On some properties of quasi-MV algebras and $\sqrt{\cdot}$ quasi-MV algebras. Part IV

Peter Jipsen1, Antonio Ledda2, Francesco Paoli2

1Department of Mathematics, Chapman University, USA
2Department of Philosophy, University of Cagliari, Italy

September 26, 2011

Abstract

In the present paper, which is a sequel to [20, 4, 12], we investigate further the structure theory of quasi-MV algebras and $\sqrt{\cdot}$ quasi-MV algebras. In particular: we provide a new representation of arbitrary $\sqrt{\cdot}$qMV algebras in terms of $\sqrt{\cdot}$qMV algebras arising out of their MV* term subreducts of regular elements; we investigate in greater detail the structure of the lattice of $\sqrt{\cdot}$qMV varieties, proving that it is uncountable, providing equational bases for some of its members, as well as analysing a number of slices of special interest; we show that the variety of $\sqrt{\cdot}$qMV algebras has the amalgamation property; we provide an axiomatisation of the 1-assertional logic of $\sqrt{\cdot}$qMV algebras; lastly, we reconsider the correspondence between Cartesian $\sqrt{\cdot}$qMV algebras and a category of Abelian lattice-ordered groups with operators first addressed in [10].

1 Introduction

Quasi-MV algebras are generalisations of MV algebras that have been introduced in [16] and investigated over the past few years. The original motivation for their study arises in connection with quantum computation; more precisely, as a result of the attempt to provide a convenient abstraction of the algebra over the set of all density operators of the Hilbert space \mathbb{C}^2, endowed with a suitable stock of quantum logical gates. Quite independently of this aspect, however, qMV algebras present several, purely algebraic, motives of interest within the frameworks of quasi-subtractive varieties [15] and of the subdirect decomposition theory for varieties [13]. $\sqrt{\cdot}$quasi-MV algebras (for short, $\sqrt{\cdot}$qMV algebras) were introduced as term expansions of qMV algebras by an operation of square root of the negation [9]. The above referenced papers contain the basics of the structure theory for these varieties, including appropriate standard completeness theorems w.r.t. the algebras over the complex numbers which constituted the starting point of the whole research project. In the subsequent
papers [20, 4, 10, 12, 14] the algebraic properties of qMV algebras and \(\sqrt{q} \)qMV algebras were investigated in greater detail.

The present paper continues the series initiated with [20, 4, 12] by gathering some more results of the same kind. Actually, the main focus of the present article is on \(\sqrt{q} \)qMV algebras alone, but we preferred to keep the same title as in the previous members of the series to underscore the resemblance of the underlying approaches and themes. In particular, in § 2 we provide a new representation of arbitrary \(\sqrt{q} \)qMV algebras in terms of \(\sqrt{q} \)qMV algebras arising out of their MV* term subreducts of regular elements. In § 3 we investigate in greater detail the structure of the lattice of \(\sqrt{q} \)qMV varieties, explicitly proving for the first time that it is uncountable, providing equational bases for some of its members, as well as analysing a number of slices of special interest. § 4 amounts to a short note to the effect that the whole variety of \(\sqrt{q} \)qMV algebras has the amalgamation property. § 5 gives an axiomatisation of the 1-assertional logic of \(\sqrt{q} \)qMV algebras. Finally, in § 6 we reconsider the correspondence between Cartesian \(\sqrt{q} \)qMV algebras and a category of Abelian lattice-ordered groups with operators first addressed in [10], establishing a few additional results on that score.

With an eye to shrinking the paper down to an acceptable length, we assume familiarity with both the content and the notation of the above-referenced papers. In particular, we will abide by the conventions already adopted in the previous papers of the series, with the following exception: a congruence \(\theta \) of a \(\sqrt{q} \)qMV algebra \(A \) is called Cartesian (flat) iff \(A/\theta \) is Cartesian (flat). We also make a note once and for all of the following result (a sort of restricted Jónsson’s Lemma for \(\sqrt{q} \)qMV), which will be repeatedly used in the sequel without special mention:

Lemma 1 [12] Let \(K \) be a class of \(\sqrt{q} \) qMV algebras. If \(A \in V(K) \) is a subdirectly irreducible Cartesian algebra, then \(A \in HSP_U(K) \).

As to the rest, except where indicated otherwise, we keep to the terminological and notational conventions typically adopted in universal algebra and abstract algebraic logic.

2 A representation theorem for \(\sqrt{q} \)qMV algebras

The paper [9] contains two representation theorems for \(\sqrt{q} \)qMV algebras. The first one, restricted to Cartesian algebras, says that every Cartesian \(\sqrt{q} \)qMV algebra is a subalgebra of the pair algebra over its own MV* term subreduct.
of regular elements. According to the second theorem, which on the other hand applies to all \(\sqrt q\)qMV algebras, a generic \(\sqrt q\)qMV algebra is a subdirect product of a Cartesian algebra and a flat algebra. Both results are flawed by a common shortcoming: the representation mappings are embeddings, rather than isomorphisms. It would be desirable to amend this defect and characterise \(\sqrt q\)qMV algebras along the lines of the analogous theorem for qMV algebras to be found in [4], where a generic qMV algebra is proved isomorphic to a qMV algebra arising out of an MV algebra with additional labels. This much will be accomplished in the present section.

Definition 2 Let \(A\) be an MV* algebra. A numbered MV* algebra over \(A\) is an ordered quintuple \(A = \langle A, \gamma, \kappa_1, \kappa_2, \kappa_3 \rangle\), where \(\gamma\) is a cardinal function with domain \(A^2\) and \(\kappa_1, \kappa_2, \kappa_3\) are cardinals s.t.: 1) \(\kappa_1 + \kappa_2 + \kappa_3 = \gamma (k^A, k^A)\); 2) if \(\kappa_2\) is a natural number, then it is even; 3) if \(\kappa_3\) is a natural number, then it is a multiple of 4.

If one thinks of a \(\sqrt q\)qMV algebra as a subalgebra of a pair algebra \(\wp(A)\) over an MV* algebra (possibly) along with an additional number of elements corresponding to non-singleton \(\lambda\)-cosets, then, intuitively, the function \(\gamma\) assigns to every member \(\langle a, b \rangle\) the cardinality of \(\langle a, b \rangle / \lambda\), while \(\kappa_1, \kappa_2\) and \(\kappa_3\) respectively express the number of fixpoints for \(\sqrt q\), of fixpoints for \(\sqrt q\) that are not themselves fixpoints for \(\sqrt q\), and of non-fixpoints for \(\sqrt q\) to be found in \(\langle k, k \rangle / \lambda\). Bearing this interpretation in mind, we are ready to define label \(\sqrt q\)qMV algebras.

Definition 3 Let \(A = \langle A, \gamma, \kappa_1, \kappa_2, \kappa_3 \rangle\) be a numbered MV* algebra. Let moreover

\[
K_1 = \{\delta + 1 : \delta < \kappa_1\}; \\
K_2 = \{1 + \kappa_1 + \delta : \delta < \kappa_2\}; \\
K_3 = \{1 + \kappa_1 + \kappa_2 + \delta : \delta < \kappa_3\},
\]

and let \(g, h\) be, respectively, an involution on \(K_2\) and a function of period 4 on \(K_3\). A label \(\sqrt q\)qMV algebra on \(A\) is an algebra \(B = \langle B, \oplus_B, \sqrt{q_B}, 0^B, 1^B, k^B \rangle\) of type \(\langle 2, 1, 0, 0, 0 \rangle\) s.t.:

- \(B = \bigcup_{a,b\in A} (\langle a, b \rangle) \times \gamma (a, b));\)
- \(\langle a_1, b_1, l_1 \rangle \oplus_B \langle a_2, b_2, l_2 \rangle = \langle a_1 \oplus a_2, k^A, 0 \rangle;\)
- \(\sqrt{q_B} (a, b, l) = \begin{cases} \\
\langle b, a^A, l \rangle, & \text{if } a \neq k \text{ or } b \neq k \text{ or } (a = b = k \text{ and } l \in K_1) \\
\langle b, a^A, g(l) \rangle, & \text{if } a = b = k \text{ and } l \in K_2 \\
\langle b, a^A, h(l) \rangle, & \text{if } a = b = k \text{ and } l \in K_3 \\
\end{cases};\)
- \(0^B = \langle 0^A, k^A, 0 \rangle;\)
- \(1^B = \langle 1^A, k^A, 0 \rangle;\)
Observe that we omitted some angle brackets and parentheses for the sake of notational irredundancy; accordingly, we sometimes refer to elements of \(B \) as “triples”, with a slight linguistic abuse. Keeping in mind our previous intuitive description of a \(\sqrt{q} \text{MV} \) algebra \(Q \) as a subalgebra of the pair algebra \(\wp(R_Q) \) over the MV* algebra \(R_Q \) (possibly) along with an additional number of elements corresponding to non-singleton \(\lambda \)-cosets, every member \(a \in Q \) appears in \(B \) as the triple consisting of its projections \(a \oplus 0 \) and \(\sqrt{a} \oplus 0 \) and a label uniquely characterising \(a \) within \(a/\lambda \). We remark that \(B \) is defined in such a way as to exclude triples whose first projection \(a \) and second projection \(b \) are such that \(\gamma(a,b) = 0 \). Intuitively, this corresponds to the fact that, in general, not all elements of \(\wp(R_Q) \) belong to the subalgebra \(Q \).

We now show that the name “label \(\sqrt{q} \text{MV} \) algebra” is not a misnomer.

Lemma 4 Every label \(\sqrt{q} \text{MV} \) algebra is a \(\sqrt{q} \text{MV} \) algebra.

Proof. We check only a few representative axioms, leaving the remainder of this task to the reader and omitting all unnecessary subscripts and superscripts.

\[
\sqrt[\sqrt{q}]{\langle a, b, l \rangle} \oplus \langle 0, k, 0 \rangle = \langle a^\prime, b^\prime, l^\prime \rangle \oplus \langle 0, k, 0 \rangle \\
= \langle a^\prime, k, 0 \rangle \\
= \sqrt[\sqrt{q}]{\langle a, k, 0 \rangle} \\
= \sqrt[\sqrt{q}]{\langle a, b, l \rangle} \oplus \langle 0, k, 0 \rangle.
\]

That \(\sqrt[\sqrt{q}]{k} = k \) is clear enough, while

\[
\sqrt[\sqrt{q}]{\langle (a_1, b_1, l_1) \oplus (a_2, b_2, l_2) \rangle} \oplus \langle 0, k, 0 \rangle = \sqrt[\sqrt{q}]{\langle (a_1 \oplus a_2, k, 0) \rangle} \oplus \langle 0, k, 0 \rangle \\
= \langle k, (a_1 \oplus a_2)^\prime, 0 \rangle \oplus \langle 0, k, 0 \rangle \\
= \langle k, k, 0 \rangle.
\]

We now have to define the target structure of our representation. If \(Q \) is an arbitrary \(\sqrt{q} \text{MV} \) algebra, then the term subreduct \(R_Q \) of regular elements is an MV* algebra, whence

\[
R_Q = \langle R_Q, \gamma, \kappa_1, \kappa_2, \kappa_3 \rangle
\]

where:

- \(k^B = \langle k^A, k^A, 0 \rangle \).
\(\gamma(a, b) = \left\{ c \in Q : c \oplus 0 = a \text{ and } \sqrt{c} \oplus 0 = b \right\} ; \)
\(\kappa_1 = \left\{ c \in Q : c \oplus 0 = \sqrt{c} \oplus 0 = k \text{ and } \sqrt{c} = c \right\} ; \)
\(\kappa_2 = \left\{ c \in Q : c \oplus 0 = \sqrt{c} \oplus 0 = k \text{ and } \sqrt{c} \neq c \text{ and } c = c' \right\} ; \)
\(\kappa_3 = \left\{ c \in Q : c \oplus 0 = \sqrt{c} \oplus 0 = k \text{ and } c \neq c' \right\} . \)

is a numbered MV\(^*\) algebra. The fact that \(\kappa_2 (\kappa_3) \) is the union of two (four) disjoint equipotent subsets via the bijection induced by \(\sqrt{c} \) automatically determines an obvious involution \(g \) on \(K_2 \) and a corresponding function \(h \) of period 4 on \(K_3 \), and this, in turn, according to Definition 3, univocally specifies a label \(\sqrt{q} \text{MV algebra on } R_Q \), which we call \(B_Q^{g,h} \). We now prove that:

Theorem 6 Every \(\sqrt{q} \text{MV algebra } Q \) is isomorphic to a label \(\sqrt{q} \text{MV algebra } B_Q^{g,h} \) on the numbered MV\(^*\) algebra \(R_Q \) over its own term subreduct \(R_Q \) of regular elements.

Proof. For \(a \in Q \), let \(a/\lambda = \left\{ c_j : j < \gamma \left(a \oplus 0, \sqrt{a} \oplus 0 \right) \right\} \), where \(b = c_0 \) in case \(b = b \oplus 0 \). If \(a = c_i \), we define \(\phi(a) = \left(a \oplus 0, \sqrt{a} \oplus 0, i \right) \). We first have to check that \(\phi \) is one-one. However, if \(\phi(a) = \phi(b) \), we have in particular that \(\langle a \oplus 0, \sqrt{a} \oplus 0 \rangle = \langle b \oplus 0, \sqrt{b} \oplus 0 \rangle \), whence \(a/\lambda = b/\lambda \). Since \(i = j \), we get that \(a = c_i = c_j = b \). Also, \(\phi \) is onto \(B_Q^{g,h} \) because a generic element of \(B_Q^{g,h} \) has the form \(\langle a, b, i \rangle \), whence \(\gamma(a, b) \neq 0 \) and so there exists a \(c \in Q \) s.t. \(c = c_i \) in \(\left\{ d \in Q : d \oplus 0 = a \text{ and } \sqrt{d} \oplus 0 = b \right\} \); clearly, \(\phi(c) = \langle a, b, i \rangle \).

It remains to check that \(\phi \) is a homomorphism. However, applying the appropriate \(\sqrt{q} \text{MV axioms and our stipulation that } q = c_0 \) in case \(q = q \oplus 0 \),

\[
\phi(a \oplus Q b) = \langle a \oplus Q b, k, 0 \rangle \\
= \langle a \oplus Q 0, \sqrt{a} \oplus Q 0, i \rangle \oplus B_Q^{g,h} \langle b \oplus Q 0, \sqrt{b} \oplus Q 0, j \rangle \\
= \phi(a) \oplus B_Q^{g,h} \phi(b) .
\]

In a similar fashion, we can prove that the constants are all preserved. As regards the square root of the negation, we have to go through a case-splitting argument. If \(a \notin k/\lambda \), we observe that by Lemma 5 the equivalence classes \(a/\lambda \) and \(\sqrt{a}/\lambda \) can be enumerated in such a way that \(a \) and \(\sqrt{a} \) are assigned the same label \(i \). Then

\[
\phi\left(\sqrt{Q} a \right) = \langle \sqrt{Q} a \oplus Q 0, a' \oplus Q 0, i \rangle \\
= \sqrt{B_Q^{g,h}} \langle a \oplus Q 0, \sqrt{Q} a \oplus Q 0, i \rangle \\
= \sqrt{B_Q^{g,h}} \phi(a) .
\]
In the remaining cases, we only have to make sure that the application of \(\varphi \) gets the third component of \(\sqrt[3]{q}a \) right, because the definition of \(\sqrt[3]{q} \) in label \(\sqrt[3]{q}\text{MV} \) algebras is identical in all cases relatively to the first two components. Indeed, if \(a \in k/\lambda \) and \(a = \sqrt[3]{a} = c_i \), then \(\pi_3(\sqrt[3]{q}a) = i = \pi_3(\sqrt[3]{B^h_a}) \) because \(a \) is a fixpoint for \(\sqrt[3]{q} \), while if \(a \in k/\lambda \), \(a \neq \sqrt[3]{a} \) and \(a = a' = c_i \), then \(\pi_3(\sqrt[3]{q}a) = g(i) = \pi_3(\sqrt[3]{B^h_a}) \). The remaining fourth case is handled similarly, using the function \(h \).

3 The lattice of subvarieties of \(\sqrt[3]{q}\text{MV} \)

Recall that a finite Lukasiewicz chain is of the form
\[
L_{n+1} = (\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}, \oplus', 0, 1)
\]
for \(n > 0 \) where \(x \oplus y = \min(1, x + y) \) and \(x' = 1 - x \). Alternatively \(L_{n+1} = (\{0, 1, \ldots, n\}, \oplus', 0, n) \) where \(x \oplus y = \min(n, x+y) \) and \(x' = n - x \). Let \(C = \mathbb{Z} \times \mathbb{Z} \) be ordered lexicographically by \(\langle a, b \rangle < \langle c, d \rangle \) if and only if \(a < b \) or \(a = b \) and \(c < d \). The countable Lukasiewicz chains with infinitesimals are defined by \(L_{n+1, \varepsilon} = (\{x \in C : (0, 0) \leq x \leq (n, 0)\}, \oplus', \langle 0, 0 \rangle, \langle n, 0 \rangle) \), where \(\langle a, b \rangle \oplus \langle c, d \rangle = \min(\langle n, 0 \rangle, \langle a+c, b+d \rangle) \) and \(\langle a, b \rangle' = \langle n, 0 \rangle - \langle a, b \rangle \). The elements \((i, 0) \) are the standard elements and the remaining elements are the infinitesimals, with \((0, 1) \) denoted by \(\varepsilon \). The join-irreducible MV varieties are generated by either \(L_n \) or \(L_{n, \varepsilon} \) or the standard MV-algebra \(L_{[0, 1]} = (\{0, 1\}, \oplus', 0, 1) \), and all other varieties are generated by finite collections of these algebras, hence there are only countably many MV varieties [11]. The same result holds for quasi MV-algebras [4], though the classification of subvarieties is somewhat more involved.

Although the lattice of \(\sqrt[3]{q}\text{MV} \) varieties was investigated in detail in [12] and in [14], several problems concerning its structure were left open. In particular, it was conjectured that, although there are only countably many subvarieties of \(q\text{MV} \), the number of \(\sqrt[3]{q}\text{MV} \) varieties is uncountable — however, the above-referenced papers did not settle the issue either way. After dispatching a mandatory recap of known results in the next subsection, we go on to fill some gaps concerning the structure of some slices and to provide equational bases for some interesting varieties.

3.1 Structure of the lattice

The lattice \(L^{\sqrt[3]{q}\text{MV}} \) of subvarieties of \(\sqrt[3]{q}\text{MV} \) can be depicted as in Fig. 3.1.1: the whole lattice sits upon the chain consisting of the four varieties which contain only flat algebras: the trivial variety, its unique cover \(V(F_{100}) \) (axiomatised relative to \(\sqrt[3]{q}\text{MV} \) by the single equation \(x \approx \sqrt[3]{x} \)), \(V(F_{920}) \) (axiomatised by \(x \approx x' \)) and the variety of all flat algebras, \(F = V(F_{004}) \) (axiomatised by \(x \oplus 0 \approx 0 \)).
The lattice of subvarieties of $\sqrt[q]{qMV}$. \mathcal{V}^\times and \mathcal{V}° are shorthands for, respectively, $\mathcal{V}(\{\text{Rt}(A): A \in \mathcal{V}_{SI}\})$ and $\mathcal{V}(\{\varphi(A): A \in \mathcal{V}_{SI}\})$.

On top of this chain, the dark grey area represents the sublattice $\mathcal{L}^V(\mathcal{S})$ of varieties generated by strongly Cartesian algebras, i.e. by $\sqrt[q]{qMV}$ algebras whose elements are either regular or coregular. The bottom of this sublattice is $\mathcal{V}(\text{Rt}(L_3))$, the variety generated by the smallest nontrivial (5-element) Cartesian algebra, while its top is the variety $\mathcal{V}(\mathcal{S})$ generated by all strongly Cartesian algebras. In general, if A is an MV* algebra, $\text{Rt}(A)$ refers to the strongly Cartesian algebra obtained by adjoining to A a coregular element for every member of $A - \{k\}$ (its square root of the negation); as an illustration, $\text{Rt}(L_5)$ is depicted in Fig. 3.1.2.

The main results we proved concerning $\mathcal{L}^V(\mathcal{S})$ are listed below.

Theorem 7 $\mathcal{V}(\mathcal{S})$ is axiomatised relative to $\sqrt[q]{qMV}$ by the single equation

$$x \uplus \sqrt[q]{x} \geq k.$$

Interpreted over Cartesian algebras whose regular elements are linearly ordered, such an equation says that any element a is either greater than or equal to k or such that its square root of the negation is greater than or equal to k. Because of the properties of $\sqrt[q]$, this is equivalent (over Cartesian algebras with linearly ordered regular elements) to every element being either regular or coregular.

If we define, for \mathcal{V} a variety of MV* algebras, $\text{Rt}(\mathcal{V})$ as $\mathcal{V}(\{\text{Rt}(A): A \in \mathcal{V}\})$, it is possible to prove that:

Theorem 8 The lattice $\mathcal{L}^V(MV^*)$ of all nontrivial MV* varieties is isomorphic to $\mathcal{L}^V(\mathcal{S})$ via the mapping $\varphi(\mathcal{V}) = \text{Rt}(\mathcal{V})$.

7
The light grey areas represent what we (in [12]) called “slices”, i.e. intervals in $L^V(\sqrt[q]{qMV})$ whose bottom elements are members of $L^V(S)$. By a non-flat variety of $\sqrt[q]{qMV}$ algebras we mean a variety which contains at least an algebra not in F (equivalently, as we have seen, a variety above or equal to $V(\text{Rt}(L_3))$).

We have that:

Lemma 9 A non-flat $\sqrt[q]{qMV}$ algebra A is subdirectly irreducible iff $\text{Rt}(R_A)$ is subdirectly irreducible iff $\wp(R_A)$ is subdirectly irreducible. If V is a non-flat variety, the varieties V, $V(\{\text{Rt}(R_A) : A \in V\})$, and $V(\{\wp(R_A) : A \in V\})$ have the same strongly Cartesian and flat subdirectly irreducible members.

Slices are precisely intervals of $L^V(\sqrt[q]{qMV})$ of the form

$$[V(\{\text{Rt}(A) : A \in V_{SI}\}), V(\{\wp(A) : A \in V_{SI}\})],$$

for some variety V of MV* algebras. Every non-flat variety is contained in some slice:

Lemma 10 Every non-flat variety V belongs to the interval

$$[V(\{\text{Rt}(R_A) : A \in V\}), V(\{\wp(R_A) : A \in V\})].$$

The preceding results have a noteworthy consequence: by our description of flat varieties, as well as by Theorem 8 and Lemma 10, $V(F_{100})$ is the single atom of $L^V(\sqrt[q]{qMV})$. However, the class of congruence lattices of algebras in $V(F_{100})$
The lattice S_n contains a subposet order-isomorphic to the interval $[\text{Rt}(L_{2n+1}), \varphi(L_{2n+1})]$ in the lattice of subalgebras of $\varphi(L_{2n+1})$, and is itself isomorphic to the lattice of order ideals of the poset $P^+(n^2)$ of all nonempty subsets of a set with n^2 elements.

3.2 There are uncountably many subvarieties of \sqrt{qMV}

In this subsection we first show that the top slice of the lattice of subvarieties of \sqrt{qMV}, whose bottom element is $V(\text{Rt}(\text{MV}_{[0,1]}))$ and whose top element is the whole of \sqrt{qMV}, contains uncountably many elements. Subsequently, we prove that we do not have to wait until we reach the top slice in order to find an uncountable one: there are uncountably many varieties of \sqrt{qMV} algebras, even if we restrict ourselves to varieties generated by algebras obtained from Lukasiewicz chains with infinitesimals.

Recall that in [14] appropriate \sqrt{qMV} terms $\chi^{(a,b)}_i(c,d)$ ($1 \leq i \leq 4$) were used with the property that, if (a,b) and (c,d) are elements of S_r,

Lemma 12

1. $\chi^{(a,b)}_1((c,d)) \neq 1$ iff $c < a$ and $d < b$,
2. $\chi^{(a,b)}_2((c,d)) \neq 1$ iff $c < a$ and $d > b$,
3. $\chi^{(a,b)}_3((c,d)) \neq 1$ iff $c > a$ and $d > b$,
4. $\chi^{(a,b)}_4((c,d)) \neq 1$ iff $c > a$ and $d < b$.

In particular, if $a, b, c, d \in [0, 1]$, the $\chi^{(a,b)}_i$’s have the following form, for some MV terms2 $\lambda_a, \lambda_b, \rho_a, \rho_b$:

- $\chi^{(a,b)}_1(x) = \lambda_a(x) \cup \lambda_b(\sqrt{x})$
- $\chi^{(a,b)}_2(x) = \lambda_a(x) \cup \rho_b(\sqrt{x})$
- $\chi^{(a,b)}_3(x) = \rho_a(x) \cup \rho_b(\sqrt{x})$

2Actually, unbeknownst to us, the terms $\lambda_a, \lambda_b, \rho_a, \rho_b$ had been defined, although in a different notation, by Aguzzoli [1], to whom it is fair to credit their introduction.
• \(\chi_4^{(a,b)}(x) = \rho_a(x) \uplus \lambda_b(\sqrt{x}) \)

A rather obvious geometric intuition for visualising the terms \(\chi_i^{(a,b)}(x) \) is that each of these defines its own rejection rectangle, consisting of all points \(u \in S_r \) that falsify \(\chi_i^{(a,b)}(u) = 1 \) (Fig. 3.2.1). More precisely, these rectangles are as follows:

- for \(\chi_1^{(a,b)}(u) \), the lower left-hand corner is \(\langle 0, 0 \rangle \) and the upper right-hand corner is \(\langle a, b \rangle \),
- for \(\chi_2^{(a,b)}(u) \), the upper left-hand corner is \(\langle 0, 1 \rangle \) and the lower right-hand corner is \(\langle a, b \rangle \),
- for \(\chi_3^{(a,b)}(u) \), the upper right-hand corner is \(\langle 1, 1 \rangle \) and the lower left-hand corner is \(\langle a, b \rangle \),
- for \(\chi_4^{(a,b)}(u) \), the lower right-hand corner is \(\langle 1, 0 \rangle \) and the upper left-hand corner is \(\langle a, b \rangle \).

Using these terms, we can show that:

Theorem 13 The top slice in \(L_V(\sqrt{qMV}) \) contains uncountably many varieties.

Proof. Consider the line segment with endpoints \(\langle 0, \frac{1}{2} \rangle, \langle \frac{1}{2}, 0 \rangle \) in \(S_r \), and let \(\langle a_0, ..., a_k, ... \rangle \) be any countable sequence of points in the segment converging to

![Fig. 3.2.1. Rejection rectangle for \(\chi_1^{(a,b)}(x) \). \(\langle c, d \rangle \) is in the rectangle iff \(\chi_1^{(a,b)}(\langle c, d \rangle) \neq \langle 1, \frac{1}{2} \rangle \).](image-url)
For $X \subseteq N$, let A_X be the smallest subalgebra of S_r which includes $Rt(MV_{[0,1]})$ and contains $\{a_k : k \in X\}$. It will suffice to show that, if $X \neq Y$, then A_X and A_Y generate different varieties. In fact, if $X \neq Y$, then w.l.o.g. there will be an $a_j \in A_X$ which does not belong to A_Y. Since the sequence $\langle a_0, \ldots, a_k, \ldots \rangle$ is countable, there will be some neighbourhood N of a_j (in the standard Euclidean topology of the plane) and some $b \in N$ such that b is point-wise greater than a_j and has the property that the rejection rectangle associated with the term $\chi^i_j(x)$ includes a_j but no other a_k, for $k \neq j$. Therefore, $A_Y = \chi^i_j(x) \approx 1$, but $A_X \not\approx \chi^i_j(x) \approx 1$, for $\chi^i_j(a_j) \neq 1$.

We now show that uncountability is not restricted to the top slice. Let

$$t_n(x) = (((n+1)x') \oplus \sqrt[n]{x}) \cup (nx \oplus (\sqrt[n]{x})') \cup 2x \cup 2\sqrt[n]{x},$$

where the notation nx is defined by $0x = 0$ and $nx = x + (n-1)x$ for $n > 0$. For each set S of positive integers we define a subalgebra of $\varphi(L_{2\varepsilon})$ by

$$A_S = \text{Rt}(L_{\varepsilon}) \cup \{\langle 2\varepsilon, j\varepsilon' \rangle, \langle j\varepsilon, (2\varepsilon)' \rangle, \langle (2\varepsilon)' \cup (j\varepsilon)' \rangle, \langle (j\varepsilon)' \cup 2\varepsilon \rangle : j = 2i+1 \text{ for } i \in S\}$$

Theorem 14 Let S,T be two distinct sets of positive integers.

1. $A_S \models t_n(x) \approx 1$ if and only if $n \notin S$;
2. $V(A_S) \neq V(A_T)$.

Proof. (1) Note that $A_S \not\models t_n(x) \approx 1$ is equivalent to $2\varepsilon \neq 1$, $2\sqrt[2\varepsilon]{\varepsilon} \neq 1$, $(n+1)c' \oplus \sqrt[n]{c} \neq 1$ and $nc \oplus (\sqrt[2\varepsilon]{c})' \neq 1$ for some $c \in A_S$. The first two inclusions ensure that $x^{A_S} = \langle a, b \rangle$ for some $a, b < k = \frac{1}{2}$, hence $a = 2\varepsilon$ and $b = j\varepsilon$ for some $j = 2i+1$ where $i \in S$.

So, $((n+1)\langle a, b \rangle)' \oplus \sqrt[n]{\langle a, b \rangle} = \langle 1 - (n+1)a + b, \frac{1}{2} \rangle = \langle \min(1 - (n+1)a + b, \frac{1}{2} \rangle \neq 1$ if and only if $1 - (n+1)a + b < 1$, which is equivalent to $b < (n+1)a$, i.e., $j\varepsilon < 2(n+1)\varepsilon$, so $2i + 1 < 2n + 1$, hence $i \leq n$. Similarly $n(a, b) \oplus (\sqrt[2\varepsilon]{a, b})' = \langle na, \frac{1}{2} \rangle \oplus (1 - b, a) \neq 1$ if and only if $na + 1 - b < 1$, or equivalently $2n\varepsilon < (2i+1)\varepsilon$, hence $n \leq i$. It follows that the identity $t_n(x) \approx 1$ fails in A_S precisely when $n = i$ for some $i \in S$.

(2) is an immediate consequence of (1), since either $n \in S \setminus T$ or $n \in T \setminus S$, so the identity $t_n(x) \approx 1$ distinguishes the two varieties. ■

The proof given above can be adapted to subalgebras of $\varphi(L_{2m+1,\varepsilon})$.

Corollary 15 For $m > 0$ the lattice of subvarieties of $V(\varphi(L_{2m+1,\varepsilon}))$ is uncountable.

Although the $L_{2\varepsilon}$-slice contains uncountably many varieties, it is possible to describe parts of the poset of join-irreducible varieties near the bottom of the slice. For a finite set $S \subseteq N$, let

$$B_S = \text{Rt}(L_{\varepsilon}) \cup \{\langle i\varepsilon, 0 \rangle, \langle 0, (i\varepsilon)' \rangle, \langle (i\varepsilon)' \cup 1 \rangle, \langle 1, i\varepsilon \rangle : i \in S\}$$

Theorem 16 Let S,T be finite subsets of N. Then $V(B_S) \subseteq V(B_T)$ if and only if there is a positive integer m such that $\{mn : n \in S\} \subseteq T$.\[11\]
Lemma 17

Proof. For the forward implication, let \(y_n, y_1, \ldots \) be a sequence of distinct variables, let \(M = \max(T) \), assume \(V(B_S) \subseteq V(B_T) \) and consider the equation

\[
e_S : \bigvee_{n \in S} \left[\left((nx \dashv y_n)^M \right)^{\prime} \oplus y_n^\prime \right] \uplus 2y_n \oplus 2\sqrt{n}y_n \approx 1,
\]

where \(x \dashv y = (x' \oplus y) \ominus (y' \oplus x) \) and \(\bigvee \) generalises \(\uplus \) to finitely but otherwise arbitrarily many arguments. Note that \(e_S \) fails in \(B_S \) since if we let \(x^{B_S} = \langle \varepsilon, 0 \rangle \) and \(y_n^{B_S} = \langle n\varepsilon, 0 \rangle \) then each of the terms in the join gives a value strictly less than 1. Therefore \(e_S \) also fails in \(B_T \) for some assignment to the variables. From \(2y_n^{B_T} < 1 \) and \(2\sqrt{n}y_n^{B_T} < 1 \) we deduce that the \(y_n \) are assigned irregular elements, hence for all \(n \in S \), \(y_n^{B_T} = \langle q_n\varepsilon, 0 \rangle \) for some \(q_n \in T \). Moreover, \(x^{B_T} = \langle m\varepsilon, 0 \rangle \) or \(x^{B_T} = \langle m\varepsilon, \frac{1}{2} \rangle \) for \(m > 0 \), since in all other cases the term \(((nx \dashv y_n)^M)^{\prime} \oplus y_n^\prime \) evaluates to 1. In addition \(((nx^{B_T} \dashv y_n^{B_T})^M)^{\prime} \oplus (y_n^{B_T})^\prime \approx 1 \) implies \((nx^{B_T} \dashv y_n^{B_T})^M \leq (y_n^{B_T})^\prime \oplus 0 \). If \(nx^{B_T} \dashv y_n^{B_T} < 1 \) then \(nx^{B_T} \dashv y_n^{B_T} \leq \langle \varepsilon, \frac{1}{2} \rangle \), hence \((nx^{B_T} \dashv y_n^{B_T})^M \leq (\langle M\varepsilon \rangle^{\prime}, \frac{1}{2}) \leq y_n^{B_T} \oplus 0 \), a contradiction. Therefore \(nx^{B_T} \dashv y_n^{B_T} = 1 \), whence \(mn\varepsilon = q_n\varepsilon \). Since \(q_n \in T \) for all \(n \in S \), we conclude that \(\{mn : n \in S\} \subseteq T \).

For the reverse implication, suppose \(\{mn : n \in S\} \subseteq T \) for some \(m > 0 \). Define the map \(h : B_S \to B_T \) by \(h(\langle i\varepsilon, j\varepsilon \rangle) = \langle mi\varepsilon, mj\varepsilon \rangle \), and extend it homomorphically to all of \(B_S \). This map is always an embedding on the regular and coregular elements of \(B_S \), and by assumption \(\langle mi, 0 \rangle \in B_T \) for all \(i \in S \), whence the map is also an embedding on the irregular elements. Therefore \(B_S \in V(B_T) \), as required. \(\blacksquare \)

Note that the above result implies that \(V(B_S) \) and \(V(B_T) \) are distinct if \(S \neq T \), but this property does not hold for infinite sets \(S, T \) in general. For example if \(S = N \setminus \{0\} \) and \(T = N \) then \(B_S \) is a subalgebra of \(B_T \), and \(B_T \) is a homomorphic image of any nonprincipal ultrapower of \(B_S \), hence \(V(B_S) = V(B_T) \). Similarly the top variety of the \(L_n \) slice, which is generated by the pair algebra \(\varphi(L_{\text{CL}}) \), is also generated by the subalgebra obtained by removing the 4 “corners” \(\langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 1 \rangle \), or indeed, by removing any finite set of irregular points that is invariant under \(\sqrt{T} \).

3.3 Equational bases for some subvarieties

In [12, 14] the lattice \(L^V(\sqrt{qMV}) \) was described to some extent, but — differently from what had been done for \(L^V(qMV) \) in [4] — no equational bases were given for individual subvarieties. Here, we provide such bases at least for some reasonably simple cases. We start with an easy task: axiomatising the varieties generated by strongly Cartesian algebras. By Theorem 8 every such variety is the rotation of some variety of \(MV^* \) algebras.

Lemma 17 Let \(V \) be a variety of \(MV^* \) algebras whose equational basis w.r.t. \(MV^* \) is \(\mathcal{E} \). Then \(R^V(\mathcal{E}) \) is axiomatised relative to \(\sqrt{qMV} \) by \(\mathcal{E} \) and the strongly Cartesian equation

\[
\left(x \uplus \sqrt[T]{x} \right) \oplus k \approx 1.
\]
Proof. From left to right, $\text{Rt} (A) \in \text{Rt} (\mathcal{V})$ is a $\sqrt{q} \text{MV}$ algebra which satisfies $(x \sqcup \sqrt{x}) \oplus k \approx 1$ by Theorems 7 and 8. Moreover, since \mathcal{E} can be taken to be a set of normal MV^* equations by results in [7, Chapter 8], A will satisfy \mathcal{E} as a qMV algebra, whence it will satisfy these equations altogether. Conversely, let A be a s.i. $\sqrt{q} \text{MV}$ algebra which satisfies both \mathcal{E} and $(x \sqcup \sqrt{x}) \oplus k \approx 1$.

Being subdirectly irreducible, it is either Cartesian or flat. If the latter, then $A \in \mathcal{Rt} (\mathcal{V})$ because flat algebras are contained in every variety generated by strongly Cartesian algebras. If the former, then its MV^* term subreduct R_A is also subdirectly irreducible and, therefore, linearly ordered. As a consequence, the axiom $(x \sqcup \sqrt{x}) \oplus k \approx 1$ expresses the fact that any element is either above k or such that its own square root of the negation is above k. It follows that $A = \mathcal{Rt} (B)$ for some MV^* algebra B. Since A satisfies \mathcal{E}, however, B (having fewer elements) also satisfies it and thus $A \in \mathcal{Rt} (\mathcal{V})$. ■

By Theorem 11, each slice whose bottom element is the variety generated by the rotation $\mathcal{Rt} (L_{2n+1})$ of a single finite Lukasiewicz chain L_{2n+1}, and whose top element is the variety generated by the full pair algebra $\varphi (L_{2n+1})$, has exactly $2n^2$ join irreducible elements, one for each set of irregular elements in any one “quadrant” of $\varphi (L_{2n+1})$. We are now going to give explicit equational bases for all of them. For this purpose, it will be expedient to identify their generating algebras with subalgebras of S_r. If we do so, each meet and join irreducible variety in any such slice can be identified with the variety generated by the algebra A_p, obtained by removing from $\varphi (L_{2n+1})$ exactly the point $p = \langle \frac{m_1}{2n}, \frac{m_2}{2n} \rangle$, together with $\sqrt{p}, \sqrt{p}', \sqrt{p''}$. With no loss of generality, of course, p can be taken to reside in the first quadrant, i.e. $m_1, m_2 \in \{0, \ldots, n-1\}$.

Theorem 18 If \mathcal{E} axiomatises $V (L_{2n+1})$ relative to \mathcal{MV}^*, then $V (A_p)$ is axiomatised relative to $\sqrt{q} \mathcal{MV}$ by \mathcal{E} as well as $t_p (x) \approx 1$, where

$$t_p (x) = \lambda_1 (\frac{m_1+1}{2n}, \frac{m_2+1}{2n}) (x) \sqcup \lambda_3 (\frac{m_1-1}{2n}, \frac{m_2-1}{2n}) (x).$$

Proof. After observing that the term $t_p (x)$ can be further unwound as

$$\lambda_{m_1+1} (x) \sqcup \rho_{\frac{m_1-1}{2n}} (x) \sqcup \lambda_{m_2+1} (\sqrt{x}) \sqcup \rho_{\frac{m_2-1}{2n}} (\sqrt{x}),$$

our proof goes through a number of claims.

Claim 19 In the standard MV^* algebra $\text{MV} [0,1]$, $\lambda_{\frac{m_1+1}{2n}} (a) \sqcup \rho_{\frac{m_1-1}{2n}} (a) < 1$ if $a \in (\frac{m_1-1}{2n}, \frac{m_1+1}{2n})$.

In fact, by Lemma 15 in [14], $\lambda_{\frac{m_1+1}{2n}} (a) = 1$ if $a > \frac{m_1+1}{2n}$, while $\rho_{\frac{m_1-1}{2n}} (a) = 1$ if $a < \frac{m_1-1}{2n}$. Therefore, the indicated join is 1 exactly for the points that lie outside of the open interval $(\frac{m_1-1}{2n}, \frac{m_1+1}{2n})$. Now the following claims are immediate consequences of Claim 19:

3Recall that an equation $t \approx s$ (of a given type) is said to be normal iff either t and s are the same variable or else neither t nor s is a variable [6].
Claim 20 In S_r, $\lambda_{\frac{m_1+1}{2n}}(a) \cup \rho_{\frac{m_1-1}{2n}}(a) < 1$ iff $a \in \left(\frac{m_1-1}{2n}, \frac{m_1+1}{2n}\right)$.

Claim 21 In S_r, $t_p(a) < 1$ iff a belongs to the open square with centre p and radius $\frac{1}{2n}$.

Having established these claims, it follows that A_p satisfies $t_p(x) \approx 1$, while any subdirectly irreducible Cartesian algebra in the slice satisfying $t_p(x) \approx 1$ must be a subalgebra of $\psi(L_{2n+1})$ in the light of the remarks preceding Lemma 11 and at the same time exclude the point p, i.e. be a subalgebra of A_p. □

Corollary 22 An arbitrary join irreducible variety $V(A)$ in the slice whose bottom element is $V(\mathfrak{r}(L_{2n+1}))$ is axiomatised relative to \sqrt{q}MV by E as well as $\{t_p(x) \approx 1 : p \notin A\}$, where $p = \langle \frac{m_1}{2n}, \frac{m_2}{2n} \rangle$ for $m_1, m_2 \in \{0, \ldots, n-1\}$.

4 \sqrt{q}MV has the amalgamation property

An amalgam is a tuple $\langle A, f, B, g, C \rangle$ such that A, B, C are structures of the same signature, and $f : A \rightarrow B, g : A \rightarrow C$ are embeddings (injective morphisms). A class \mathcal{K} of structures is said to have the amalgamation property if for every amalgam with $A, B, C \in \mathcal{K}$ and $A \neq \emptyset$ there exists a structure $D \in \mathcal{K}$ and embeddings $f' : B \rightarrow D, g' : C \rightarrow D$ such that $f' \circ f = g' \circ g$. A couple of decades ago, Mundici proved that MV algebras have the amalgamation property [19], and his result was extended to the variety qMV in [4]. In the same paper it was proved that both Cartesian and flat \sqrt{q}MV algebras amalgamate, but the property was not established for the entire variety of \sqrt{q}MV algebras, although it was to be expected that it would hold. Since taking this further step is not completely trivial, we answer the question in the affirmative in this subsection.

Theorem 23 The variety of \sqrt{q}MV algebras enjoys the amalgamation property.

Proof. Let A, B, C be \sqrt{q}MV algebras such that:

\[\begin{align*}
 \text{A} & \xrightarrow{s} \text{B} \\
 \text{A} & \xleftarrow{f} \text{B} \\
 \text{C} & \xrightarrow{g} \text{B}
\end{align*} \]
where \(f, g\) are embeddings. By the Third isomorphism theorem and the representation theorem for \(\sqrt{q}\text{MV}\) algebras the following diagram commutes:

\[
\begin{array}{c}
B \\
\text{\(\uparrow f\)} \\
A \\
\text{\(\downarrow g\)} \\
C
\end{array}
\begin{array}{c}
\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \\
B/\lambda \times B/\mu \\
A/\lambda \times A/\mu \\
C/\lambda \times C/\mu
\end{array}
\] (1)

But Cartesian and flat \(\sqrt{q}\text{MV}\) algebras possess the amalgamation property. Therefore there exist a Cartesian algebra \(D_C\), and a flat algebra \(D_F\) such that the following is commutative:

\[
\begin{array}{c}
B/\lambda \times B/\mu \\
\rightarrow \quad \rightarrow \\
A/\lambda \times A/\mu \\
\rightarrow \quad \rightarrow \quad \rightarrow \\
D_C \times D_F \\
C/\lambda \times C/\mu
\end{array}
\] (2)

Thus, combining the previous two diagrams, we see that \(D_C \times D_F\) amalgamates \(\langle A, f, B, g, C \rangle\).

5 The 1-assertional logic of \(\sqrt{q}\text{MV}\)

Recall that the 1-assertional logic [3] of a class \(K\) of similar algebras of type \(\nu\) (containing at least one constant 1) is the logic whose language is \(\nu\) and whose consequence relation \(\vdash_K\) is defined for all \(\Gamma \cup \{\alpha\} \subseteq \text{For}(\nu)\) as follows:

\[
\Gamma \vdash_K \alpha \text{ if and only if } \{\gamma \approx 1 : \gamma \in \Gamma\} \vdash_K \alpha \approx 1,
\]

where \(\vdash_K\) is the equational consequence relation of the class \(K\). Although this consequence relation need not, in general, be finitary [8], it can be forced to be such by changing its definition into

\[
\Gamma \vdash_K \alpha \text{ iff there is a finite } \Gamma' \subseteq \Gamma \text{ s.t. } \{\gamma \approx 1 : \gamma \in \Gamma'\} \vdash_K \alpha \approx 1.
\]

Hereafter, we will adopt the latter definition of 1-assertional logic. Since we will deal with logics on the same language, we will also identify logics with their associated consequence relation, with a slight linguistic abuse.
Among the several abstract logics related to $\sqrt{q}\mathbb{W}$ that were introduced and motivated in [21], there were the 1-assertional logics $\vdash_{\sqrt{q}\mathbb{W}}$ of the variety $\sqrt{q}\mathbb{W}$ (a term equivalent variant of $\sqrt{q}\mathbb{W}$ in the language $\{\neg, \vee, 0, 1\}$, where $x \rightarrow y = x' \oplus y$) and $\vdash_{\mathbb{CW}}$ of the quasivariety \mathbb{CW} of Cartesian algebras (also formulated in the same language; \mathbb{W} stands for Wajsberg algebras). Such logics differ profoundly from each other as regards their abstract algebraic logical properties. For example, while the latter is a regularly algebraisable logic whose equivalent algebraic semantics is \mathbb{CW}, the former is not even protoalgebraic. The above-referenced paper provides an axiomatisation of $\vdash_{\mathbb{CW}}$ that streamlines the algorithmic axiomatisation obtained from the standard axiomatic presentation of the relatively point regular quasivariety \mathbb{CW} by the Blok-Pigozzi method [2], as well as a characterisation of its deductive filters. For the non-protoalgebraic logic $\vdash_{\sqrt{q}\mathbb{W}}$, the axiomatisation problem is not trivial and cannot be tackled by standard methods, since we cannot construct anything like the Lindenbaum algebra of the logic. The aim of the present section is giving an answer to this problem.

For a start, since \mathbb{CW} is a subquasivariety of $\sqrt{q}\mathbb{W}$, we observe that:

Lemma 24 If $\alpha_1, ..., \alpha_n \vdash_{\sqrt{q}\mathbb{W}} \alpha$, then $\alpha_1, ..., \alpha_n \vdash_{\mathbb{CW}} \alpha$.

We also recall the following lemma, first proved in [21]. Here and in the sequel, $\sqrt{\tau}^{(n)} \alpha$ is inductively defined by $\sqrt{\tau}^{(0)} \alpha = \alpha$ and $\sqrt{\tau}^{(m+1)} \alpha = \sqrt{\tau} \left(\sqrt{\tau}^{(m)} \alpha \right)$.

Lemma 25 $\alpha_1, ..., \alpha_n \vdash_{\sqrt{q}\mathbb{W}} \sqrt{\tau}^{(m)} p$ iff at least one of the following conditions hold:

1. For some integer $k \equiv m \pmod{4}$ $\sqrt{\tau}^{(k)} p \in \{\alpha_1, ..., \alpha_n\}$;
2. For some integer $k \not\equiv m \pmod{4}$ $\sqrt{\tau}^{(k)} p \in \{\alpha_1, ..., \alpha_n\}$ and $\alpha_1, ..., \alpha_n \vdash_{\mathbb{CW}} 0$.

The next result shows that although the converse of Lemma 24 need not be true in general, we can nonetheless infer some information from its premiss.

Lemma 26 $\alpha_1, ..., \alpha_n \vdash_{\mathbb{CW}} \alpha$ iff $\alpha_1, ..., \alpha_n \vdash_{\sqrt{q}\mathbb{W}} \alpha \rightarrow 1$, where
\[
\alpha \leftrightarrow \beta = (\alpha \rightarrow \beta) \otimes (\beta \rightarrow \alpha) \otimes \left(\sqrt{\tau} \alpha \rightarrow \sqrt{\tau} \beta \right) \otimes \left(\sqrt{\tau} \beta \rightarrow \sqrt{\tau} \alpha \right).
\]

Proof. Left to right. Suppose $\alpha_1, ..., \alpha_n \vdash_{\mathbb{CW}} \alpha$, and let A be a $\sqrt{\tau}$ $q\mathbb{W}$ algebra. Suppose further that $\overline{a} \in A^i$, where i is the number of variables in the indicated formulas, and that $\alpha^A_1(\overline{a}) = ... = \alpha^A_n(\overline{a}) = 1$. Now, the quotient A/λ is a Cartesian algebra, whence our hypothesis that $\alpha_1, ..., \alpha_n \vdash_{\mathbb{CW}} \alpha$ implies $\alpha^{A/\lambda}(\overline{a}/\lambda) = 1^{A/\lambda}$, i.e. $\alpha^{A}(\overline{a})\lambda 1$. Unwinding this statement, we get that
\[
\alpha^A(\overline{a}) \rightarrow 1 = 1 \rightarrow \alpha^A(\overline{a}) = \sqrt{\tau} \alpha^A(\overline{a}) \rightarrow \sqrt{\tau} 1 = \sqrt{\tau} 1 \rightarrow \sqrt{\tau} \alpha^A(\overline{a}) = 1,
\]
and so $\alpha^A(\overline{a}) \leftrightarrow 1 = 1$.

Right to left. Suppose $\alpha_1, ..., \alpha_n \vdash_{\sqrt{qW}} \alpha \leftrightarrow 1$, and let A be a Cartesian algebra. Suppose further that $\overline{a} \in A^i$, and that $\alpha^A(\overline{a}) = ... = \alpha^A_n(\overline{a}) = 1$. Since A is in particular a \sqrt{qW} algebra, $\alpha^A(\overline{a}) \leftrightarrow 1 = 1$ and, since the immediate subformulas of $\alpha \leftrightarrow 1$ are all regular,

$$\alpha^A(\overline{a}) \rightarrow 1 = 1 \rightarrow \alpha^A(\overline{a}) = \sqrt{1} \alpha^A(\overline{a}) \rightarrow \sqrt{1} = \sqrt{1} \rightarrow \sqrt{1} \alpha^A(\overline{a}) = 1.$$

This means $1 \rightarrow \alpha^A(\overline{a}) = 1$ and $1 \rightarrow \sqrt{1} \alpha^A(\overline{a}) = 1 \rightarrow \sqrt{1}$; since A is Cartesian, $\alpha^A(\overline{a}) = 1$. ■

An immediate consequence of the above lemma is:

Corollary 27 $\alpha_1, ..., \alpha_n \vdash_{CW} 0$ iff $\alpha_1, ..., \alpha_n \vdash_{\sqrt{qW}} 0$.

Lemma 28 For $m \geq 0$, $\alpha_1, ..., \alpha_n \vdash_{\sqrt{qW}} \sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)$ iff $\alpha_1, ..., \alpha_n \vdash_{CW} \sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)$.

Proof. The left-to-right direction follows from Lemma 24. For the converse direction, suppose $\alpha_1, ..., \alpha_n \vdash_{CW} \sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)$ and let A be a \sqrt{qW} algebra. Suppose further that $\overline{a} \in A^i$, and that $\alpha^A(\overline{a}) = ... = \alpha^A_n(\overline{a}) = 1$. By Lemma 26, $\sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)(\overline{a}) \leftrightarrow 1 = 1$; in full,

$$\left(1 \rightarrow \sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)(\overline{a})\right) \otimes \left(\sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)(\overline{a}) \rightarrow 1\right) \otimes \left(\sqrt{1} \rightarrow \sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)(\overline{a}) \rightarrow \sqrt{1}\right) = 1,$$

and so the immediate subformulas of the preceding formula, being regular, all evaluate to 1. Now, if m is odd, from $1 \rightarrow \sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)(\overline{a}) = 1$ we get $1 = k$. In other words A is flat, whence $\sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)(\overline{a}) = 1$. If m is even, then either $1 \rightarrow (\alpha \rightarrow \beta)(\overline{a}) = 1$ or $1 \rightarrow (\alpha \rightarrow \beta)^{\prime}(\overline{a}) = 1$, which respectively imply either $(\alpha \rightarrow \beta)(\overline{a}) = 1$ or $(\alpha \rightarrow \beta)^{\prime}(\overline{a}) = 1$. ■

Corollary 29 $\vdash_{\sqrt{qW}}$ and \vdash_{CW} have the same theorems.

Proof. From Lemma 28, since all the theorems of \vdash_{CW} have the form $\sqrt{1}^{\alpha_1} (\alpha \rightarrow \beta)$, for some $m \geq 0$. It is also a consequence of the fact that CW and \sqrt{qW} satisfy the same equations [9]. ■

The next Theorem gives a complete characterisation of the valid entailments of $\vdash_{\sqrt{qW}}$.

Theorem 30 $\alpha_1, ..., \alpha_n \vdash_{\sqrt{qW}} \alpha$ iff at least one of the following conditions hold:

1. $\alpha = \sqrt{1}^{\alpha_1} (\beta \rightarrow \gamma)$ (for some formulas β, γ and some $m \geq 0$) or $\alpha = 0$ or $\alpha = 1$, and $\alpha_1, ..., \alpha_n \vdash_{CW} \alpha$;
2. \(\alpha = \sqrt[p]{\gamma^m} \) (for some \(m \geq 0 \)) and for some integer \(k \equiv m \pmod{4} \)
\(\sqrt[p]{\gamma^k} \in \{\alpha_1, \ldots, \alpha_n\} \);

3. \(\alpha = \sqrt[p]{\gamma^m} \) (for some \(m \geq 0 \)) and for some integer \(k \not\equiv m \pmod{4} \)
\(\sqrt[p]{\gamma^k} \in \{\alpha_1, \ldots, \alpha_n\} \) and \(\alpha_1, ..., \alpha_n \vdash_{\text{qW}} 0 \).

Proof. From Lemmas 25 and 28. For the cases \(\alpha = 0 \) or \(\alpha = 1 \), use Corollaries 29 and 27.

We are now going to define a Hilbert system whose syntactic derivability relation will prove to be equivalent to \(\vdash_{\text{qW}} \). This system is both an expansion and a rule extension of the Hilbert system \(\vdash_{\text{qL}} \) for the logic of quasi-Wajsberg algebras introduced in [5], and the techniques used to prove completeness are heavily indebted to the tools adopted in the mentioned paper.

Definition 31 The deductive system \(\vdash_{\sqrt[\text{qL}]} \), formulated in the signature \(\langle \to, \sqrt[\gamma], 1, 0 \rangle \), has the following postulates:

\begin{align*}
A1. & \quad \alpha \to (\beta \to \alpha) \\
A2. & \quad (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma)) \\
A3. & \quad ((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \\
A4. & \quad (\alpha' \to \beta') \to (\beta \to \alpha) \\
A5. & \quad 1 \to \sqrt[\gamma](\alpha \to \beta) \to (1 \to \sqrt[\gamma](\alpha \to \beta)) \\
A6. & \quad \sqrt[\gamma]1 \to \sqrt[\gamma]0, \text{ for } \alpha, \beta \text{ regular form.} \\
A7. & \quad 1 \to \sqrt[\gamma](\alpha \to \beta) \leftrightarrow \sqrt[\gamma](1 \to \sqrt[\gamma](\alpha \to \beta)) \\
\text{qMP.} & \quad 1 \to \alpha, 1 \to (\alpha \to \beta) \vdash 1 \to \beta \\
\text{Areg1.} & \quad 1 \to \sqrt[p]{\gamma^m}(\alpha \to \beta) \to \sqrt[p]{\gamma^m}(\alpha \to \beta), \ (0 \leq m \leq 3) \\
\text{Reg.} & \quad \alpha \vdash 1 \to \alpha \\
\text{Inv.} & \quad \alpha \vdash \alpha'' \\
\text{Flat.} & \quad \alpha, 0 \vdash \sqrt[\gamma]1 \\
\text{GR.} & \quad \alpha, \beta \vdash \sqrt[\gamma]0 \to \sqrt[\gamma]0 \\
\text{Areg2.} & \quad 1 \to 0 \vdash 0 \\
\text{GR.} & \quad \alpha, \beta \vdash \sqrt[\gamma]0 \to \sqrt[\gamma]0.
\end{align*}

Lemma 32 The Cartesian logic \(\vdash_{\text{pW}} \), as axiomatised in [21], is the rule extension of \(\vdash_{\sqrt[\text{qL}]} \) by the rule

\[\text{MP}^*: \quad \alpha, \alpha \to \beta, \sqrt[p]{\gamma} \alpha \to \sqrt[p]{\gamma} \beta, \sqrt[p]{\gamma} \beta \to \sqrt[p]{\gamma} \alpha \vdash \beta. \]

Proof. For the sole missing axiom, observe that by (Flat) \(\sqrt[p]{\gamma} \alpha, 0 \vdash \alpha' \) and \(\alpha, 0 \vdash \sqrt[p]{\gamma} \alpha \), whence by (Cut) we have our conclusion.

The next lemma will prove very useful in the sequel and will be mostly employed without special mention.

Lemma 33 If \(\alpha_1, ..., \alpha_n \vdash_{\text{pW}} \alpha \) and \(\alpha_1, ..., \alpha_n, \alpha \) are regular formulas, then \(\alpha_1, ..., \alpha_n \vdash_{\sqrt[\text{qL}]} \alpha \).

Proof. From the assumptions \(\alpha_1, ..., \alpha_n \), by (Reg) we conclude \(1 \to \alpha_1, ..., 1 \to \alpha_n \), whence there is a proof in \(\vdash_{\sqrt[\text{qL}]} \) of \(1 \to \alpha \) using (qMP). Our claim follows then by (Areg1-2).

We now need a syntactic analogue of one direction in Lemma 26.

Lemma 34 If \(\alpha_1, ..., \alpha_n \vdash_{\text{CWL}} \alpha \) then \(\alpha_1, ..., \alpha_n \vdash_{\sqrt[\text{qL}]} \alpha \leftrightarrow 1. \)
Proof. In consideration of Lemma 32, we proceed by induction on the derivation of \(\alpha \) from \(\alpha_1, \ldots, \alpha_n \) in the Hilbert system given in the same lemma.

If \(\alpha \) is an axiom, then it is both \(\vdash qL \) axiom and a regular formula, whence \(\sqrt[\gamma]{\alpha} \rightarrow \sqrt[\gamma]{1} \) and \(\sqrt[\gamma]{1} \rightarrow \sqrt[\gamma]{\alpha} \) are both \(\vdash qL \) provable by (GR), while \(1 \rightarrow \alpha \) is \(\vdash qL \) provable by (Reg). Since \(\alpha \rightarrow 1 \) is \(\vdash qL \) provable by the completeness theorem for the subsystem \(qL \), we conclude that the conjunction of regular formulas \(\alpha \rightarrow 1 \) is also such.

Now, let \(\alpha = 1 \rightarrow \beta \) be obtained from \(\alpha_1, \ldots, \alpha_{n-1}, \beta \) by the rule (Reg). We have to prove that \(\alpha_1, \ldots, \alpha_{n-1}, \beta \vdash qL \) \(1 \rightarrow (\beta \leftrightarrow 1) \rightarrow 1 \). However, as already noticed \(1 \rightarrow (\beta \leftrightarrow 1) \rightarrow 1 \) is \(\vdash qL \) provable, while \(1 \rightarrow (1 \rightarrow \beta) \) is obtained from \(\beta \) by two applications of (Reg). \(\sqrt[\gamma]{1 \rightarrow \beta} \rightarrow \sqrt[\gamma]{1} \) and its converse are \(\vdash qL \) provable by (A6), whence we obtain our conclusion. The rules (Areg1-2), (qMP) and (GR) are dispatched similarly.

Let \(\alpha = \sqrt[\gamma]{\beta} \) be obtained from \(\alpha_1, \ldots, \alpha_{n-1}, \beta, 0 \) by the rule (Flat). We have to prove that \(\alpha_1, \ldots, \alpha_{n-1}, \beta, 0 \vdash qL \) \(\sqrt[\gamma]{\beta} \rightarrow 1 \), where, in full,

\[
\sqrt[\gamma]{\beta} \rightarrow 1 = (\sqrt[\gamma]{\beta} \rightarrow 1) \otimes (1 \rightarrow \sqrt[\gamma]{\beta}) \otimes (\beta' \rightarrow 1) \otimes (\sqrt[\gamma]{1} \rightarrow \beta').
\]

However, (i) \(\sqrt[\gamma]{\beta} \rightarrow 1 \) is \(\vdash qL \) provable by the completeness theorem for the subsystem \(qL \); (ii) \(1 \rightarrow \sqrt[\gamma]{\beta} \) can be derived from \(\beta, 0 \) by (Flat) and (Reg); (iii) from \(\beta, 0 \) we get \(\sqrt[\gamma]{\beta} \) by (Flat) and then \(\beta' \rightarrow \sqrt[\gamma]{1} \) and \(\sqrt[\gamma]{1} \rightarrow \beta' \) by (A5) and (GR). The rule (Inv) is dispatched similarly.

Finally, let \(\alpha = \beta \) be obtained from \(\alpha_1, \ldots, \alpha_{n-4}, \gamma, \gamma \rightarrow \beta, \sqrt[\gamma]{\gamma} \rightarrow \sqrt[\gamma]{\beta}, \sqrt[\gamma]{\beta} \rightarrow \sqrt[\gamma]{\beta} \) by the rule (MP*). By induction hypothesis,

\[
\alpha_1, \ldots, \alpha_{n-4} \vdash qL \gamma \rightarrow 1, (\gamma \rightarrow \beta) \rightarrow 1, (\sqrt[\gamma]{\gamma} \rightarrow \sqrt[\gamma]{\beta}) \rightarrow 1, (\sqrt[\gamma]{\beta} \rightarrow \sqrt[\gamma]{\gamma}) \rightarrow 1.
\]

We must show that \(\alpha_1, \ldots, \alpha_{n-4}, \gamma, \gamma \rightarrow \beta, \sqrt[\gamma]{\gamma} \rightarrow \sqrt[\gamma]{\beta}, \sqrt[\gamma]{\beta} \rightarrow \sqrt[\gamma]{\beta} \vdash qL \beta \rightarrow 1 \), where, in full,

\[
\beta \rightarrow 1 = (\beta \rightarrow 1) \otimes (1 \rightarrow \beta) \otimes (\sqrt[\gamma]{\beta} \rightarrow \sqrt[\gamma]{1}) \otimes (\sqrt[\gamma]{1} \rightarrow \sqrt[\gamma]{\beta}).
\]

However, (i) \(\beta \rightarrow 1 \) is \(\vdash qL \) provable by the completeness theorem for the subsystem \(qL \); (ii) applying (Reg) to the premisses \(\gamma, \gamma \rightarrow \beta \) we obtain \(1 \rightarrow \gamma, 1 \rightarrow (\gamma \rightarrow \beta), \) whence \(1 \rightarrow \beta \) follows by (qMP); (iii) our induction hypothesis\(^4\) yields \(1 \rightarrow (\sqrt[\gamma]{\beta} \rightarrow \sqrt[\gamma]{\gamma}) \), whence \(\sqrt[\gamma]{\beta} \rightarrow \sqrt[\gamma]{\gamma} \) follows from (Areg1). By induction hyp. again, we obtain \(\sqrt[\gamma]{\gamma} \rightarrow \sqrt[\gamma]{1} \), whence by transitivity (legitimate by Lemma 33) we conclude \(\sqrt[\gamma]{\beta} \rightarrow \sqrt[\gamma]{1} \). For \(\sqrt[\gamma]{1} \rightarrow \sqrt[\gamma]{\beta} \) we argue similarly. ■

Lemma 35 \(\sqrt[\gamma]{(m)} (\alpha \rightarrow \beta) \rightarrow 1 \vdash qL \sqrt[\gamma]{(m)} (\alpha \rightarrow \beta) \) for all \(m \geq 0.\)

\(^4\)Observe that the (MP*) step is the only locus in our proof where the inductive hypothesis is actually used.
Proof. From our hypothesis we deduce $1 \rightarrow \sqrt{\gamma(m)} (\alpha \rightarrow \beta)$, whence our conclusion follows by (Areg1).

Lemma 36 If $\alpha_1, ..., \alpha_n \vdash_{\text{CW}} 0$ then $\alpha_1, ..., \alpha_n \vdash_{\sqrt{\gamma L}} 0$.

Proof. By Lemma 34, if $\alpha_1, ..., \alpha_n \vdash_{\text{CW}} 0$ then $\alpha_1, ..., \alpha_n \vdash_{\sqrt{\gamma L}} 0 \leftrightarrow 1$, whence we deduce $1 \rightarrow 0$ and then 0 by (Areg2).

We are now ready to establish the main result of this section.

Theorem 37 $\alpha_1, ..., \alpha_n \vdash_{\sqrt{\gamma q L}} \alpha \iff \alpha_1, ..., \alpha_n \vdash_{\sqrt{\gamma q W}} \alpha$.

Proof. From left to right, we proceed through a customary inductive argument. Conversely, suppose that $\alpha_1, ..., \alpha_n \vdash_{\sqrt{\gamma q W}} \alpha$. Then, at least one of the conditions (1)-(3) in Theorem 30 obtains.

If (1) holds, then either $\alpha = \sqrt{\gamma(m)} (\beta \rightarrow \gamma)$ for some formulas β, γ and some $m \geq 0$, or $\alpha = 0$ or $\alpha = 1$; moreover, $\alpha_1, ..., \alpha_n \vdash_{\text{CW}} \alpha$. If $\alpha = \sqrt{\gamma(m)} (\beta \rightarrow \gamma)$, by Lemma 34 $\alpha_1, ..., \alpha_n \vdash_{\sqrt{\gamma L}} \sqrt{\gamma(m)} (\beta \rightarrow \gamma) \leftrightarrow 1$, whence our conclusion follows applying Lemma 35. If $\alpha = 0$ we reach the same conclusion by Lemma 36, while if $\alpha = 1$ (A5) suffices.

If (2) holds, we must show that $\alpha_1, ..., \alpha_{n-1}, \sqrt{\gamma(k)} p \vdash_{\sqrt{\gamma L}} \sqrt{\gamma(m)} p$. Since $k \equiv m \pmod{4}$, either $k = m$ (and so there is nothing to prove) or our conclusion can be attained by (Inv).

Finally, if (3) holds, we can assume that $\alpha_1, ..., \alpha_{n-1}, \sqrt{\gamma(k)} p \vdash_{\text{CW}} 0$. To show that $\alpha_1, ..., \alpha_{n-1}, \sqrt{\gamma(k)} p \vdash_{\sqrt{\gamma L}} \sqrt{\gamma(m)} p$, we apply Lemma 36 to get

$$\alpha_1, ..., \alpha_{n-1}, \sqrt{\gamma(k)} p \vdash_{\sqrt{\gamma L}} 0,$$

whence by (Flat) $\alpha_1, ..., \alpha_{n-1}, \sqrt{\gamma(k)} p \vdash_{\sqrt{\gamma L}} \sqrt{\gamma(k+1)} p$. From here, we proceed to our conclusion by as many applications of (Flat) and (Inv) as needed.

6 Cartesian $\sqrt{\gamma} q$MV algebras and Abelian PR-groups

Abelian PR-groups were defined in [10] as an expansion of Abelian ℓ-groups by two operations P, R that for C behave like a projection onto the first coordinate and a clockwise rotation by $\pi/2$ radians. It was proved that: a) every Cartesian $\sqrt{\gamma} q$ quasi-MV algebra is embeddable into an interval in a particular Abelian PR-group; b) the category of pair algebras is equivalent both to the category of such ℓ-groups (with strong order unit), and to the category of MV algebras. As a byproduct of these results a purely group-theoretical equivalence was obtained, namely between the mentioned category of Abelian PR-groups and the category of Abelian ℓ-groups (both with strong order unit).
Although these results shed some light on the geometrical structure of Cartesian \sqrt{q}MV algebras, as well as on their relationships with better known classes of algebras, they suffer from a shortcoming. In fact, the classes of objects in the above-mentioned categories do not form varieties, whence the connection between these theorems and the general theory of categorical equivalence for varieties [18] remains to some extent unclear. In particular, the fact that pair algebras are generated by S_r does not translate automatically into the fact that the variety of Abelian PR-groups is generated by the standard PR-group over the complex numbers. Here we prove a categorical equivalence for a larger variety of negation groupoids with operators, which includes Abelian groups and Abelian ℓ-groups. This result restricts to an equivalence between Abelian ℓ-groups and Abelian PR-groups, whence we can derive that the complex numbers actually generate the latter variety.

Definition 38 An operator with respect to the signature $(+, 0)$ is an n-ary operation f that satisfies the identities

$$f(x_1, \ldots, x_i + y_i, \ldots, x_n) \approx f(x_1, \ldots, x_i, \ldots, x_n) + f(x_1, \ldots, y_i, \ldots, x_n)$$

and $f(0, 0, \ldots, 0) \approx 0$.

Definition 39 A negation groupoid with operators is an algebra $A = \langle A, +, 0, -, f_1, f_2, \ldots \rangle$ such that the identities $x + 0 \approx 0 + x \approx x$, $-(-x) \approx x$ are satisfied and $-, f_1, f_2, \ldots$ are operators. A projection-rotation groupoid with operators, or PR-groupoid for short, is a negation groupoid with operators $\langle A, +, 0, -, f_1, f_2, \ldots, P, R \rangle$ (so P, R are also operators) such that the following identities hold for all $x, x_1, \ldots, x_n \in A$ and $i = 1, 2, \ldots$:

1. $P(-x) = -P(x)$
2. $Pf_i(x_1, \ldots, x_n) = f_i(P(x_1), \ldots, P(x_n))$
3. $PP(x) = P(x)$
4. $RR(x) = -x$
5. $PR(f_i(x_1, \ldots, x_n)) = f_i(PR(x_1), \ldots, PR(x_n))$
6. $PRP(x) = 0$
7. $P(x) + -RPR(x) = x$

Every negation groupoid A with operators gives rise to a PR-groupoid $F(A) = \langle A \times A, +, \langle \langle 0, 0 \rangle, -, f_1, f_2, \ldots, P, R \rangle \rangle$ where $+, -, f_i$ are defined pointwise, $P(\langle a, b \rangle) = \langle a, 0 \rangle$ and $R(\langle a, b \rangle) = \langle b, -a \rangle$. The operator identities and (1)-(5) are clearly satisfied, and checking (6), (7) is simple: $PRP(\langle a, b \rangle) = P(\langle 0, -a \rangle) = \langle 0, 0 \rangle$, while

$$P(\langle a, b \rangle) + -RPR(\langle a, b \rangle) = \langle a, 0 \rangle + -R(\langle b, 0 \rangle) = \langle a, 0 \rangle + \langle 0, b \rangle = \langle a, b \rangle.$$
The varieties of negation groupoids with operators and PR-groupoids

Theorem 40 Given a PR-groupoid $A = \langle A, +, 0, f_1, f_2, \ldots, P, R \rangle$, define $G(A) = \langle P(A), +, 0, f_1, f_2, \ldots \rangle$. Then $G(A)$ is a negation groupoid with operators, and the maps $e : A \to FG(A)$ given by $e(x) = \langle P(x), PR(x) \rangle$ and $d : B \to FG(B)$ given by $d(x) = \langle x, 0 \rangle$ are isomorphisms. Moreover, F, G are functors that give a categorical equivalence between the algebraic categories of negation groupoids with operators and PR-groupoids.

Proof. $e(x + y) = \langle P(x + y), PR(x + y) \rangle = e(x) + e(y)$ and $e(0) = \langle 0, 0 \rangle$ since P, R are operators. Similarly $e(-x) = -e(x)$ and $e(f_i(x_1, \ldots, x_n)) = f_i(e(x_1), \ldots, e(x_n))$ follow from (1), (2), (5). The homomorphism property for P, R is computed by

$$e(P(x)) = \langle PP(x), PRP(x) \rangle = (P(x), 0) = P(\langle P(x), PR(x) \rangle) = P(e(x))$$

$$e(R(x)) = \langle PR(x), PRR(x) \rangle = (PR(x), -P(x)) = R(\langle P(x), PR(x) \rangle) = R(e(x)).$$

If $e(x) = e(y)$ then $P(x) = P(y)$ and $PR(x) = PR(y)$, so (7) implies $x = y$, whence e is injective. Given $\langle P(x), P(y) \rangle \in FG(A)$, let $z = P(x) + R(-P(y))$. Then

$$e(z) = \langle PP(x) + PR(-P(y)), PRP(x) + PRR(-P(y)) \rangle$$

$$= \langle P(x) + -PRP(y), PP(y) \rangle$$

$$= \langle P(x), P(y) \rangle$$

hence e is surjective. Similarly, checking that d is an isomorphism of negation groupoids with operators is straightforward.

For a homomorphism h between negation groupoids with operators, we define a homomorphism between the corresponding PR-groupoids by $F(h)(\langle a, b \rangle) = \langle h(a), h(b) \rangle$. Likewise for a homomorphism h between PR-groupoids, let $G(h)$ be the restriction of h to the image of P, then $G(h)$ is a homomorphism of negation groupoids with operators. Moreover, it is easy to check that F, G are functors. \blacksquare

Corollary 41 The varieties of negation groupoids with operators and PR-groupoids are categorically equivalent. The equivalence restricts to Abelian ℓ-groups and Abelian PR-groups, whence the variety of Abelian PR-groups is generated by $\langle \mathbb{C}, \wedge, \vee, +, -, 0, P, R \rangle$, where $\langle \mathbb{C}, \wedge, \vee, +, -, 0 \rangle$ is the ℓ-group of the complex numbers (considered as \mathbb{R}^2), and P, R are defined by:

$$P \left(\langle a, b \rangle \right) = \langle a, 0 \rangle;$$

$$R \left(\langle a, b \rangle \right) = \langle b, -a \rangle.$$

We note that this result does not apply (in the current form) to non-Abelian (ℓ-)groups since the assumption that $-$ is an operator in a group implies that $+$ is commutative.
References

