multiplication preserves existing joins, and divisions preserve existing
meets in the numerator and convert existing joins in the denominator to meets.

An FL-algebra is a residuated lattice expanded with an arbitrary constant 0.
We denote the variety of FL-algebras by FL. Of special importance are residuated
lattices (and FL-algebras) that satisfy the equations xy = yx, x ≤ 1 and x ≤ x2.
They are called commutative, integral and contractive, respectively. Note that
commutativity implies x\y = y/x, and in this case x→ y is used for the common
value. The constant 0 allows for the definition of two negation operations ∼x = x\0
and −x = 0/x. An FL-algebra is called involutive (InFL-algebra) if it satisfies the
equations ∼−x = x = −∼x; InFL denotes the corresponding variety. A cyclic InFL-
algebra satisfies ∼x = −x. Note that cyclicity is a consequence of commutativity.

Many subsequent results apply to more general residuated structures that are
not assumed to be lattice-ordered, associative or have a unit element, which leads
to the following definitions. A pogroupoid is a structure G = (G,≤, ·) where ≤ is
a partial order on G and the binary operation · is order preserving. A residuated
groupoid is a structure G = (G,≤, ·, \, /) where ≤ is a partial order on G and the
residuation property (res) holds. It follows that multiplication is order preserving.
If ≤ is a lattice order then (G,∧,∨, ·, \, /) is said to be a r`-groupoid, and if this
algebra is extended with a constant 1 that is a multiplicative unit, or with an arbi-
trary constant 0 then it is said to be a r`u-groupoid or a r`z-groupoid respectively.
Note that a residuated lattice is an associative r`u-groupoid, and an FL-algebra
is an associative r`uz-groupoid. Involutive r`u-groupoids are defined like InFL-
algebras, but without assuming associativity. The varieties of r`u(z)-groupoids
and involutive r`u-groupoids are denoted by RLU(Z)G and InGL, respectively.

Galois connections. For posets P and Q, the maps B : P → Q and C : Q→ P
form a Galois connection if for all p ∈ P and q ∈ Q, q ≤ pB iff p ≤ qC. A closure
operator γ on P is an increasing, monotone and idempotent map, i.e., x ≤ γ(x),
x ≤ y implies γ(x) ≤ γ(y), and γ(γ(x)) = γ(x), for all x, y ∈ P . Pγ denotes the
poset of γ-closed sets, with underlying set the image Pγ = γ[P ] = {γ(p) : p ∈ P}.

Given a relation R ⊆ A×B between sets A,B, for X ⊆ A and Y ⊆ B define

X R Y iff x R y for all x ∈ X, y ∈ Y .

We also abbreviate {x} R Y and X R {y} as x R Y and X R y. Note that a
pair of maps B : P(A)→P(B) and C : P(B)→P(A) form a Galois connection iff
XB = {y : X R y} and Y C = {x : x R Y }, for some relation R ⊆ A × B. In
this case we have x R y iff x ∈ {y}C (iff y ∈ {x}B) and (B,C) is called the Galois
connection induced by R. The closure operator γR : P(A)→P(A) associated with
R is γR(X) = XBC. For a closure operator γ on a complete lattice P, D ⊆ P is a
basis for γ, if the elements in γ[P ] are exactly the meets of elements of D. Note that
D ⊆ γ[P ]. The interior operator in a topological space is a closure operator under
the dual order, so this notion of basis is equivalent to the usual one in topology.

Lemma 1.2. Let A and B be sets.

(i) If R is a relation between A and B, then γR is a closure operator on P(A).
(ii) If γ is a closure operator on P(A), then γ=γR for some R with domain A.
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(iii) If B,C is the Galois connection induced by R ⊆ A×B, then {{b}C : b ∈ B}
is a basis for γR.

(iv) For a closed set X ⊆ A and a ∈ A we have a ∈ X if and only if for all
b ∈ B, X ⊆ {b}C ⇒ a ∈ {b}C.

Nuclei. A nucleus on a pogroupoid G (originally defined in the context of Brouwe-
rian algebras [22] and quantales [21]) is a closure operator γ on (the poset reduct of)
G such that γ(x)γ(y) ≤ γ(xy) [equivalently γ(γ(x)γ(y)) = γ(xy)] for all x, y ∈ G.

Lemma 1.3. [15] Let γ be a closure operator on a residuated pogroupoid G. Then
γ is a nucleus if and only if x/y, y\x ∈ Gγ for all x ∈ Gγ , y ∈ G.

Let G = (G,≤, ·) be a residuated groupoid, γ a nucleus on G, and for all x, y ∈ G
define x ◦γ y = γ(x ◦ y). Gγ = (Gγ ,≤, ◦γ), is called the γ-image of G. If G has
a unit, is lattice ordered and/or is residuated, then the γ-retraction is defined to
have the operations γ(1), ∧, ∨γ (where x ∨γ y = γ(x ∨ y)), and \, /, respectively.

Lemma 1.4. [12, 14]

(i) The nucleus retraction Gγ of a pogroupoid G is a pogroupoid and the prop-
erties of lattice-ordering, being residuated and having a unit are preserved.

(ii) For pogroupoids, r`-groupoids or r`u-groupoids, the nucleus γ is a {·}−,
{·,∨}− or {·,∨, 1}-homomorphism from G to Gγ respectively. In particu-
lar, if t is a {·,∨, 1}-formula, then γ(tG(x̄)) = tGγ (γ(x̄)), for all sequences
x̄ of elements in G.

(iii) All equations and inequations involving {·,∨, 1} are preserved. For example,
if G is associative, commutative, integral or contracting, then so is Gγ .

(iv) In particular, if G is a residuated lattice and γ is a nucleus on it, then the
γ-retraction Gγ of G is a residuated lattice.

Nuclei on powersets. A ternary relational structure is a pair W = (W, ◦), where
W is a set and ◦ ⊆ W 3. On the powerset P(W ) of W we define the operation
X ◦ Y = {z ∈ W : (x, y, z) ∈ ◦ for some x ∈ X, y ∈ Y } and we write x ◦ y
for the set {x} ◦ {y} and x ◦ Y for {x} ◦ Y . Also, we define the sets X/Y =
{z | {z} ◦ Y ⊆ X} and Y \X = {z | Y ◦ {z} ⊆ X}. It is easy to see that the algebra
P(W) = (P(W ),∩,∪, ·, \, /) is a residuated groupoid.

Lemma 1.5. Let (W, ◦) be a ternary relation structure and let γ be a closure
operator on P(W ) with basis D. Then the following statements are equivalent:

(i) γ is a nucleus on P(W).
(ii) C/{w}, {w}\C ∈ P(W )γ , for all C ∈ D and w ∈W .

Proof. We use the equivalent condition for a nucleus given in Lemma 1.3, which
obviously implies (ii). Conversely, assume (ii) holds, let L = P(W), and consider
X ∈ Lγ and Y ∈ L. Since D is a basis for γ, there exists X ⊆ D such that X =

⋂
X .

By Lemma 1.1 X/Y = (
⋂
X )/(

⋃
y∈Y {y}) =

⋂
C∈X

⋂
y∈Y C/{y}. By assumption,

C/{y} is a γ-closed element, hence X/Y is γ-closed since the intersection of closed
elements of a closure operator on a complete lattice is also closed. �

2. Residuated frames and Gentzen frames

After giving the definition of a residuated frame, we discuss a range of examples
that will play a role in the subsequent applications. For a ternary relational struc-
ture (W, ◦), the condition below characterizes the relations R ⊆W ×W ′ for which
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γR is a nucleus on P(W, ◦). A relation N ⊆ W ×W ′ is called nuclear on (W, ◦) if
there exist ternary relations 
 ⊆ W ×W ′ ×W ′ and � ⊆ W ′ ×W ×W ′ such that
for all u, v ∈W,w ∈W ′

u ◦ v N w iff v N u
w iff u N w�v.

This condition makes use of the notation x N Y and X N y defined earlier, as well
as the notation x ? y = {z : (x, y, z) ∈ ?} for ? ∈ {◦,
,�}.

Lemma 2.1. If (W, ◦) is a ternary relation structure and N ⊆ W ×W ′, then γN
is a nucleus on P(W, ◦) iff N is a nuclear relation.

Proof. By Lemma 1.2(iii), the collection D = {{w}C : w ∈ W ′} forms a basis
for γN . So, by Lemma 1.3 γN is a nucleus iff {w}C/{u} and {u}\{w}C are γN -
closed, for all u ∈ W and w ∈ W ′ (here \ and / are calculated in P(W, ◦)).
Since D is a basis, {u}\{w}C is closed iff {u}\{w}C =

⋂
X , for some X ⊆ D iff

{u}\{w}C =
⋂
c∈u
w{c}C, for some u
w ⊆W ′. This is equivalent to the statement

that for all v ∈W ,

v ∈ {u}\{w}C iff v ∈
⋂
c∈u
w{c}C.

Transforming this statement further we obtain for all v ∈W ,

u ◦ v ⊆ {w}C iff v ∈ {c}C for all c ∈ u
w.

or, equivalently, u ◦ v N w iff v N c for all c ∈ u
w. So, {u}\{w}C is closed iff
there exists u
w ⊆ W ′ such that u ◦ v N w iff v N u
w. Likewise, we obtain the
second equivalence of a nuclear relation. �

A residuated frame is a structure of the form W = (W,W ′, N, ◦,
,�), where
(W, ◦) is a ternary relational structure and N ⊆ W ×W ′ is a nuclear relation on
(W, ◦) with respect to 
,�. Concretely, this means

• N is a binary relation from W to W ′, called the Galois relation,
• ◦ ⊆W 3, 
 ⊆W ×W ′ ×W ′, � ⊆W ′ ×W ×W ′, and
• (u ◦ v) N w iff v N (u
w) iff u N (w�v) for all u, v ∈W and w ∈W ′.

It follows from Lemma 1.4 and Lemma 2.1 that P(W, ◦)γN is a r`-groupoid, called
the Galois algebra of W and denoted by W+. In detail, W+ = (γN [P(W )],∩,∪γN ,
◦γN , \, /), where

X ∪γN Y = γN (X ∪ Y ) X\Y = {z : X ◦ z ⊆ Y } Y/X = {z : z ◦X ⊆ Y }
X ◦γN Y = γN (X ◦ Y ) X ◦ Y = {z ∈W : ∃x ∈ X, y ∈ Y ((x, y, z) ∈ ◦)}

A unital residuated frame (or ru-frame) W = (W,W ′, N, ◦,
,�, E) is a residuated
frame with a set E ⊆ W such that (x ◦ E)B = {x}B = (E ◦ x)B, for all x ∈ W ,
and a ruz-frame W = (W,W ′, N, ◦,
,�, E,D) is a ru-frame with a distinguished
subset D ⊆W . In either case W+ has a unit 1 = γN (E), and in the latter case also
has γN (D) as interpretation for the constant 0. A residuated frame is associative
if [(x ◦ y) ◦ z]B = [x ◦ (y ◦ z)]B for all x, y, z ∈ W . It is straightforward to check
that the Galois algebra of an associative ru-frame is a residuated lattice, and the
Galois algebra of an associative ruz-frame is an FL-algebra.

The residuated frames we consider extend the formal contexts of formal concept
analysis [16]. These structures consist of triples (W,W ′, N), where N ⊆W×W ′, so
they capture the lattice operations, but not the multiplication, residuals and unit
element. Furthermore, residuated frames are related to, but more general than, the
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reduced separated frames (or RS-frames) of [17]. The latter assume that the map
w 7→ {w}BC is a bijection (i.e., the frame is separated) and that the copy of W
in W+ consists of completely join irreducible elements (i.e., the frame is reduced).
These conditions make the relation N behave like a partial order – the restriction
of the order of W+ on the copy, in W+, of the union W ∪W ′, and set up a duality
between perfect lattices and RS-frames. The analogue of the ternary relation ◦ on
W in the context of RS-frames is given by a ternary relation R ⊆W ×W ×W ′ that
satisfies a compatibility condition. (Although for the applications that we consider
in this paper ◦ will be a binary operation, our general framework applies to the
more general case where ◦ is a ternary relation and therefore connects to the study
of RS-frames.) For RS-frames, the relations ◦ and R are interdefinable by means
of the nuclear relation N . In particular, the residuated frames that are needed
for applications in this paper are rarely RS-frames. To illustrate the generality of
residuated frames, we now consider a series of examples.

The Dedekind-MacNeille completion. Given a poset P = (P,≤), we can de-
fine the residuated frame WP = (P, P,≤, ◦,
,�), where ◦,
,� are the empty set.
The nuclear property for ≤ is vacuously true.

The poset P(P )γ≤ (the poset reduct of W+
P) of closed sets is called the Dedekind-

MacNeille completion of P. It is well known that the map x 7→ {x}C is an em-
bedding of P into W+

P. More generally, let G = (G,≤, ·, \, /) be a residuated
pogroupoid and define x ◦ y = {xy}, x
y = {x\y} and x�y = {x/y}. Then
WG = (G,G,≤, ·,
,�) is a residuated frame since the nuclear property for ≤ is
just the residuation property for G. If G is associative or has a unit, then W+

G

has the same properties. In particular, if G is a residuated lattice, then W+
G is

a complete residuated lattice, and the map x 7→ {x}C is an embedding of G into
W+

G (Cor. 2.9). Hence W+
G is called the Dedekind-MacNeille completion of G.

Partial subalgebras. Let A be a residuated lattice and B a partial subalgebra
of A, i.e., B is any subset of A, and each operation fA on A induces a partial
operation fB on B by fB(b1, . . . , bn) = fA(b1, . . . , bn) if this latter value is in B,
and undefined otherwise. Define (W, ◦, 1) to be the submonoid of A generated by
B. A unary linear polynomial of (W, ◦, 1) is a map u on W of the form u(x) =
v ◦ x ◦ w, for v, w ∈ W . Such polynomials are also known as sections and we
denote the set of all sections by SW . Let W ′ = SW × B, and define x N (u, b)
by u(x) ≤A b. Given y ∈ W and u ∈ SW , define sections u′(x) = u(x ◦ y) and
u′′(y) = u(x◦y). We will also use the notation u′ = u( ◦y) and u′′ = u(x◦ ). Now
define x
(u, b) = {(u(x ◦ ), b)} and (u, b)�y = {(u( ◦ y), b)}. Then it is easy to see
that WA,B = (W,W ′, N, ◦,
,�) is a residuated frame. This result also holds if A
is just a pogroupoid (residuals are not needed in A). Cor. 3.16 below shows that
the map b 7→ {(id, b)}C is an embedding of the partial subalgebra B of A into the
r`u-groupoid W+

A,B.

The system GL. Let L = {∧,∨, ·, \, /, 1, 0} be the language of FL-algebras.
Terms in this language correspond to propositional formulas in substructural logic,
hence the set of all terms (over some fixed countable set of variables) is denoted by
Fm. Let ◦ be a binary symbol, ε a constant symbol, and define (W, ◦, ε) to be the
free groupoid with unit ε generated by the set Fm. As in the partial subalgebra
example, SW denotes the set of unary linear polynomials of (W, ◦, ε). (However we
do not assume associativity of ◦, hence u(x) cannot in general be written in the
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x⇒ a u(a)⇒ c

u(x)⇒ c
(CUT)

a⇒ a (Id)
u(a ◦ b)⇒ c

u(a · b)⇒ c
(·L)

x⇒ a y⇒ b

x ◦ y⇒ a · b (·R)

x⇒ a u(b)⇒ c

u(x ◦ (a\b))⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a u(b)⇒ c

u((b/a) ◦ x)⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

u(a)⇒ c

u(a ∧ b)⇒ c
(∧L`)

u(b)⇒ c

u(a ∧ b)⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b (∧R)
u(ε)⇒ a

u(1)⇒ a
(1L)

u(a)⇒ c u(b)⇒ c

u(a ∨ b)⇒ c
(∨L) x⇒ a

x⇒ a ∨ b (∨R`) x⇒ b
x⇒ a ∨ b (∨Rr)

ε⇒ 1
(1R)

Table 1. The system GL.

form v ◦ x ◦ w.) A (single-conclusion) sequent is a pair (x, b) ∈ W × Fm, which is
traditionally written x ⇒ b, and the symbol ⇒ is called the sequent separator. A
sequent rule is a pair ({s1, . . . , sn}, s0) where s0, . . . , sn are sequents. Such rules
are usually presented in the form

s1 s2 . . . sn
s0

or
s0

with rules of the latter form referred to as axioms. Finally, a Gentzen system is a
set of sequent rules.

Consider the Gentzen system GL for the non-associative full Lambek calculus,
given by the rules in Table 1 and all their uniform substitution instances (i.e., a, b, c
range over Fm, x, y range over W and u ranges over SW ). The system is essen-
tially obtained from Gentzen’s system LJ for intuitionistic logic, by removing all
the implicit structural rules. A proof in GL is defined inductively in the usual
way as a labeled rooted tree (where the order of the branches does not matter).
Formally, every rule (S, s) is considered as a proof with assumption S and conclu-
sion s. Moreover, if P1, . . . ,Pn are proofs with sets of assumptions S1, . . . , Sn and
conclusions s1, . . . , sn, respectively, and if ({s1, . . . sn}, s0) is an instance of a rule
in GL, then the tree (denoted by)

P1 . . . Pn
s0

is a proof with set of assumptions S1∪· · ·∪Sn and conclusion s0. If there is a proof
of a sequent s in GL from assumptions S, then we write S `GL s and say that s
is provable in GL from S. If S is empty we simply write `GL s and say that s is
provable in GL. For more on GL see [14].

Now take W ′ = SW × Fm, where SW is the set of all unary linear polynomials
in W and define the relation N by

x N (u, a) iff `GL (u(x)⇒ a).

Then x ◦ y N (u, a) iff `GL u(x ◦ y)⇒ a iff x N (u( ◦ y), a) iff y N (u(x ◦ ), a).
Hence N is a nuclear relation where the appropriate subsets of W ′ are given by

(u, a)�x = {(u( ◦ x), a)} and x
(u, a) = {(u(x ◦ ), a)}.
The resulting residuated frame is denoted by WGL. Let Fm be the countably
generated absolutely free algebra over the language of FL-algebras. Unlike some of
the previous examples we cannot expect the map a 7→ {(id, a)}C to be an embedding
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of Fm into W+
GL. However we will show that this map has some weak properties

of a homomorphism, referred to as a quasi-homomorphism in [2].
We will use this quasi-homomorphism to prove the cut-elimination property for

GL, namely that the system obtained from GL by removing (all instances of) the
cut rule has exactly the same provable sequents as GL.

We say that an r`u-groupoid G satisfies the sequent x⇒ a (also that the sequent
holds or is valid in G) if for every homomorphism f : Fm→G, f(xFm) ≤ f(a).
Here xFm denotes the formula obtained from x by replacing ◦ with ·; also εFm = 1.
The following well-known result states that GL is sound with respect to all r`u-
groupoids. The proof proceeds by induction on the rules (and axioms) of GL.

Lemma 2.2. (Soundness) Every sequent that is provable in GL is valid in all
r`u-groupoids.

The converse is also true, i.e., r`u-groupoids provide a complete semantics (This
is also well-known, see Thm. 3.2 and Cor. 3.3 below for an algebraic proof). The
system GLa is defined to be GL augmented by the structural rule of associativity

u((x ◦ y) ◦ z)⇒ c

u(x ◦ (y ◦ z))⇒ c
(a).

The double line means that we assume two rules, the one stated (read downward)
and its inverse (read upward). Other structural rules can be added to obtain fur-
ther basic substructural logic systems, exchange, contraction, left weakening (or
integrality) and right weakening

u(x ◦ y)⇒ c

u(y ◦ x)⇒ c
(e)

u(x ◦ x)⇒ c

u(x)⇒ c
(c)

u(ε)⇒ c

u(x)⇒ c
(i)

x ⇒ ε

x ⇒ c
(o).

The (o) rule is only effective in an extension GL0 of GL with the rules
x⇒ ε
x⇒ 0

(0R)
0⇒ ε

(0L)

where the right-hand-side of sequents in GL0 are allowed to be ε. The sequent
x ⇒ ε is valid in an ruz-groupoid G if for every homomorphism f : Fm→ G,
f(xFm) ≤ 0. Note that a residuated frame for the system GL0 uses W ′ = SW ×
(Fm∪{ε}). It is easy to see that the sequent x⇒ ε is provable in GL0 iff the sequent
x ⇒ 0 is provable. Also, the systems GL and GL0 prove the same sequents with
non-empty right-hand side. In that sense the two systems are essentially equivalent,
but GL0 supports the addition of further structural rules, like (o). We extend the
subscript notation, so for example GLae is GL plus associativity and exchange.
Furthermore we abbreviate the combination of (i) and (o) to weakening (w). The
system GL0

aecw is equivalent to Gentzen’s original system LJ for intuitionistic logic.

The system FL. The Gentzen system FL is an associative version of GL0. The
only difference is that now W (containing the left-hand sides of sequents) is defined
as the free monoid over the set Fm of formulas. Consequently x, y, z range over
sequences of formulas. Note that FL has the same rules as GL0, but different
rule instances. Traditionally sequents like u(a) ⇒ c are denoted by Γ, A,∆ ⇒ C.
The system FL was introduced by H. Ono and is called full Lambek calculus. In
contrast, Lambek calculus is a system without connectives and rules for ∧, ∨, 1, 0.

Since ◦ is an associative operation, we omit any parentheses. In fact ◦ is tradi-
tionally denoted by comma, and the elements of W are concretely realized as finite
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sequences of formulas. On the other hand the operation · on Fm is not associative:
from the sequent a ◦ b ◦ c ⇒ d one can prove the distinct sequents (a · b) · c ⇒ d
and a · (b · c) ⇒ d by using two applications of (·L). Note that FL is equivalent
to the system GL0

a. Likewise, FLe is equivalent to GL0
ae. As shown by the next

well-known soundness result, the naming similarity between FL and FL-algebras is
not a coincidence.

Lemma 2.3. Every sequent that is provable in FL is valid in all FL-algebras.

It turns out that FL is an equivalent algebraic semantics for FL. For more on
FL, see for example [12]. The corresponding residuated frame WFL is associative.

Remark 2.4. The systems PL and ML, considered in the literature, are covered
by our analysis, see e.g. [14] for the definitions. Although the verification is not
trivial, we omit any relevant discussion due to space limitations.

Gentzen frames. After a short discussion of the similarities of the previous ex-
amples, we define a common abstraction called a Gentzen frame. This allows us
to prove a quasi-homomorphism result that yields simultaneously the three em-
beddings claimed in the last section and will be instrumental in obtaining the
new results in the paper. Note that in WGL, if a N (u, c) and b N (u, c),
then `GL u(a) ⇒ c and `GL u(b) ⇒ c. In view of the rule (∨L), we obtain
`GL u(a ∨ b)⇒ c, namely a ∨ b N (u, c). Hence in WGL we have the implication

if a N z and b N z, then a ∨ b N z.

The same argument works for WFL. Interestingly enough, the same implication
holds for WG, where G is a GL-algebra, i.e., an rluz-groupoid. Indeed, if a N c
and b N c, then a ≤ c and b ≤ c, so a ∨ b ≤ c and a ∨ b N c. Furthermore, if A
is a r`u-groupoid, B a partial subalgebra of A and a, b, a ∨ b ∈ B, then a N c and
b N c, namely a ≤ c and b ≤ c implies a ∨ b ≤ c and a ∨ b N c. In other words, the
above implication, also written in the form

a N z b N z
a ∨ b N z

(∨L)

holds in the residuated frames WGL, WFL, WG, WA,B, for all z ∈ W ′ and all
a, b that are elements of Fm for the first two frames, elements of G for WG, and
elements of B for WA,B. Note that the sets Fm, G and B are subsets of W , in
the corresponding frames, and they actually generate it as a groupoid under the
operation ◦. Moreover, they are all (partial) L-algebras. Furthermore, these sets
can be identified with a subset of W ′ and their elements are exactly the right-hand
sides of the sequents in each case. In the case of WGL and WFL every b ∈ Fm can
be identified with the element (id, b) of W ′, where id is the identity polynomial.
The same identification works for elements of B for WA,B. Finally, in the case of
WG, W ′ = G itself. These considerations lead to the following definition about a
pair of a residuated frame and a special partial L-algebra.

A Gentzen ru-frame (or simply Gentzen frame) is a pair (W,B) where

(i) W = (W,W ′, N, ◦,
,�, {ε}) is a ru-frame with ◦ a binary operation,
(ii) B is a partial L-algebra,

(iii) (W, ◦, ε) is a groupoid with unit generated by B ⊆W ,
(iv) there is an injection of B into W ′ (under which we will identify B with a

subset of W ′) and
(v) N satisfies the rules of GN (Table 2) for all a, b ∈ B, x, y ∈W and z ∈W ′.
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x N a a N z
x N z

[CUT]
a N a

[Id]
a ◦ b N z
a · b N z

[·L]
x N a y N b

x ◦ y N a · b [·R]

x N a b N z
x ◦ (a\b) N z

[\L] a ◦ x N b
x N a\b

[\R] x N a b N z
(b/a) ◦ x N z

[/L] x ◦ a N b
x N b/a

[/R]

a N z
a ∧ b N z

[∧L`] b N z
a ∧ b N z

[∧Lr] x N a x N b
x N a ∧ b [∧R] ε N z

1 N z
[1L]

a N z b N z
a ∨ b N z

[∨L] x N a
x N a ∨ b [∨R`] x N b

x N a ∨ b [∨Rr]
ε N 1

[1R]

Table 2. The theory GN.

A rule is understood to hold only in case all the expressions in it make sense.
For example, (∧L`) is read as, if a, b, a∧ b ∈ B, z ∈W ′ and a N z, then a∧ b N z.

A Gentzen ruz-frame is an expansion of a Gentzen ru-frame such that W con-
tains an extra constant, evaluated as {ε}C, and (iv),(v) are modified as follows:

(iv’) there is an injection of B∪{ε} into W ′ (under which we will identify B∪{ε}
with a subset of W ′) and

(v’) N satisfies the rules of GN (Table 2) for all a, b ∈ B, x, y ∈W and z ∈W ′
as well as

x N ε
x N 0

[0R]
0 N ε

[0L]

A cut-free Gentzen frame is defined in the same way, but it is not stipulated
to satisfy the [CUT] rule. Gentzen frames are a proper generalization of Gentzen
matrices, considered in [14]; the latter are special cases where W ′ = SW × B.
However, there are applications in forthcoming work of the first author and K.
Terui, where for example W ′ = SW × B2. A sequent in the (possibly cut-free)
Gentzen frame (W,B) is an element of W × B. We use the notation x ⇒ a, or
x ≤ a for such a pair. The verification of the following result is straightforward.

Lemma 2.5. Using the notation of the previous section, (WG,G), (WA,B,B),
(WGL,Fm) and (WFL,Fm) are Gentzen frames.

We will see more Gentzen frames later. The following theorem yields a common
generalization of the embeddings of the previous section.

Theorem 2.6. Let (W,B) be a cut-free Gentzen ru-frame. For all a, b ∈ B,
X,Y ∈W+ and for every connective •, if a •B b is defined, then

(i) 1B ∈ γN ({ε}) ⊆ {1B}C.

(ii) If a ∈ X ⊆ {a}C and b ∈ Y ⊆ {b}C, then a •B b ∈ X •W+

Y ⊆ {a •B b}C.

(iii) In particular, a •B b ∈ {a}C •W+ {b}C ⊆ {a •B b}C.

(iv) If, additionally, N satisfies [CUT] then {a}C •W+ {b}C = {a •B b}C.

Furthermore, if (W,B) is a cut-free ruz-frame we have

(v) 0B ∈ {ε}C ⊆ {0B}C.

Proof. (i) Here • = 1, so by assumption 1B is defined. By [1R], we have ε ∈ {1B}C,
so γN ({ε}) ⊆ {1B}C. On the other hand, if γN ({ε}) ⊆ {z}C, then ε ∈ {z}C and
ε N z. Therefore 1B N z by [1L], and hence 1B ∈ {z}C. Thus, 1B ∈ γN ({ε}).

(ii) We will give the proof for the connectives ∨, · and \. The proof for the
remaining two connectives follows the same ideas.
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Let • = ∨. If x ∈ X, then x ∈ {a}C, or equivalently x N a. By [∨R`],
x N a ∨ b, hence x ∈ {a ∨ b}C. Consequently X ⊆ {a ∨ b}C, and similarly,
we obtain Y ⊆ {a ∨ b}C using [∨Rr]. Therefore X ∪ Y ⊆ {a ∨ b}C and hence
X ∨ Y = γN (X ∪ Y ) ⊆ {a ∨ b}C. On the other hand, let z ∈ W ′ and assume
X ∨ Y ⊆ {z}C. Then a ∈ X ⊆ X ∨ Y ⊆ {z}C, so a N z. Similarly, b N z, so
a ∨ b N z by [∨L], hence a ∨ b ∈ {z}C. Thus, a ∨ b ∈ X ∨ Y , by Lemma 1.2(iv).

Let • = ·. If x ∈ X and y ∈ Y , then x ∈ {a}C and y ∈ {b}C, i.e., x N a and
y N b. It follows from [·R] that x ◦ y N a · b, hence x ◦ y ∈ {a · b}C. Consequently,

X ◦ Y ⊆ {a · b}C and therefore X ·W+

Y = γN (X ◦ Y ) ⊆ {a · b}C.

On the other hand, let z ∈ W ′ and assume X ·W+

Y ⊆ {z}C. Since a ◦ b ∈
X ◦ Y ⊆ γN (X ◦ Y ) = X ·W+

Y , we have a ◦ b ∈ {z}C, so a ◦ b N z. Consequently,

a · b N z, by [·L], hence a · b ∈ {z}C. Thus, a · b ∈ X ·W+

Y .

Let • = \. If x ∈ X\W+

Y then X ◦ {x} ⊆ Y . Since a ∈ X and Y ⊆ {b}C, we
have a ◦ x ∈ {b}C, i.e., a ◦ x N b. By [\R] we obtain x N a\b, hence x ∈ {a\b}C.

On the other hand, if Y ⊆ {z}C, then b ∈ {z}C, so b N z. For all x ∈ {a}C,
x N a, so x◦(a\b) N z, by [\L], i.e., x◦(a\b) ∈ {z}C, for all x ∈ {a}C. Consequently,
{a}C ◦ {a\b} ⊆ {z}C, for all {z}C that contain Y , so {a}C ◦ {a\b} ⊆ Y . Since

X ⊆ {a}C, we have X ◦ {a\b} ∈ Y , so a\b ∈ X\W+

Y .
Statement (iii) is a direct consequence of (ii) for X = {a}C and Y = {b}C.
(iv) We first show that if [CUT] holds, c ∈ Z ⊆ {c}C and Z is closed then

{c}C = Z. If x ∈ {c}C, then x N c. To show that x ∈ Z, let Z ⊆ {z}C, for some
z ∈ W ′. Since c ∈ Z by assumption, we get c ∈ {z}C, or equivalently c N z. By
[CUT] we obtain x N z, namely x ∈ {z}C. Hence x ∈ Z by Lemma 1.2(iv). Taking

c = a • b and Z = {a}C•W+{b}C, we obtain {a}C•W+{b}C = {a • b}C from (ii).
(v) The [0L] rule immediately implies that 0B ∈ {ε}C, and it follows from [0R]

that x ∈ {ε}C implies x ∈ {0B}C for any x ∈W . Hence {ε}C ⊆ {0B}C. �

Given the assumption that N is nuclear, the conditions in GN are not only
sufficient, but also necessary for condition (ii). Note that if the frame satisfies only
some of the conditions of GN then we obtain a result only for the corresponding
connectives. Also, the result applies to generalizations of Gentzen frame where W
is not necessarily a groupoid and B is a relational structure.

Corollary 2.7. If (W,B) is a Gentzen frame, the map x 7→ {x}C from B to W+

is a homomorphism from the partial algebra B into the r`u(z)-groupoid W+.

If (W,B) is a cut-free Gentzen frame, then x 7→ {x}C comes close to being a
homomorphism. We refer to a map that satisfies condition (ii) of Thm 2.6 as a
quasi-homomorphism, and if it is 1-1 it is called a quasi-embedding.

In a cut-free Gentzen frame (W,B) the relation N is called antisymmetric on
B if, for all a, b ∈ B, a N b and b N a implies a = b.

Corollary 2.8. If (W,B) is a (cut-free) Gentzen frame and N is antisymmetric
on B, then the map x 7→ {x}C from B to W+ is a (quasi-)embedding.

Proof. We only need to show that the map in injective. Assume {a}C = {b}C, for
a, b ∈ B. Recall that a ∈ {a}C and b ∈ {b}C, so a N b and b N a, hence a = b. �

Embedding into the DM-completion and representation. Clearly if G is
an r`u-groupoid, the Galois relation ≤ of WG is antisymmetric on G. The result
below shows that every residuated lattice can be embedded into a complete one.
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Corollary 2.9. Let G be an r`u-groupoid. The map x 7→ {x}C from G to W+
G is

an embedding.

Corollary 2.10. [5] Every residuated lattice is a subalgebra of the nucleus image
of the powerset of a monoid.

Similarly it follows that every commutative residuated lattice is a subalgebra of
a nucleus images of the powerset of a commutative monoid. More generally, since
all monoid identities are preserved by nuclei, residuated lattices defined by monoid
equations that are preserved under the powerset construction are obtained from the
class of monoids that satisfy these identities. This includes all linear and balanced
monoid identities (an identity is linear if each variable appears at most once on
each side, and balanced if each variable appears on both sides).

3. Cut elimination, FMP and FEP

The cut elimination property for a Gentzen system states that the set of provable
sequents does not change if the cut rule is removed from the system. Since the
effect of the cut rule cannot be simulated by composing the other rules (cut is not
derivable) traditional arguments rewrite the proof, using multiple induction (on a
complexity measure) and case analysis, by pushing instances of the cut rule upward.

A semantical proof of cut elimination for FL was given in [2] and later extended in
[14] to GL, FL, FLec and various extensions. We will obtain cut elimination for all
these systems as corollaries of a general theorem that has many more consequences
[8], [9]. Since the notion of a sequent differs in these systems, we prove the theorem
in a general setting and then instantiate it to the particular cases.

Cut elimination. Let (W,B) be a cut-free Gentzen ru(z)-frame with the added
assumption that B is a total L-algebra. For every homomorphism f : Fm→ B,
we let f̄ : Fm→W+ be the L-homomorphism that extends the assignment p 7→
{f(p)}C, for all variables p of Fm. [More generally, we may define the assignment
by p 7→ Qp, where Qp is any closed set such that f(p) ∈ Qp ⊆ {f(p)}C.]

Lemma 3.1. If (W,B) is a cut-free Gentzen frame and B a total algebra, then
for every homomorphism f : Fm→ B, we have f(a) ∈ f̄(a) ⊆ {f(a)}C, for all
a ∈ Fm. If (W,B) is a Gentzen frame, then f̄(a) = {f(a)}C, for all a ∈ Fm.

Proof. Let f : Fm→ B be a homomorphism. By definition of f̄ and the axiom
[Id], the statement holds for the propositional variables. For a = 1, by Theo-

rem 2.6(i), we have f(1) = 1B ∈ γN ({ε}) = 1W
+ ⊆ {1B}C = {f(1)}C. By way

of induction, assume that f(a) ∈ f̄(a) ⊆ {f(a)}C and f(b) ∈ f̄(b) ⊆ {f(b)}C. By

Theorem 2.6(iii), for each connective •, we have f(a) •B f(b) ∈ f̄(a) •W+

f̄(b) ⊆
{f(a) •B f(b)}C. Since f and f̄ are homomorphisms, we have f(a • b) ∈ f̄(a • b) ⊆
{f(a • b)}C. Finally, if (W,B) is a Gentzen frame, then f̄(a) = {f(a)}C, by
Theorem 2.6(iv). �

To account for the different types of sequents in the applications we will use
the most general type. For this section an (intuitionistic) sequent is an element
of Fm◦ × Fm, where Fm◦ = (Fm◦, ◦, ε) denotes the absolutely free algebra in the
signature {◦, ε} over the set Fm. We use the notation x⇒ a for sequents.

Let (W,B) be a cut-free Gentzen frame. Note that every map f : Fm → B

extends inductively to a map f◦ : Fm◦ →W by f◦(x ◦Fm◦ y) = f◦(x) ◦W f◦(y).
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Likewise, every homomorphism f : Fm→ G into an L-algebra G extends to a
homomorphism f◦ : Fm◦→G. For a total algebra B, a sequent x⇒ a is said to be
valid in (W,B), if for every homomorphism f : Fm→B, we have f◦(x) N f(a).
A sequent x ⇒ a is said to be valid in a residuated `-groupoid G, if it is valid in
the Gentzen frame (WG,G), namely if for all homomorphisms f : Fm→G, we
have f◦(x) ≤ f(a).

Theorem 3.2. If (W,B) is a cut-free Gentzen r(u)(z)-frame and B is a total
algebra, then every sequent that is valid in W+ is also valid in (W,B).

Proof. Assume that x ⇒ a is valid in W+ and let f : Fm→ B be a homomor-
phism. We will show that f◦(x) N f(a). Since x ⇒ a is valid in W+, for the

homomorphism f̄ : Fm→W+, we have f̄◦(x) ⊆ f̄(a). If x = tFm◦(b1, . . . , bn), for

b1, . . . , bn ∈ Fm, then f̄◦(x) = f̄◦(tFm◦(b1, . . . , bn)) = tW
+

(f̄(b1), . . . , f̄(bn)). By
Lemma 3.1, f̄(a) ⊆ {f(a)}C and f(bi) ∈ f̄(bi), for i = 1, . . . , n. Hence

f◦(x) = f◦(tFm◦(b1, . . . , bn))
= t(W,◦)(f(b1), . . . , f(bn)) (f◦ is a homomorphism extending f)
∈ tP(W )(f̄(b1), . . . , f̄(bn)) (◦ in P(W ) is element-wise)

⊆ tW+

(f̄(b1), . . . , f̄(bn)) = f̄◦(x) (γN is a closure operator)

So f◦(x) ∈ f̄◦(x) ⊆ f̄(a) ⊆ {f(a)}C; hence f◦(x) ∈ {f(a)}C, i.e. f◦(x) N f(a). �

Corollary 3.3. (Adequacy) If a sequent is valid in RLUG, then it is valid in all
cut-free Gentzen ru-frames (W,B) where B is a total algebra.

Together with Lemmas 2.2, 2.3 we obtain the following well-known result that
can also be proved in a routine way without the use of Gentzen frames.

Corollary 3.4. (Completeness) A sequent is provable in GL iff it is valid in RLUG.
The same holds for the systems GLa and FL with respect to FL.

Corollary 3.5. The free algebra in RLUG is embeddable in W+
GL.

Proof. By Corollary 2.7, the map a 7→ {a}C from Fm to W+
GL is a homomorphism.

The pair (a, b) is in its kernel iff {a}C = {b}C, iff a ⇒ b and b ⇒ a are provable
in GL, namely iff a = b holds in RLUG, by Corollary 3.4. Thus, by the first
Isomorphism Theorem, the free (Tarski-Lindenbaum) algebra in RLUG is isomorphic
to the image of the above homomorphism. �

A Gentzen system (like GL, or FL) is said to have the cut-elimination property if
it proves the same sequents as its cut-free version. Note that only the admissibility
of the rules (of GL) is used in the proof below. (An inference rule is admissible
if its addition does not lead to more provable sequents.) Standard proofs of this
well-known result are usually longer and syntax based rather than with the present
semantic approach.

Corollary 3.6. (Cut elimination) Cut elimination holds for GL, GLa and FL.

Proof. For GL, note that if `GL x ⇒ a, then |=RLUG x ⇒ a, so W+
cfGL |= x ⇒ a,

where WcfGL is the frame associated with cut-free GL. By Theorem 3.2, we have
(WcfGL,Fm) |= x⇒ a, so `cfGL x⇒ a. �
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Decidability. The cut elimination property allows for an effective decision proce-
dure for determining if a given sequent is provable or not. The algorithm is based
on a standard exhaustive proof search in the cut-free system by constructing all
possible proof figures with the sequent as the end result. This process terminates
since the number of connectives decreases as we read the proof figure upward.

Corollary 3.7. Each of GL, GLa, FL has a decidable set of provable sequents.
The varieties RLUG and FL have decidable equational theories.

Cut elimination with simple structural rules. In [14], and independently in
[23], cut elimination is shown for extensions of GL by certain structural rules,
including the basic ones. In Corollary 3.13 we extend these results even further.

Let t0, t1, . . . , tn be elements of the absolutely free algebra in the signature {◦, ε}
over a countable set of variables, t0 a linear term, and (W,B) a Gentzen frame.
Also tWi denotes the term function on W defined by ti. A simple rule is of the form

t1 N q · · · tn N q

t0 N q
[r]

where q is a variable not occurring in t0, t1, . . . , tn. (W,B) satisfies [r] if for all
z ∈ W ′, and for all sequences x̄ of elements of W matching the variables involved
in t0, t1, . . . , tn, the conjunction of the conditions tWi (x̄) N z, for i ∈ {1, . . . , n},
implies tW0 (x̄) N z. The definition of a simple rule for (WGL,Fm) motivates the
following definition of simple rule in GL (subject to the same restrictions as above):

u(t1)⇒ a · · · u(tn)⇒ a

u(t0)⇒ a
(r)
.

E.g., contraction, integrality and associativity are simple structural rules. Clearly,
the frame (WGL(r)

,Fm) satisfies the corresponding simple rule [r].

Note that ti and the term function tFm
i on the algebra (Fm, ·, 1) are interdefin-

able, by fixing a bijection between the variables of the two related algebras. The
same holds for (r) and the inequality e(r) = (tFmL

0 ≤ tFm
1 ∨· · ·∨tFm

n ), called simple.
In RLUG, every equation e over {∨, ·, 1} is equivalent to a conjunction of inequal-

ities of the form above. To show this we distribute all products over all joins to
reach a form s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn, where si, tj are unital groupoid terms.
Such an equation is in turn equivalent to the conjunction of the two inequalities
s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm. Finally, the first
one (and likewise the second) is equivalent to the conjunctions of the inequalities
sj ≤ t1 ∨ · · · ∨ tn. We now rewrite each of the conjuncts, say s ≤ t1 ∨ · · · ∨ tn, in
a form for which s is a linear term. For each variable x that appears k > 1 times
in s, we replace each occurrence of x in the equation by x1 ∨ x2 ∨ · · · ∨ xk, where
x1, . . . , xk are fresh variables. As multiplication distributes over join, the new equa-
tion can be written in the form s′1 ∨ · · · ∨ s′p ≤ t′1 ∨ · · · ∨ t′q, where all the terms are
products of variables. Let s′l be one of the k!-many linear terms among s′1, . . . , s

′
p.

The last equation clearly implies the equation s′l ≤ t′1 ∨ · · · ∨ t′q, but it is actually
equivalent to it, as the latter implies s ≤ t1 ∨ · · · ∨ tn by setting all duplicate copies
of each variable equal to each other. For an equation e, R(e) denotes the set of
rules associated with each of these conjuncts obtained from e, as described above.

In the way of transforming simple rules to equations over {∨, ·, 1} and vice versa
we established the following lemma, whose proof-theoretic analogue appears in [23].
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Lemma 3.8. Every equation over {∨, ·, 1} is equivalent to a conjunction of simple
equations.

Lemma 3.9. Every equation e over {∨, ·, 1} is equivalent, relative to RLUG, to
R(e). More precisely, for every G ∈ RLUG, G satisfies e iff WG satisfies R(e).

Proof. It suffices to show the lemma for the case where e is of the form tFm
0 ≤

tFm
1 ∨· · ·∨tFm

n . Clearly WG satisfies R(e) iff G satisfies the implication: if tFm
i ≤ z

for all i ∈ {1, . . . , n}, then tFm
0 ≤ z, for all propositional variables z, which by

lattice-theoretic considerations is equivalent to e. �

Theorem 3.10. Let (W,B) be a cut-free Gentzen frame and let e be an equation
over {∨, ·, 1}. Then (W,B) satisfies R(e) iff W+ satisfies e.

Proof. Clearly it suffices to prove the lemma for the case where e is simple, namely
of the form tFm

0 ≤ tFm
1 ∨ · · · ∨ tFm

n , where t0 is linear.
Assume that (W,B) satisfies R(e). Let X̄ = (Xj)j∈J be a sequence of elements

in W+. We will show that eW
+

(X̄) holds, i.e., tW
+

0 (X̄) ⊆ tW+

1 (X̄)∨ · · ·∨ tW+

n (X̄).

Assume that tW
+

1 (X̄)∨ · · · ∨ tW+

n (X̄) ⊆ {z}C, for some z ∈W ′. It suffices to show

that tW
+

0 (X̄) ⊆ {z}C. We have tW
+

1 (X̄)∪· · ·∪ tW+

n (X̄) ⊆ tW+

1 (X̄)∨· · ·∨ tW+

n (X̄),

so for every i ∈ {1, . . . n}, we have tW
+

i (X̄) ⊆ {z}C. If xj ∈ Xj , for all j ∈ J , (we
abbreviate this by x̄ ∈ X̄) and x̄ = (xj)j∈J , then

tWi (x̄) = tWi ((xj)j∈J) ∈ tP(W)
i (({xj})j∈J) (by the definition of ◦ in P(W))

⊆ tP(W)
i (X̄) (operations are element-wise)

⊆ γN (t
P(W)
i (X̄)) (γN is a closure operator)

= tW
+

i (X̄) ⊆ {z}C (Lemma 1.4(ii))

It follows that tWi (x̄) N z, for all i ∈ {1, . . . n}. Hence tW0 (x̄) N z, by R(e), and

tW0 (x̄) ∈ {z}C, for all x̄ ∈ X̄. Since t0 is a linear term, we obtain t
P(W)
0 (X̄) ⊆ {z}C.

Since {z}C is a closed set, we have tW
+

0 (X̄) = γN (t
P(W)
0 (X̄)) ⊆ {z}C.

Conversely, assume that W+ satisfies e. For every sequence X̄ = (Xj)j∈J of

elements in W+, we have tW
+

0 (X̄) ⊆ tW
+

1 (X̄) ∨ · · · ∨ tW+

n (X̄). In particular, for
Xj = γN ({xj}), where xj ∈W , we have

tW
+

0 ((γN ({xj}))j∈J) ⊆ tW
+

1 ((γN ({xj}))j∈J) ∨ · · · ∨ tW
+

n ((γN ({xj}))j∈J).

By Lemma 1.4(ii), we obtain successively

γN (t
P(W)
0 (({xj})j∈J)) ⊆ γN (t

P(W)
1 (({xj})j∈J) ∪ · · · ∪ tP(W)

n (({xj})j∈J)),

γN ({tW0 (x̄)}) ⊆ γN ({tW1 (x̄), . . . , tWn (x̄)}).
Therefore, for all z ∈W ′, γN ({tW1 (x̄), . . . , tWn (x̄)}) ⊆ {z}C implies γN ({tW0 (x̄)}) ⊆
{z}C, namely {tW1 (x̄), . . . , tWn (x̄)} ⊆ {z}C implies tW0 (x̄) ∈ {z}C. Consequently,
(tW1 (x̄) N z and . . . tWn (x̄) N z) implies tW0 (x̄) N z, and R(e) holds in (W,B). �

It follows from Lemma 3.9 that if (W,B) is a Gentzen frame, then W+ satisfies
e iff W+ satisfies R(e). We say that a set R of rules is preserved by ( )+, if for
every cut-free Gentzen frame (W,B), if (W,B) satisfies R then W+ satisfies R.

Corollary 3.11. All simple rules are preserved by ( )+.
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The rules of exchange, weakening, contraction and associativity are preserved
by ( )+. For a set R of rules a R-Gentzen frame is a Gentzen frame that satisfies
R. RLUGR denotes the subvariety of RLUG axiomatized by e(R) = {e(r) : r ∈ R}.
Theorem 3.2 yields:

Corollary 3.12. If a sequent is valid in RLUGR for a set of simple rules R, then
it is valid in all cut-free R-Gentzen frames.

Corollary 3.13. The systems GLR, FLR enjoy the cut elimination property, for
every set R of simple rules, and in particular for the set R = R(e) with simple rules
for an equation e over {∨, ·, 1}, e.g., for R ⊆ {a, e, c, i}.

Proof. Every sequent valid in the frame WGLR
is also valid in RLUGR. By Corol-

lary 3.12 it is valid in the frame WcfGLR
associated with the cut-free system. �

Corollary 3.14. The free algebra in RLUGR is embeddable in W+
GLR

.

Finite model property. We say that a Gentzen system has the finite model prop-
erty (FMP), if for every sequent that is not provable there exists a finite counter-
model. We will show the FMP for extensions by simple rules. Recall that a variety
(equivalently, an equational class) is a class of algebras closed under homomorphic
images, subalgebras and direct products. It has the FMP if every non-valid equa-
tion is actually falsified in a finite algebra in the variety. Clearly a variety has the
FMP if it is generated by (is the smallest variety that contains) its finite members.

Let L be a sequent system. For a sequent s, s← is the least set of sequents such
that s ∈ s← and if ({t1, . . . , tn}, t) is an instance of a rule of L and t ∈ s←, then
t1, . . . , tn ∈ s←. Clearly s← is the set of all sequents involved in an exhaustive proof
search for s.

We say that a rule in a sequent system does not increase complexity if for each
instance of the rule, the complexity of each sequent in the numerator is at most as
big as the complexity of the denominator. For simple structural rules, complexity of
a sequent can be defined to be, for example, its length (i.e. counting each symbol).
As there are only finitely many sequents of the same length such a rule contributes
only a finite number of sequents to s←. Contraction (c) and (Cut), however, are
examples of structural rules that do increase complexity.

A logical rule is a sequent rule that introduces a logical connective (like ∧,∨, ·, \, /)
on the left or right of the denominator. It is said to have the subformula property if
for all instances of the rule, all formulas appearing in the numerator are subformu-
las of the denominator. If a system has logical rules with the subformula property
and the structural rules do not increase complexity, then for any sequent s the set
s← is finite.

Theorem 3.15. The systems GL, FL as well as their extensions with simple rules
that do not increase complexity, have the FMP.

Proof. For GL, we consider the frame WGL = (W,W ′, N, ◦,
,�, E) and a sequent
s that is not provable in GL. Let N ′ be the relation defined by

x N ′ (u, a) iff x N (u, a) or (u(x)⇒ a) 6∈ s←.

To see that N ′ is nuclear, let x, y ∈ W , (u, a) ∈ W ′ and define v(z) = u(z ◦ y),
for all z ∈ W . We have x ◦ y N ′ (u, a) iff x ◦ y N (u, a) or [u(x ◦ y) ⇒ a] 6∈ s←
iff x N (v, a) or (v(x) ⇒ a) 6∈ s← iff x N ′ (v, a). Also, N ′ satisfies the conditions
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GN. Indeed, let ({t1, t2}, t0) be a rule of GN and assume that t1, t2 ∈ N ′. If
t1, t2 ∈ N , then t0 ∈ N (since N satisfies GN) and t0 ∈ N ′. Otherwise, t′1 6∈ s←
or t′2 6∈ s←. Here, if ti = (x, (u, a)), by t′i we denote the sequent u(x)⇒ a. By the
(contrapositive of the) second condition for s←, we have t′0 6∈ s← and thus again
t0 ∈ N ′. So, (Ws,Fm) is a Gentzen frame, where Ws = (W,W ′, N ′, ◦,
,�, E).

As s← is finite, there are finitely many x, u, a such that (u(x) ⇒ a) ∈ s←. So,
the complement (N ′)c of N ′ is finite, hence also its image Im((N ′)c) = {z ∈ W ′ :
x (N ′)c z, for some x ∈ W}. If z 6∈ Im((N ′)c), then W N ′ z and {z}C = W ,
where C is with respect to N ′. Therefore, {z}C 6= W only for the finitely many
z ∈ Im((N ′)c). Consequently, there are only finitely many basic closed sets and
W+

s is finite.
Furthermore, s fails in W+

s . Indeed, let s be the sequent x⇒ a and let b = xFm

(i.e. b is the term x with every ◦ replaced by ·). Note x 6N ′ a, since x 6N a and
(x ⇒ a) = s ∈ s←. Hence x 6∈ {a}C. However x ⇒ b is provable in GL by (·R),
so x ∈ {b}C, and therefore {b}C 6⊆ {a}C. Since (Ws,Fm) is a Gentzen frame, the
map C : Fm→W+

s is a homomorphism by Cor. 2.7. Consequently, the inequality
b ≤ a is not valid in W+

s , so neither is the sequent x⇒ a. �

By performing a (necessarily terminating) exhaustive proof search for a sequent
s, we either obtain a proof of s or, by using the set s←, obtained on the way, we
construct a finite counterexample W+

s . The FMP for FL was proved in [19] in the
setting of phase spaces and for GL it was proved in [14] in the setting of Gentzen
matrices. Note that the proof does not make use of specific rules of GL, FL except
for (·R), hence the result applies to any such sequent system with the property that
s← is finite for every sequent s, and gives rise to a Gentzen frame W for which W+

s

is a model of the sequent system. Further conditions may be added to the definition
of s← to enlarge the set in a way that W+ becomes smaller. Such a condition is
included in [19], and this issue is discussed further in [14].

Finite embeddability property. Let A be a r`u-groupoid and B a partial sub-
algebra of A. Recall that (WA,B,B) is a Gentzen frame. By Corollary 2.8 we
obtain the following result that was originally proved in [4].

Corollary 3.16. The map { }C : B→W+
A,B is an embedding of the partial sub-

algebra B of the r`u-groupoid A into the r`u-groupoid W+
A,B.

Theorem 3.17. If an equation over {∨, ·, 1} is valid in the r`u-groupoid A, then
it is also valid in W+

A,B, for every partial subalgebra B of A.

Proof. By Lemma 3.8 it is enough to consider simple equations e, i.e., of the form
t0 ≤ t1 ∨ · · · ∨ tn, where t0 is a linear term. Assume that e is valid in A, and let B
be a partial subalgebra of A. By Theorem 3.10, to show that e is valid in W+

A,B

is enough to show that the rule t1N(u,c) ··· tnN(u,c)
t0N(u,c) R(e) is valid in the Gentzen

frame (W,B), namely that if u(ti) ≤A c, for all i ∈ {1, . . . , n}, then u(t0) ≤A c;
here we abused notation slightly by using, for example, c initially as a metavariable
and then as an element of B. The latter implication follows directly from the fact
that A satisfies e. �

A class of algebras K is said to have the finite embeddability property (FEP) if
for every algebra A in K and every finite partial subalgebra B of A, there exists a
finite algebra D in K such that B embeds into D.
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Theorem 3.18. Every variety of integral r`u-groupoids axiomatized by equations
over the signature {∨, ·, 1} has the FEP.

Proof. We follow the ideas in [4] to establish the finiteness of W+
A,B. Let k be the

cardinality of the set B = {b1, . . . , bk} and F the free groupoid with unit over k
generators x1, . . . , xk (so all non-unit elements of F are just products of generators).
For s, t ∈ F , we write s ≤F t iff t is obtained from s by deleting some (possibly none)
of the generators. We always have s ≤F 1. In [4] it is shown that this relation is a
partial order on F such that F has no infinite antichains and no infinite ascending
chains (it is dually well-ordered), using Higman’s Lemma. Moreover, under the
above order and multiplication F can be expanded to an integral ru-groupoid F.

Let h : F →W be the (surjective) homomorphism that extends the assignment
xi 7→ bi. Consider the new frame WF

A,B = (F,W ′, h ◦ N, ·F,
h,�h, {1}), where

x (h ◦N) z iff h(x) N z, and x
hz = h(x)
z and z�hy = z�h(y). It is easy to see
that h ◦N is nuclear, so WF

A,B is a residuated frame.

To prove that W+
A,B is finite, it suffices to prove that it possesses a finite basis

of sets {z}CN = {x ∈ W : x N z}, for z ∈ W ′. As h is surjective, it suffices to
show that there are finitely many sets of the from {z}C = {x ∈ F : x (h ◦N) z},
for z ∈W ′.

For x ∈ F , and (u, b) ∈W ′, we have x ∈ {(u, b)}C iff u(h(x)) ≤ b iff h(v(x)) ≤ b,
for some v ∈ SF such that h(v) = u, since h is a surjective homomorphism (here we
have extended h to a map from SF to SW ). Equivalently, v(x) ∈ h−1(↓Ab), for some
v ∈ h−1(u). Now, h−1(↓Ab) is a downset in F and, because F is dually well-ordered,
this downset is equal to ↓Mb, for some finite Mb ⊆ F . So, the above statement is
equivalent to v(x) ≤ m, or to x ≤ m

v , for some v ∈ h−1(u) and some m ∈Mb. Here
m
v is defined inductively by m

1 = m, m
v·x = m/x

v and m
x·v = x\m

v , where the divisions
are calculated in F. Consequently, {(u, b)}C = ↓{mv : m ∈Mb, h(v) = u}.

Note that the set {mv : m ∈ Mb, b ∈ B, h(v) = u, u ∈ SW } is finite, being a
subset of the finite set ↑

⋃
b∈BMb, as m ≤ m

v (or v(m) ≤ m), by integrality. Thus,
there are only finitely many choices for {(u, b)}C. �

In [4] the FEP is established for the whole variety of integral r`u-groupoids,
as well as for the associative and the commutative subvarieties, and was extended
in [24] to all subvarieties axiomatized by equations of the form xn ≤ xm. The
result also specializes to (always integral) associative and/or commutative r`u(z)-
groupoids. Moreover, as these classes are finitely axiomatized they have decidable
universal theories.

All results proved so far work also for poorer signatures that do not include the
connectives ∧, \, /, as the proof of Theorem 2.6 handles each connective separately.
However, ∨, ·, 1 need to be present, to support the linearization process.

4. Involutive frames

Definition and examples. An involutive (residuated) frame is a structure of
the form W = (W,N, ◦, E,∼,−), where N ⊆ W 2, ◦ ⊆ W 3, E ⊆ W and ∼,−

are unary operations on W (extended to subsets via Z− = {z− : z ∈ Z} and
Z∼ = {z∼ : z ∈ Z}) such that

(i) (W,W,N, ◦,
,�, E) is an ru-frame with x
y = (y−◦x)∼, y�x = (x◦y∼)−,
(ii) x∼− = x = x−∼ and (y∼ ◦ x∼)− = (y− ◦ x−)∼ for all x, y ∈W
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x⇒ a a⇒ z
x⇒ z (CUT) a⇒ a (Id)

a ◦ b⇒ z
a · b⇒ z

(·L)
x⇒ a y⇒ b

x ◦ y⇒ a · b (·R)

a⇒ z
a ∧ b⇒ z

(∧L`) b⇒ z
a ∧ b⇒ z

(∧Lr) x⇒ a x⇒ b
x⇒ a ∧ b (∧R)

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L) x⇒ a
x⇒ a ∨ b (∨R`) x⇒ b

x⇒ a ∨ b (∨Rr)

ε⇒ z
1⇒ z

(1L)
ε⇒ 1

(1R)
x ◦ y⇒ z

y⇒ x∼ ◦ z (∼)
x ◦ y⇒ z

x⇒ z ◦ y−
(−)

a∼⇒ z
∼a⇒ z (∼L) x⇒ a∼

x⇒∼a (∼R)
a−⇒ z
−a⇒ z

(−L) x⇒ a−

x⇒−a (−R)

Table 3. The system InGL.

(iii) (x ◦ E)B = {x}B = (E ◦ x)B, for all x ∈W (weak unit)

The definition of the relations 
, � is more intuitive if one defines a ternary relation
⊕ by x⊕y = (y∼ ◦x∼)− = (y− ◦x−)∼, since then x
y = x∼⊕y and y�x = y⊕x−.
We also recall two related algebraic notions:

An involutive groupoid with unit is an algebra G = (G, ◦, 1,∼,−) such that
(G, ◦, 1) is a groupoid with unit (so ◦ is an operation rather than a relation) that
satisfies x∼− = x = x−∼ and (x ◦ y)∼ = y∼ ◦ x∼. Hence (x ◦ y)− = y− ◦ x−,
(y∼ ◦ x∼)− = (y− ◦ x−)∼ and 1∼ = 1− = 1.

A weakly involutive groupoid with unit is an algebra G = (G, ◦, 1,∼,−) such that
(G, ◦, 1) is a groupoid with unit that satisfies x∼− = x = x−∼ and (y∼ ◦ x∼)− =
(y− ◦ x−)∼. It follows that (x ◦ y)∼∼ = x∼∼ ◦ y∼∼, (x ◦ y)−− = x−− ◦ y−− and
1∼ = 1−. If an operation ⊕ is defined by x⊕ y = (y∼ ◦ x∼)−, then (G,⊕, 1∼,∼,−)
is also a weakly involutive groupoid with unit.

The Gentzen system InGL is defined in Table 3 and is an involutive analogue of
GL. Formulas of InGL are defined with respect to the language {∧,∨, ·,∼,−, 1}.
Whereas GL has connectives \, /, they are definable in InGL by x\y = ∼(−y · x),
y/x = −(x·∼y). The dual of · is defined by the term x+y = ∼(−y·−x), and 0 = ∼1.
Note also that there are four structural (or external) connectives (“commas”): ◦,
ε, ∼, − (the latter two are written postfix). Another important difference is that
the rules are written without any explicit reference to a context u. However, the
bidirectional structural rules (∼) and (−) allow any context to be moved back and
forth between the two sides of a sequent.

Metavariables a, b, c range over formulas and x, y over elements of the free invo-
lutive groupoid with unit over the set of formulas. We also consider the Gentzen
system InFL, defined by taking the free involutive monoid, instead. In both cases
we can assume that terms are normalized so that the operations ◦, ε do not ap-
pear in the scope of ∼,−. E.g. we always have ε∼ = ε− = ε, and in InFL, for
x = a1 ◦ · · · ◦ an we have x∼ = a∼n ◦ · · · ◦ a∼1 and x− = a−n ◦ · · · ◦ a−1 . Note that

as FL is equivalent to GL0
a, InFL is equivalent to InGL0

a. For normalized x, y,
a sequent x ⇒ y is valid in an involutive r`u-groupoid if for any assignment f to
the variables, we have f(x) ≤ f(y), where ◦, ε,∼,− are interpreted as ·, 1,∼,− in x
and as +, 0,∼,− in y. Further discussion of validity appears in the subsection on
cut-elimination below. The next result is proved by checking that each InGL-rule
(resp. InFL-rule) is valid in involutive r`u-groupoids (resp. InFL-algebras).
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Lemma 4.1. (Soundness) Every sequent that is provable in InGL is valid in all
involutive r`u-groupoids. The same holds for InFL and InFL-algebras.

The following rules are derivable in InGL and hence can be added conservatively:

a⇒ z b⇒ w
a+ b⇒ z ◦ w (+L) x⇒ a ◦ b

x⇒ a+ b
(+R)

0⇒ ε
(0L) x⇒ ε

x⇒ 0
(0R)

The involutive frames WInGL and WInFL are defined in the obvious way, where
x N z iff ` x⇒ z. In both cases (W, ◦, ε,∼,−) is an involutive groupoid with unit
and x ◦ y = x ⊕ y. It is easy to see that if G is an involutive r`u-groupoid, then
WG = (G,≤, ·, {1},∼,−) is an involutive frame. Note that (G, ·, 1,∼,−) is not an
involutive groupoid with unit, since in general x · y 6= −(∼x · ∼y).

Galois algebra. For X ⊆ W , we define −X = X−C and ∼X = X∼C. Note that
−X and ∼X are Galois closed sets.

Lemma 4.2. If W is an involutive frame, x, y ∈W and X,Y, Z ⊆W then

(i) x N y− iff y N x∼.
(ii) ∼E = −E.

(iii) −Y = Y B− = Y −C and ∼Y = Y B∼ = Y ∼C.
(iv) X ◦ Y ⊆ Z iff Y ⊆ ∼(−Z ◦X) iff X ⊆ −(Y ◦ ∼Z), if Z is Galois closed.

Proof. (i) x N y− iff x ◦ E N y− iff E N x∼ ⊕ y− iff E ◦ y N x∼ iff y N x∼. (ii)
x ∈ ∼E = E∼C iff x N E∼ iff x ◦ E N E∼ iff x N E∼ ⊕ E− iff E ◦ x N E− iff
x N E− iff x ∈ E−C = −E. (iii) For all x ∈ W , we have x ∈ Y −Ciff x N Y −

iff Y N x∼ iff x∼ ∈ Y B iff x ∈ Y B−, by (i). (iv) We have X ◦ Y ⊆ Z = ZBC

iff X ◦ Y N ZB iff Y N X∼ ⊕ ZB iff Y ⊆ (X∼ ⊕ ZB)C. Also, (X∼ ⊕ ZB)C =
(X∼ ⊕ ZB)−∼C = (ZB− ◦X∼−)∼C = ∼(−Z ◦X), by (iii). �

For an involutive frame W, we know that (W,W,N, ◦,
,�, E)+ is a r`u-groupoid,
with unit 1 = E. By Lemma 4.2(ii) ∼1 = −1, and this common value is denoted
by 0. We write W+ for the expansion of that r`u-groupoid with the element 0.

Corollary 4.3. For any involutive frame W, W+ is an involutive r`u-groupoid.

Proof. We will show that the operations ∼ and −, defined independently of the
operations in a r`u-groupoid, coincide with the usual negations of an r`u-groupoid,
namely that ∼Z = Z\0 and −Z = 0/Z, for all Z ∈ W+. We have ∼−Z =
ZB−∼C = ZBC = Z, by Lemma 4.2(iii). Likewise, −∼Z = Z. Finally, by
Lemma 4.2(iv), Z\0 = ∼(−0 ◦ Z) = (E ◦ Z)B∼ = ZB∼ = ∼Z, and likewise
0/Z = −Z. Consequently, W+ is an involutive r`u-groupoid. �

Involutive Gentzen frames. An involutive Gentzen frame is a pair (W,B) where

(i) W = (W,N, ◦, {ε},∼,−) is an involutive frame, where ◦ is an operation
(ii) B is a partial algebra of the type of InGL,
(iii) B is a subset of W that generates (W, ◦, ε,∼,−) and
(iv) N satisfies GN (omitting the \, /-rules) and the four rules below, for all

a, b ∈ B, x, y ∈W and z ∈W ′:
a∼ N z
∼a N z

[∼L] x N a∼

x N ∼a [∼R] a− N z
−a N z

[−L] x N a−

x N −a [−R]

For example, (WInGL,Fm) and (WInFL,Fm) are involutive Gentzen frames.
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Theorem 4.4. Let (W,B) be a cut-free involutive Gentzen frame. Then the con-
ditions in Theorem 2.6 hold. Moreover, for all a ∈ B, X ∈W+, if ∼a and −a are
defined and a ∈ X ⊆ {a}C, then

(i) ∼a ∈ ∼X ⊆ {∼a}C and −a ∈ −X ⊆ {−a}C.
(ii) In particular, ∼a ∈ ∼{a}C ⊆ {∼a}C and −a ∈ −{a}C ⊆ {−a}C.
(iii) If N also satisfies [CUT] then ∼{a}C = {∼a}C and −{a}C = {−a}C.

Proof. If Br is the 0-free reduct of B and Wr = (W,W,N, ◦,
,�, {ε}), then
(Wr,Br) satisfies the conditions of a Gentzen frame except for the fact that Br gen-
erates (W, ◦, ε). Nevertheless, this condition is not used in the proof of Theorem 2.6.
Since W+ is simply the expansion of W+

r by 0, the conclusion of Theorem 2.6 holds.
We want to show that ∼X ⊆ {∼a}C. If x ∈ ∼X = X∼C, then x N X∼. Since

a ∈ X, we have x N a∼. By [∼R] we obtain x N ∼a, or x ∈ {∼a}C. To show that
∼a ∈ ∼X = X∼C we need to prove that ∼a N X∼. We have X ⊆ {a}C, so X N a
and a∼ N X∼, by Lemma 4.2(i). Finally, by [∼L] we get ∼a N X∼. �

Corollary 4.5. If (W,B) is an involutive Gentzen frame, the map { }C : B→W+

is a homomorphism of the partial algebra B into the involutive r`u-groupoid W+.

Embedding into the DM-completion and representation.

Corollary 4.6. Let G be an involutive r`u-groupoid. The map { }C : G→W+
G

is an embedding.

Therefore, every involutive FL-algebra can be embedded into a complete one.

Corollary 4.7. Every InFL-algebra is a subalgebra of the nucleus image of the
power set of a weakly involutive monoid.

Cut elimination. For this section a (classical) sequent is an element of Fmi×Fmi,
where Fmi denotes the free groupoid with unit over the set of negated formulas.
Negated formulas are elements of the form a∼n or a−n, for a ∈ Fm, defined by
a∼0 = a and a∼(n+1) = (a∼n)∼ (likewise for a−n). Sequents are denoted x⇒ y.

Let (W,B) be an involutive Gentzen frame. Note that every map f : Fm → B
extends to a groupoid (with unit) homomorphism f◦ : (Fmi, ◦, ε)→ (W, ◦, ε) by

f◦(x∼) = (f◦(x))∼, f◦(x−) = (f◦(x))− and f◦(x ◦Fmi

y) = f◦(x) ◦W f◦(y). Like-
wise, every assignment f : Fm → B extends to a groupoid (with unit) homomor-
phism f⊕ : (Fmi, ◦, ε)→ (W,⊕, ε∼) by f⊕(x∼) = (f⊕(x))∼, f⊕(x−) = (f⊕(x))−

and f⊕(x◦Fmi

y) = f⊕(x)⊕W f⊕(y). Also, every homomorphism f : Fm→G into

an L-algebra G extends to a groupoid (with unit) homomorphism f : Fmi →G.
For a total algebra B, a sequent x ⇒ y is said to be valid in (W,B), if for every
homomorphism f : Fm→B, we have f◦(x) N f⊕(y). Note that this agrees with
the earlier definition of validity in an involutive r`u-groupoid.

To illustrate the subtlety of validity we observe that for variables p, q the sequent
p ◦ q ⇒ p ◦ q is not provable in InGL, which agrees with the fact that the equation
p · q ≤ p + q is not valid in InGL. This is why ◦ needs to be interpreted as · in
the left hand side and as + in the right hand side of a sequent. Also, note that
(p ◦ q)∼ ⇒ ∼(p + q) is provable in InGL, but the equation ∼(p · q) ≤ ∼(p + q)
is not valid in InGL. On the other hand, ∼(p + q) ≤ ∼(p + q) holds, so the above
comment about the interpretation of ◦ on the two sides of a sequent holds only for
occurrences of ◦ not under negations. This is the reason why we defined (classical)
sequents is such a way that all occurrences of ◦ are outermost and all negations
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are applied to formulas. Note that we have different interpretations of ◦Fmi

on
the two sides of a sequent: it is interpreted by ◦W on the left and by ⊕W on the

right. This means that for interpretations in an algebra, ◦Fmi

is interpreted as ·
and +, respectively. This agrees with the usual practice in semantics for sequent
calculus systems. For classical logic we obtain interpretations by using ∧ and ∨,
respectively.

Also note that the set W in InGL is taken to be the free involutive groupoid
with unit. On the other hand, in the definition of an involutive frame the set W is
only weakly involutive, whenever the ternary relation ◦ is a function. This should
not create the impression that we can assume the stronger involutive condition
in the definition of a frame. To clarify things, we mention that we could have
simply taken the free weakly involutive groupoid with unit W = (W, ◦, {ε},∼,−)
on a countable set X of variables. By the weakly involutive law we can define
an operation ⊕, which can be easily shown to be associative and have as unit the
element δ = ε∼ = ε−. We can also define iterated negations of elements of X, by
taking repeated applications of the operations ∼,− on elements of X. The resulting
set is denoted X¬. It is easy to see that the underlying set of W can be concretely
realized as the underlying set V of the free bi-groupoid with unit V = (V, ◦, ε,⊕, δ)
on the set X¬. In other words V supports the free weakly involutive groupoid by
defining involution functions that satisfy (x ◦ y)∼ = y∼ ⊕ x∼. Let V◦ denote the
◦-subgroupoid of V generated by X¬ and V⊕ the ⊕-subgroupoid of V generated
by X¬. Clearly V◦ and V⊕ are isomorphic. Actually, they both support the free
involutive groupoid generated by X, the first with involutive functions satisfying
(x ◦ y)∼ = y∼ ◦ x∼ and the second with (x⊕ y)∼ = y∼ ⊕ x∼. We could have taken
sequents as elements of V◦ × V⊕, but since the two groupoids are isomorphic and
support the free involutive groupoid generated by X, we chose to identify them.

Lemma 4.8. A classical sequent x⇒ y is valid in (WInGL,Fm) iff f◦(x)⇒ f⊕(y)
is provable in InGL, where f is the identity map.

For an involutive frame W and X ⊆W , we define (∼n)X and X∼n [also (−n)X
and X−n] by (∼0)X = X∼0 = X, (∼(n+ 1))X = ∼(∼n)X, X∼(n+1) = (X∼n)∼.

Lemma 4.9. Let W be a residuated frame.

(i) The operation + on W+ is order preserving in both coordinates.
(ii) If X,Y ∈W+, then XC + Y C ⊆ (X ⊕ Y )C.
(iii) If X ∈W+, then (∼n)X = X∼n and (−n)X = X−n, for all even n ∈ N.

Proof. (i) For subsets X1, X2, Y1, Y2 of W with X1 ⊆ X2 and Y1 ⊆ Y2 we have
XB

2 ⊆ XB
1 and Y B

2 ⊆ Y B
1 . Therefore, XB

2 Y
B
2 ⊆ XB

1 Y
B
1 and (XB

1 Y
B
1 )C ⊆

(XB
2 Y

B
2 )C, namely X1 + Y1 ⊆ X2 + Y2. We used that X + Y = −[(∼Y )(∼X)] =

(Y B∼XB∼)−C = (XB∼−Y B∼−)C = (XBY B)C. (ii) Recall that CB is a closure op-
erator, C is order reversing and that X◦Y ⊆ X ·Y , for all X,Y ⊆W . Also, we define
X⊕Y element-wise. We haveXC+Y C = −[(∼Y C)·(∼XC)] = (Y CB∼·XCB∼)−C ⊆
(Y ∼·X∼)−C ⊆ (Y ∼◦X∼)−C = (X⊕Y )C, soXC+Y C ⊆ (X⊕Y )C. (iii) For w ∈W ,
we have w ∈ ∼X = XB∼ iff w− ∈ XB iff X N w−. We also have ∼X = XB∼ N w
iff w− N XB iff w− ∈ XBC = X. Hence w ∈ ∼∼X iff ∼X N w− iff w−− ∈ X iff
w ∈ X∼∼. So, ∼∼X = X∼∼ and for every even n, (∼n)X = X∼n. �

Theorem 4.10. If (W,B) is a cut-free involutive Gentzen frame where B is a
total algebra, then every sequent that is valid in W+ is also valid in (W,B).
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Proof. Assume that s = (x ⇒ y) is valid in W+ and let f : Fm → B be a
homomorphism. We will show that f◦(x) N f⊕(y). Since s is valid in W+, we
have f̄◦(x) ⊆ f̄⊕(y), where f̄ : Fm→W+ is the homomorphism that satisfies
f̄(v) = γN ({f(v)}) for each variable v.

For brevity we adopt the notation ¬n = ∼n, for non-negative integers and ¬n =
−|n| for negative integers. By definition there exist formulas a1, . . . , an, b1, . . . , bm ∈
Fm and groupoid (with unit) terms tx, ty such that x = tFmi

x (a¬k11 , . . . , a¬knn ) and

y = tFmi

y (b¬l11 , . . . , b¬lmm ). Then f̄◦(x) = t
(W+,·)
x ((¬k1)f̄(a1), . . . , (¬kn)f̄(an)) and

f̄⊕(y) = t
(W+,+)
y ((¬l1)f̄(b1), . . . , (¬ln)f̄(bm)).

In view of Theorem 4.4, Lemma 3.1 applies also to formulas with negations
and it yields f̄(c) ⊆ {f(c)}C and f(c) ∈ f̄(c), for all formulas c ∈ Fm. From
f̄(c) ⊆ {f(c)}C we also obtain f(c) ∈ f̄(c)B, so f(c)∼ ∈ f̄(c)B∼ = ∼f̄(c) and
f(c)− ∈ −f̄(c). Thus, using Lemma 4.9(iii), we can show that for all k we have

(*) f(c)¬k ∈ (¬k)f̄(c). So,

f◦(x) = f◦(tFmi

x (a¬k11 , . . . , a¬knn ))

= t
(W,◦)
x (f(a1)¬k1 , . . . , f(an)¬kn) (f◦ extends f)

∈ t(P(W ),◦)
x ((¬k1)f̄(a1), . . . , (¬kn)f̄(an)) (*), (◦ in P(W ) is element-wise)

⊆ t(W
+,·)

x ((¬k1)f̄(a1), . . . , (¬kn)f̄(an)) (γN is a closure operator)
= f̄◦(x)

From f(c) ∈ f̄(c) we have {f(c)}¬ ⊆ f̄(c)¬, hence f̄(c)¬C ⊆ {f(c)}¬C, namely
¬f̄(c) N {f(c)}¬. By the negation rules for N , we have (¬f̄(c))¬k N {f(c)}¬(¬k)
for every even integer k, so (¬f̄(c))¬k ⊆ {f(c)¬(k+1)}C. Using Lemma 4.9(iii), we
have (¬(k + 1))f̄(c) ⊆ {f(c)¬(k+1)}C, for every even integer k.

On the other hand, from f̄(c) ⊆ {f(c)}C we have f̄(c) N f(c). By the nega-
tion rules for N , we have f̄(c)¬k N f(c)¬k, for every even integer k, so f̄(c)¬k ⊆
{f(c)(¬k)}C. In view of Lemma 4.9(iii), we obtain (¬k)f̄(c) ⊆ {f(c)(¬k)}C, for
every even integer k. Consequently, we have

(**) (¬k)f̄(c) ⊆ {f(c)(¬k)}C, for every integer k.

f̄⊕(y) = t
(W+,+)
y ((¬l1)f̄(b1), . . . , (¬ln)f̄(bm))

⊆ t(W
+,+)

y (f(b1)(¬l1)C, . . . , f(bm)(¬lm)C) (**), (Lem. 4.9(i))

= [t
(W,⊕)
y (f(b1)(¬l1), . . . , f(bm)(¬lm))]C = {f⊕(y)}C (Lemma 4.9(ii))

So f◦(x)∈f̄◦(x) ⊆ f̄⊕(y) ⊆ {f⊕(y)}C, thus f◦(x)∈{f⊕(y)}C, i.e., f◦(x)Nf⊕(y). �

Corollary 4.11. (Adequacy) If a sequent is valid in InGL, then it is valid in all
cut-free involutive Gentzen frames.

Combining the soundness of InGL (InFL) given by Lemma 4.1, and their ade-
quacy given as part of Corollary 4.11, we have the completeness of these systems.

Corollary 4.12. (Completeness) A sequent is provable in InGL iff it is valid in
RLUG. The same holds for InFL and InFL.

A cut-free system for InFL-algebras is presented in [1]. A lengthy syntactic
argument is given to establish cut-elimination for this system, and decidability
follows readily. We give a brief argument below and subsequently prove the stronger
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FMP. For cyclic InFL-algebras, a cut-free system and a decision procedure are given
in [26].

Corollary 4.13. The systems InGL and InFL enjoy the cut elimination property.

Proof. Every sequent provable in InGL is valid in InGL, hence it is also valid in
the frame associated with cut-free InGL, by Corollary 4.11. Thus it is provable in
cut-free InGL. Conversely, every sequent provable in cut-free InGL is obviously
provable in InGL. �

Decidability. Even though an exhaustive proof search for a given sequent in InGL
or InFL is never finite, we can still restrict our attention to a finite part.

Theorem 4.14. The equational theories of InFL and InGL-algebras are decidable.

Proof. At every step of a proof search there are only finitely many sequents, ob-
tained by applying (∼) and (−), such that not all formulas have external negations
on them, and these sequents are easily identified; for a description of how to obtain
all such sequents, see the figure below. If all formulas have external negations then
no logical rule can be applied (upwards). Therefore we need to explore, by using (∼)
and (−), only finitely many sequents between applications of logical rules, namely
among the sequents obtained by applying (∼) and (−) to our current sequent only
those where not all formulas have external negations plus the ones obtained in the
process of getting to such sequents (via the figure below). Note that upward appli-
cations of logical rules decrease the number of connectives in the involved sequents.

Indeed, for the associative case, if a1 ◦ a2 ◦ · · · ◦ am ⇒ b1 ◦ b2 ◦ · · · ◦ bn is a
sequent, then the possible sequents that can be obtained using the rules for external
negations are given by moving the formulas according to the following diagram:

∼ ((

−

vv

a1 ◦ a2 ◦ · · · ◦ am ⇒ b1 ◦ b2 ◦ · · · ◦ bn

−

66∼
hh

In the non-associative case the possible moves are even more restricted, therefore we
obtain a finite set of possible sequents with at least one non-negated formula. �

The (unital) involutive frames we have defined satisfy the property: x N y− iff
y N x∼ (Lemma 4.2(i)). Also the following rule (followed by its derivation) holds
in InGL.

x⇒ y−

y⇒ x∼
(G)

x ◦ ε⇒ y−

ε⇒ x∼ ◦ y−
(∼)

ε ◦ y ⇒ x∼
(−)

Cut elimination with simple structural rules. We will extend simple struc-
tural rules to the involutive case. Let t0, t1, . . . , tn be elements of the free groupoid
with unit (using the signature of {◦, ε}) over a countable set of possibly negated
variables, i.e., formal expressions of the form p¬n, for even integers n, with the
usual conventions for ¬ adopted in the proof of Theorem 4.10. The construction is
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similar to Fmi. We also assume that t0 is linear. A simple rule allowing negations
is of the form

t1 N q · · · tn N q

t0 N q
(r)

where q is a variable not occurring in t0, t1, . . . , tn; a simple rule is one where n = 0
in all p¬n above. The definition of a simple rule in InGL, satisfaction of a rule
in a frame and the correspondence between simple rules (allowing negations) and
equations are as before. So, a simple equation allowing negations over {∨, ·, 1,∼,−}
is of the form tFm

0 ≤ tFm
1 ∨ · · · ∨ tFm

n , where t0 is linear and negations are applied
directly an even number of times to the variables.

Theorem 4.15. Let (W,B) be a cut-free involutive Gentzen frame and let e be a
simple equation allowing negations. Then (W,B) satisfies R(e) iff W+ satisfies e.

Proof. Let e be of the form tFm
0 ≤ tFm

1 ∨ · · · ∨ tFm
n , where t0 is linear. As in

Theorem 4.10, eW
+

(X̄) holds iff tW
+

0 (X̄) ⊆ tW+

1 (X̄)∨· · ·∨tW+

n (X̄), for all sequences
X̄ = (Xj)j∈J of elements in W+. By Lemma 1.2(iv), this is equivalent to the

stipulation that for all z ∈W ′, tW+

1 (X̄)∨ · · · ∨ tW+

n (X̄) ⊆ {z}C implies tW
+

0 (X̄) ⊆
{z}C. As tW

+

1 (X̄) ∨ · · · ∨ tW+

n (X̄) = γN (tW
+

1 (X̄) ∪ · · · ∪ tW+

n (X̄)), tW
+

i (X̄) =

γN (t
P(W)
i (X̄)) and in view of Lemma 4.9(iii), this is equivalent to asking that

(*)

∀z ∈W ′, if t
P(W)
i (X̄) ⊆ {z}C for every i ∈ {1, . . . n}, then t

P(W)
0 (X̄) ⊆ {z}C.

Assume first that (W,B) satisfies R(e) and let xj ∈ Xj , for all j ∈ J (we write

x̄ ∈ X̄ and x̄ = (xj)j∈J). Note that tWi (x̄) = tWi ((xj)j∈J) ∈ tP(W)
i (({xj})j∈J) ⊆

t
P(W)
i (X̄), by the definition of the operations in P(W). Note further that for all

z ∈ W ′, if t
P(W)
i (X̄) ⊆ {z}C for every i ∈ {1, . . . n}, then tWi (x̄) N z, for all

i ∈ {1, . . . n}, tW0 (x̄) N z, by R(e), and tW0 (x̄) ∈ {z}C, for all x̄ ∈ X̄. Since t0 is a

linear term, we obtain t
P(W)
0 (X̄) ⊆ {z}C, namely (*) holds and W+ satisfies e.

Conversely, assume that (*) holds for Xj = γN ({xj}), where xj ∈ W , namely
for all z ∈ W ′, {tW1 (x̄), . . . , tWn (x̄)} ⊆ {z}C implies tW0 (x̄) ∈ {z}C. Consequently,
(tW1 (x̄) N z and . . . tWn (x̄) N z) implies tW0 (x̄) N z, and R(e) holds in (W,B). �

Corollary 4.16. All simple rules allowing negations are preserved by ( )+. Con-
sequently, all extensions of InGL by such rules enjoy the cut elimination property.

5. Finite model property for InGL and extensions

Since ∼ is a bijection, every finite involutive r`u-groupoid satisfies the equation
(∼n)x = x for some natural number n, which is equivalent to the equation x =
(−n)x. If n is an odd number, then f(x) = (∼n)x is an order antimorphism, so the
involutive r`u-groupoid is trivial. Consequently, every finite non-trivial involutive
r`u-groupoid satisfies an equation of the form (∼n)x = x, and n can be taken to
be both even and minimal non-zero. Clearly (∼2)x = x is equivalent to cyclicity
∼x = −x. Consider the following bi-directional rule.

x∼n ⇒ z
x⇒ z (∼n)

We will call two sequences of formulas n-equivalent if one is obtained from the
other by adding or removing exactly n-many negations (of the same kind) to/from
some of the formulas in the sequence. Clearly this equivalence (in the presence of
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the external negations rules) simulates the effect of the rule (∼n) to the one side of
the sequents involved. We extend the equivalence also to sequents in the obvious
way. For every equivalence class there are representatives such that all formulas in
them contain no more than n negations. We will call them minimal representatives.
The next result follows from Theorem 4.15.

Corollary 5.1. Let W be an involutive frame for InGL and n an even natural
number. The frame W satisfies the rule (∼n) iff W+ satisfies (∼n)x = x.

Corollary 5.2. The system InGL + (∼n) has the cut elimination property, for
every even natural number n. Furthermore, it is decidable.

Proof. Soundness of the calculus is routine. The proof proceeds as for the cut elim-
ination of InGL, by using Corollary 5.1. Decidability follows from the observation
that, due to the rule (∼n), there are finitely many sequents with up to n negations
that need to be considered at each step of the proof search. �

Corollary 5.3. InGL + (∼n) has the FMP, for every even natural number n.

Proof. We consider the involutive frame W, where W is the free groupoid over Fm
and x N z iff `InGL+(∼n) x⇒ z. Consider a sequent s that is not provable and let
s← be the set of all the sequents involved in a complete proof search for s. Note
that s← is infinite, since the (∼) and (−) rules can be applied an arbitrary number
of times. As in Theorem 3.15, we can show that N ′ = N ∪ (s←)c is a nuclear
relation and W′ = (W,N ′, ◦, {ε},∼,−) is an involutive frame for InGL + (∼n).
Clearly s← is a union of n-equivalence classes and there are only finitely many such
classes. If y, z ∈ W are n-equivalent then {y}C = {z}C because of the rule (∼n).
So, the basic closed sets are finitely many and W′+ is finite. Moreover, s fails in
W′+. �

For x ∈W and m ∈ Z+, x¬m is x∼m if m > 0, x−m if m < 0, and x if m = 0.

Theorem 5.4. Every sequent provable in InGL + (∼n) has a proof in InGL
augmented by initial sequents of the form a⇒ a¬kn, where k ∈ Z.

Proof. If a sequent s is provable in InGL + (∼n), it is provable in the cut-free
system, by Corollary 5.2. All of the systems we will mention in this proof will be
considered in their cut-free versions. In the presence of (∼) and (−), the rules

u(x)⇒ z

u(x∼n)⇒ z
(∼nL)

x⇒ u(z)

x⇒ u(z∼n)
(∼nR)

are derivable from (∼n), and vice versa. Here u is such that u(x) is an element of
W in which no negations are applied to x. Note that these rules could have been
called (−nL) and (−nR), as the versions with − instead of ∼ are simple the upward
direction of the rule, since x−∼ = x. So, s is provable in InGL + (∼nL) + (∼nR).

We will first prove, inductively, that the rules (∼nL) and (∼nR) can be moved
to the top of the proof in InGL + (∼nL) + (∼nR), namely that there is a proof
of s in which all applications of the rules (∼nL) and (∼nR) precede all application
of rules in InGL. We proceed by focusing on the rule applied immediately before
(∼nL) or (∼nR). Below, we give a proof and its rewritten version. We will be using
often the following instances of (∼) and (−) which hold for all even n:

x⇒ z−n

x∼n ⇒ z
(∼n)

x−n ⇒ z
x⇒ z∼n

(−n)
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We first deal with the case where (∼nL), applied upward, is preceded by a left rule.
For (∼L), we have

a∼ ⇒ z
∼a⇒ z (∼L)

(∼a)∼n ⇒ z
(∼nL)

→

a∼ ⇒ z

a∼ ⇒ z−n
(∼nR)

∼a⇒ z−n
(∼L)

(∼a)∼n ⇒ z
(∼n)

Note that this case illustrates the necessity of replacing (∼n) by (∼nL), and (∼nR),
in our arguments. If ∼n is applied to x, the situation is even simpler. The rewriting
for (−L) and the other left rules is similar. For example, for (∨L), we have

a⇒ z b⇒ z
a ∨ b⇒ z

(∨L)

(a ∨ b)∼n ⇒ z
(∼nL)

→

a⇒ z

a⇒ z−n
(∼nR)

b⇒ z

b⇒ z−n
(∼nR)

a ∨ b⇒ z−n
(∨L)

(a ∨ b)∼n ⇒ z
(∼n)

For the case where (∼nR) is preceded by a right rule, of interest are (∼R) and (·R).

x⇒ a∼
x⇒ ∼a (∼R)

x⇒ (∼a)∼n
(∼nR)

→

x⇒ ∼a
x−n ⇒ a∼

(∼nL)

x−n ⇒ ∼a
(∼R)

x⇒ (∼a)∼n
(−n)

x⇒ a y ⇒ b

x ◦ y ⇒ a · b (·R)

x ◦ y ⇒ (a · b)∼n
(∼nR)

→

x⇒ a

x−n ⇒ a
(∼nL)

y ⇒ b

y−n ⇒ b
(∼nL)

x−n ◦ y−n ⇒ a · b
(·R)

x ◦ y ⇒ (a · b)∼n (−n)

We used (x ◦ y)−n = x−n ◦ y−n, which is true for even n. The remaining right rules
are handled in the same way. The cases where (∼nR) is preceded by a left rule and
(∼nL) is preceded by a right rule are much simpler. We show only one example.

x⇒ a
x⇒ a ∨ b (∨L)

x∼n ⇒ a ∨ b (∼nR) →

x⇒ a
x∼n ⇒ a

(∼nL)

x∼n ⇒ a ∨ b (∨R)

So far we have considered the bidirectional rules (∼nL) and (∼nR) in the downward
direction. In the inverse direction they take the same form, but with ∼n replaced
by −n; this shows that the rules could have been called (−nL) and (−nR). The
proof rewriting for these cases is completely analogous to the cases handled above.

Finally, we show that (∼nL) and (∼nR) commute with the rules (∼) and (−).
We show two illustrative cases. We use (y∼n)− = (y−)∼n, and u(y)− = u−(y−),
where u− is obtained from u by reversing the order and applying − to every factor.

x ◦ u(y)⇒ z

u(y)⇒ x∼ ◦ z
(∼)

u(y∼n)⇒ x∼ ◦ z
(∼nL)

→

x ◦ u(y)⇒ z

x ◦ u(y∼n)⇒ z
(∼nL)

u(y∼n)⇒ x∼ ◦ z
(∼)

x ◦ u(y)⇒ z

x⇒ z ◦ u−(y−)
(−)

x⇒ z ◦ u−((y−)∼n)
(∼nL)

→

x ◦ u(y)⇒ z

x ◦ u(y∼n)⇒ z
(∼nL)

x⇒ z ◦ u−((y−)∼n)
(∼)

We have shown that there is a proof of the sequent s in which (∼nL) and (∼nR) are
applied before rules of InGL. As the only initial sequents are of the form a ⇒ a,
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ε⇒ 1 and 0⇒ ε, the sequents obtained by applications of only (∼nL) and (∼nR)
are of the form a¬mn ⇒ a¬kn, ε ⇒ 1¬mn and 0¬kn ⇒ ε, where k,m ∈ Z. The
first type of sequents are equivalent over InGL to sequents of the form a⇒ a¬kn,
for k ∈ Z; Since ε∼ = ε− = ε the last two sequents are already derivable in
InGL. Consequently, we have obtained a proof of s in InGL from these initial
sequents. �

Corollary 5.5. Given a sequent that is not provable in InGL, there is an upper
bound on the number n such that the sequent is provable in InGL + (∼n).

Proof. We define the negation depth na(x) of an occurrence of a formula a in x
inductively, by na(a) = 0, and if the formula b contains that occurrence of a, then
na(∼b) = na(b) + 1, na(−b) = na(b) − 1, na(b • c) = na(b), na(c • b) = na(b), for
• ∈ {∧,∨, ·}. If x contains that occurrence of a, then na(x∼) = na(x)+1, na(x−) =
na(x)− 1, na(x ◦ y) = na(x), na(y ◦ x) = na(x). For example na(a¬kn) = kn. Note
that the subscript a denotes a specific occurrence of the formula a, but for the sake
of notational simplicity the position of the formula is not made explicit. Given
two disjoint occurrences of formulas a and b in a sequent s, we define the negation
difference da,b(s) from b to a in s as follows. If a appears in x and b appears in y,
we define da,b(x ⇒ y) = da,b(y ⇒ x) = nb(y) − na(x), da,b(x ◦ y ⇒ z) = da,b(z ⇒
y ◦x) = nb(y)−na(x)−1, da,b(y ◦x⇒ z) = da,b(z ⇒ x◦y) = nb(y)−na(x)+1. For
the situations, where a and b appear in the same formula in s with a appearing in
c and b appearing in d (we consider fixed occurrences of c, d): in case the product
c · d appears in s, we define da,b(s) = nb(d) − na(c) − 1 and in case the product
d · c appears in s, we define da,b(s) = nb(d) − na(c) + 1. In all other cases da,b(s)
is undefined (or we can define it to be equal to 0, as it makes no difference). For
example, da,b(a⇒ b¬kn) = kn; also the negation difference from the second to the
first occurrence of a in a ⇒ a¬kn is kn. As da,b(s) = −db,a(s), it is the absolute
values of negation differences that are of interest.

It is straightforward that for each rule of cut-free InGL and for each formula
that appears in the numerator of a rule, the maximum negation difference between
occurrences of this formula in the sequents in the numerator is less than or equal to
the maximum negation difference between occurrences of this formula in the denom-
inator of the rule. (Actually, in view of the strong form of the subformula property
in cut-free InGL, every occurrence of a formula in a sequent in the numerator of a
rule has a corresponding occurrence in the denominator of the rule. The negation
difference between two occurrences of a formula in any sequent of the numerator is
equal to the negation difference between the two corresponding occurrences of the
formula in the denominator.) In short, the rules of cut-free InGL do not decrease
negation differences between occurrences of a formula.

Now let s be a sequent, not provable in InGL but provable in InGL+(∼n). By
Theorem 5.4 an axiom of the form a⇒ a¬kn is used in its proof in the augmented
InGL. Let d be the maximum negation difference between any two occurrences
of any formula in s. The absolute value of the negation difference between the
occurrences of a in a⇒ a¬kn is |k|n for some k ∈ Z, so |k|n ≤ d, and n ≤ d/|k|. �

Corollary 5.6. For every sequent s there exists an even natural number ns such
that s is provable in InGL + (∼ns) iff s is provable in InGL.

Corollary 5.7. The system InGL has the FMP.
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Proof. If s is not provable in InGL, it is not provable in InGL+(∼ns). The latter
has FMP so s fails in a finite involutive r`u-groupoid (satisfying x∼ns = x). �

Lemma 5.8. Rules (∼nL) and (∼nR) commute with all simple structural rules.

Proof. Let (r) be a (multiple conclusion) simple structural rule and assume that x
appears in t0. We will write t0(x) for t0, treating t0 as a unary linear polynomial.

t1 ⇒ z · · · tk ⇒ z
t0 ⇒ z

(r)

t1(x)⇒ z · · · tk(x)⇒ z

t0(x)⇒ z
(r)

t0(x∼n)⇒ z
(∼nL)

→

t1(x)⇒ z

t1(x∼n)⇒ z · · ·
tk(x)⇒ z

tk(x∼n)⇒ z
(∼nL)

t0(x∼n)⇒ z
(r)

where the uppermost steps in the second proof indicate repeated applications of
(∼nL) to each occurrence of x in ti(x). �

Corollary 5.9. The systems InGLR have the FMP, for every set R of simple
rules (without negations) for which the complexity does not increase. In particular,
InGLa and InGLae (or equivalently InFL and InFLe, resp.) have the FMP.

Proof. First we note that we can focus only on simple rules for which t0 contains all
of the variables of the rule. If this fails and in the rule (r) ti contains a variable x
not in t0, then the rule (r′) obtained from (r) by deleting the sequent containing ti
is equivalent to (r), as semantically we can make the value of x, and therefore also of
ti, arbitrarily small, which means that ti is redundant in the corresponding equation
tFm
0 ≤ tFm

1 ∨ · · · ∨ tFm
n . Consider thus an instance of a rule where every variable

x of the numerator also appears in the denominator. For every formula in any
sequent in the numerator, the maximum negation difference between occurrences
of the formula in this sequent in the numerator is less than or equal to the maximum
negation difference between occurrences of the formula in the denominator. This
follows from the observation that if the two occurrences of the formula in the sequent
in the numerator appear in instances of the (possibly identical) variables x and y,
and since x and y will also appear in the denominator, then the absolute value of
the negation difference will also be witnessed in the denominator. Consequently,
the maximum of the absolute values of negation differences (of two occurrences of
a formula) does not decrease downward in an application of a simple rule. Hence
the reasoning in the proof of Corollary 5.5 applies in view of Lemma 5.8. �

We mention that the preceding results can also be reformulated with an equiv-
alent one-sided sequent calculus for InFL. Finally, we would like to thank the
anonymous referee for many valuable comments and corrections.
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