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Abstract Right-residuated binars and right-divisible
residuated binars are defined as precursors of general-
ized hoops, followed by some results and open prob-
lems about these partially ordered algebras. Next we
show that all complete homomorphic images of a com-
plete residuated lattice A can be constructed easily on
certain definable subsets of A. Applying these obser-
vations to the algebras of Hajek’s Basic Logic (BL-
algebras), we give an effective description of the HS-
poset of finite subdirectly irreducible BL-algebras. The
lattice of finitely generated BL-varieties can be ob-
tained from this HS-poset by constructing the lattice
of downward closed sets. These results are extended
to bounded generalized BL-algebras using poset prod-
ucts and the duality between complete perfect Heyting
algebras and partially ordered sets.

We also prove that the number of finite general-
ized BL-algebras with n join-irreducible elements is,
up to isomorphism, the same as the number of pre-
orders on an n-element set, hence the same as the
number of closure algebras (i.e. S4-modal algebras)
with 2n elements. This result gives rise to a faithful
functor from the category of finite GBL-algebras to
the category of finite closure algebras that is full on ob-
jects, providing a novel connection between some sub-
structural logics and classical modal logic. Finally we
show how generic satisfaction modulo theories solvers
(SMT-solvers) can be used to obtain practical decision
procedures for propositional Basic Logic and many of
its extensions.

1 Residuated binars and generalized hoops

We begin by considering structures with a simpler sig-
nature than residuated lattices. The aim of this section
is to focus on the right-divisibility axiom in the setting
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of right-residuated structures, and without further as-
sumptions such as associativity or commutativity.

A right-residuated binar is of the form (A,≤, ·, /)
where (A,≤) is a partially ordered set, · is a binary
operation on A and / is its right residual. This means
that for all x, y, z ∈ A

xy ≤ z ⇐⇒ x ≤ z/y.

It follows that · is order-preserving in the left ar-
gument since if x ≤ y then yz ≤ yz implies y ≤ yz/z,
hence x ≤ yz/z, which is equivalent to xz ≤ yz. A sim-
ilar derivation show that / is order-preserving in the
left argument. A left-residuated binar is of the form
(A,≤, ·, \) and satisfies xy ≤ z ⇐⇒ y ≤ x\z. Fi-
nally, (A,≤, ·, \, /) is a residuated binar if (A,≤, ·, /)
is a right-residuated binar and (A,≤, ·, \) is a left-
residuated binar. We use the convention that · has
higher priority than / and \, so x/yz is read as x/(yz).
Note that the logic of residuated binars is given by the
non-associative Lambek calculus (see e.g. [12]). The
universal theory of residuated binars is decidable since
Farulewski [11] proves the finite embeddability for this
class of partially ordered algebras.

The theory becomes considerably more algebraic if
≤ is definable by an equation. Recall that a right nat-
ural preorder is given by the right-divisibility axiom:

x � y ⇐⇒ ∃u(x = uy).

In any monoid � is a preorder but here, instead
of assuming associativity, we use a (version of) this
axiom to define a subclass of right-residuated binars
in which ≤ is definable. We first note that even in the
general setting of a right-residuated binar, the exis-
tential quantifier can be eliminated.

Lemma 1 The following are equivalent in any right-
residuated binar.

(i) For all x, y (x ≤ y ⇐⇒ ∃u(x = uy))

(ii) For all x, y (x ≤ y ⇐⇒ x = (x/y)y).
(iii) The identities (y/y)x = x and (y/x)x = (x/y)y

hold.
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Proof (i) implies (ii): Suppose x ≤ y ⇐⇒ ∃u(x = uy)

holds. Assuming x ≤ y one obtains uy = x ≤ x

for some u, hence u ≤ x/y. Since · is order preserv-
ing in the left argument, we have x = uy ≤ (x/y)y.
The reverse inequality (x/y)y ≤ x holds in any right-
residuated binar, so we conclude that x ≤ y implies
x = (x/y)y.

Conversely, if x = (x/y)y holds, then ∃u(x = uy),
whence the first condition implies x ≤ y.

Clearly (ii) implies (i) since we can take u = x/y.
(ii) implies (iii): Assume that x ≤ y ⇐⇒ x =

(x/y)y for all x, y. Since x ≤ x, we get x = (x/x)x.
We always have x ≤ xy/y, hence xy ≤ (xy/y)y holds.
The reverse inequality is also true in general, so xy =

(xy/y)y. From the assumption it follows that xy ≤ y.
Therefore we have x ≤ y/y as an identity, hence x/x ≤
y/y. Interchanging x, y proves x/x = y/y. Multiplying
by x on the right we get x = (x/x)x = (y/y)x.

For the second identity, since (x/y)y ≤ x, we use
the assumption with x replaced by (x/y)y and y re-
placed by x to get (x/y)y = ((x/y)y/x)x. As in the
proof of the first identity, we have xy ≤ y. Dividing
and multiplying by z on both sides gives the identity
(xy/z)z ≤ (y/z)z. Now replace x by x/y and z by
x to see that ((x/y)y/x)x ≤ (y/x)x. It follows that
(x/y)y ≤ (y/x)x, and interchanging x, y proves the
identity.

Finally we show (iii) implies (ii). Assume the iden-
tities (y/y)x = x and (y/x)x = (x/y)y hold, and let
x ≤ y. Then (y/y)x ≤ y, hence y/y ≤ y/x. Multi-
plying by x on the right and using the second iden-
tity we get x = (y/y)x ≤ (y/x)x = (x/y)y. The re-
verse inequality follows from right-residuation, whence
x = (x/y)y.

Again, assume the two identities of (iii) holds, and
let x = (x/y)y. By right-residuation we have (y/x)x ≤
y, so we deduce (x/y)y ≤ y from the second identity.
Since we started with x = (x/y)y, we conclude that
x ≤ y. ut

A right-divisible residuated binar is a right-resid-
uated binar that satisfies the identities in Lemma 1(iii).
Note that y/y is a left identity for ·, and it is the top el-
ement in any right-divisible residuated binar, as shown
in the proof of (ii)⇒(iii). Hence we can expand the
signature of such binars with an element 1 to obtain
the following definition of the quasivariety of divisible
residuated binars.

A right-divisible unital residuated binar is a resid-
uated binar (A,≤, ·, 1, /) such that the three identities
x/x = 1, 1x = x and (y/x)x = (x/y)y hold. The third
identity is called right-div in proofs below. The par-
tial order is definable by x ≤ y ⇐⇒ x = (x/y)y

and the left-unit 1 is the top element in this poset.
Note that (x/y)y is a lower bound for any pair of el-
ements x, y and we always have 1 ≤ 1/x. Moreover,
x ≤ y ⇐⇒ 1x ≤ y ⇐⇒ 1 ≤ y/x, so we obtain the
following result.

Lemma 2 In a right-divisible unital binar the partial
order is down-directed and the identity 1/x = 1 holds.
The order is also definable by x ≤ y ⇐⇒ y/x = 1.

Reflexivity and antisymmetry of ≤ can be deduced
from the three identities, but transitivity and the resid-
uation property do not follow from them. Hence the
class of right-divisible unital residuated binars is a
quasivariety, defined by the three identities, transitiv-
ity of ≤ and the residuation implications. It is not
known if this class can be defined by identities alone,
or whether there is a decision procedure for the (in)equ-
ational theory.

We now show that adding one more identity, pro-
duces an interesting subvariety. In the arithmetic of
real numbers (or in any field) the following equation is
fundamental to the simplification of double fractions:

x
y

z
=

1

z
· x
y

=
x

zy
.

In a right-residuated binar this equation is called
the right hoop identity : (x/y)/z = x/zy.

Lemma 3 In a right-divisible unital residuated binar
the right hoop identity x/yz = (x/z)/y implies x(yz) =

(xy)z, x1 = x and x/1 = x.

Proof x(yz) = 1(x(yz)) (left unital)
= [(xy)z/(xy)z](x(yz)) since 1 = x/x

= [((xy)z/z)/xy](x(yz)) (right hoop id.)
= [(((xy)z/z)/y)/x](x(yz)) (right hoop id.)
= [((xy)z/yz)/x](x(yz)) (right hoop id.)
= [(xy)z/x(yz)](x(yz)) (right hoop id.)
= [x(yz)/(xy)z]((xy)z) by right-div
= reverse steps to get = (xy)z.

Now x ≤ 1 implies x = (x/1)1, hence x1 = ((x/1)1)1 =

(x/1)(11) = (x/1)1 = x. Finally x/1 = (x/1)1 =

(1/x)x = 1x = x. ut

A right generalized hoop is an algebra (A, ·, 1, /)
that satisfies the identities x/x = 1, 1x = x, (x/y)y =

(y/x)x and x/(yz) = (x/z)/y. We also define the
term-operation x ∧ y = (x/y)y and a binary relation
≤ by x ≤ y ⇐⇒ x = x ∧ y. The next lemma shows
that ∧ is a semilattice operation, hence ≤ is a par-
tial order on A. Moreover, A is right-residuated with
respect to this order and the left-unit 1 is the top el-
ement. Algebras with this latter property are said to
be integral.

Lemma 4 Let A be a right generalized hoop. Then

(i) the term x ∧ y = (x/y)y is idempotent, commuta-
tive and associative,

(ii) ≤ is a partial order and ∧ is a meet-semilattice
operation with respect to ≤,

(iii) x ≤ y ⇐⇒ y/x = 1 for all x, y ∈ A,
(iv) xy ≤ z ⇐⇒ x ≤ z/y for all x, y, z ∈ A, and
(v) x ≤ 1 for all x ∈ A, i.e., A is integral.
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Proof (i) The idempotence follows from the first two
identities, and commutativity follows from the third.
For associativity we calculate (x∧y)∧z = (((x/y)y)/z)z

by definition
= (z/(x/y)y)(x/y)y by right-div
= ((z/y)/(x/y))(x/y)y (right hoop id.)
= ((x/y)/(z/y))(z/y)y by assoc. and right-div
= (x/(z/y)y)(z/y)y (right hoop id.)
= x ∧ (z ∧ y) = x ∧ (y ∧ z)
(ii) Reflexivity, antisymmetry and transitivity of

≤ and the observation that x∧ y is the greatest lower
bound of x, y follow in the standard way from (i).

(iii) x ≤ y is equivalent to x = (x/y)y hence
y/x = y/((x/y)y) = y/((y/x)x) = (y/x)/(y/x) = 1,
where the third equality uses the right hoop identity.
Conversely, if y/x = 1 then (x/y)y = (y/x)x = 1x = x

and we conclude x ≤ y.
(iv) From xy ≤ z we deduce z/xy = 1 by (iii).

Hence (x/(z/y))(z/y) = ((z/y)/x)x = (z/xy)x = 1x =

x, or equivalently x ≤ z/y. Conversely, if x ≤ z/y then
x = (x/(z/y))(z/y) = (z/xy)x, so xy = (z/xy)xy =

(xy/z)z which is equivalent to xy ≤ z.
(v) Since xy ≤ xy, (iv) implies x ≤ xy/y. Multi-

plying by y gives xy ≤ (xy/y)y, and the reverse in-
equality also holds by (iv). Hence xy = (xy/y)y, or
equivalently xy ≤ y. A final application of (iv) pro-
duces x ≤ y/y = 1. ut

In particular, the above lemma shows that a right
generalized hoop is a right-divisible meet semilattice-
ordered integral residuated monoid, although the mon-
oid operation need not be order-preserving in the right
argument (see e.g. the 4-element right generalized hoop
at the end of this section). Adding the identity x(y ∧
z) ∧ xy = x(y ∧ z) would be a way to ensure this
property holds as well. It is an interesting question
whether right generalized hoops (with or without the
additional identity) have a decidable equational the-
ory.

A class of right-residuated monoids that has been
studied previously is the quasivariety of porrims (short
for partially ordered right-residuated integral monoids),
see e.g. [5,22]. However in these algebras the monoid
operation is order-preserving in both arguments, so
results about porrims do not automatically apply to
right generalized hoops.

A generalized hoop is an algebra (A, ·, 1, \, /) such
that (A, ·, 1, /) is a right generalized hoop, (A, ·, 1, \)
is a left generalized hoop (defined by the mirror-image
identities of a right generalized hoop) and both these
algebras have the same meet operation, i. e., the iden-
tity (x/y)y = y(y\x) holds. Generalized hoops were
first studied by Bosbach [6,7] and the name hoop was
introduced by Büchi and Owen [1975]. Generalized
hoops are also called pseudo hoops in the literature on
residuated structures. By the preceding lemma, they
are indeed left- and right-residuated. Botur, Dvurečen-
skij and Kowalski [8] prove that generalized hoops are
congruence distributive.

In a residuated binar, the residuation property im-
plies that · distributes over any existing joins in each
argument. However, this is not true for meets. The
following result was proved by N. Galatos for GBL-
algebras (defined below) but already holds for gener-
alized hoops.

Theorem 5 In any generalized hoop (x ∧ y)z = xz ∧
yz and x(y ∧ z) = xy ∧ xz.

Proof From xz ≤ xz it follows that x ≤ xz/z, hence
xz ≤ (xz/z)z. Likewise, from xz/z ≤ xz/z we deduce
(xz/z)z ≤ xz, therefore xz = (xz/z)z. Note that (x∧
y)z ≤ xz ∧ yz always holds since · is order-preserving.
To complete the proof, we calculate:

xz ∧ yz = (xz/yz)yz by definition
= ((xz/z)/y)yz (right hoop id.)
= (y/((xz)/z))(xz/z)z by assoc. and divisibility
= (y/((xz)/z))xz by the derived identity
≤ (y/x)xz = (y ∧ x)z since x ≤ (xz)/z. The sec-

ond identity is proved using the left generalized hoop
axioms. ut

In the last step we made use of the implication
x ≤ y ⇒ z/y ≤ z/x which holds in all residuated bi-
nars. It is interesting to note that this result requires
that · is order-preserving in the right argument. In-
deed, the distribution of · over ∧ from the right fails
in the following 4-element right generalized hoop. Let
R = ({a, b}, ·) be the unordered 2-element right-zero
semigroup, which means aa = ba = a and ab = bb = b.
Extend R to R01 = ({0 < a, b < 1}, ·) such that 1 is
an identity element as well as the top element, and
0x = x0 = 0 is the least element. Adding a zero
and/or an identity preserves associativity, so R01 is
a partially-ordered monoid. The operation tables for
this algebra are

· 0 a b 1

0 0 0 0 0

a 0 a b a

b 0 a b b

1 0 a b 1

/ 0 a b 1

0 1 0 0 0

a 1 1 0 a

b 1 0 1 b

1 1 1 1 1

and it is easy to check that R01 is a right generalized
hoop. However, (a ∧ b)a = (a/b)ba = 0ba = 0 while
aa ∧ ba = a ∧ a = (a/a)a = 1a = a. Note that the
monoid operation fails to be order-preserving in the
right argument since a ≤ 1 but a = ba � b1 = b.

2 Homomorphic images of residuated lattices,
hoops and GBL-algebras

In this section we point out that for finite residuated
lattices there is a simple and efficient way to construct
all homomorphic images. Rather than using the usual
universal algebraic quotient construction, the universe
of the homomorphic image is a specific subset of the
residuated lattice, with operations “relativized” to this
subset. We first mention some standard results that
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can be found, e.g., in [12]. Recall that a residuated lat-
tice is of the form (A,∧,∨, ·, 1, \, /) such that (A,∧,∨)

is a lattice, (A, ·, 1) is a monoid, and \, / are the left-
and right-residuals of the monoid operation. A congru-
ence relation θ of such an algebra is determined by the
congruence class [1]θ, and for a finite residuated lat-
tice this congruence class has a smallest element c. It
is easy to see that such an element is always a negative
central idempotent, which means that c ≤ 1, cc = c

and cx = xc for all x ∈ A. The set of all negative cen-
tral idempotents of a residuated lattice A is denoted
by IA. This set is a join-subsemilattice of A, and a dis-
tributive lattice when · is used as meet operation. In
fact, in the finite case, (IA, ·,∨) is dually isomorphic to
the congruence lattice of A [12, p. 198]. For an element
c ∈ A we define Ac = {xc : x ∈ A}, and operations
u ∧c v = (u ∧ v)c, u/cv = (u/v)c, u\cv = (u\v)c.

Theorem 6 Let A be a residuated lattice and c ∈ IA.
Then Ac = (Ac,∧c,∨, ·, c, \c, /c) is a residuated lattice
and the map h : A → Ac given by h(x) = xc is a
surjective homomorphism onto Ac. If θ is the kernel
of h then xc is the smallest element of [x]θ.

Proof Observe that Ac is closed under the operations:
xc ∨ yc = (x ∨ y)c and (xc)(yc) = xyc are both in
Ac, and for the other operations the same holds by
construction. The map h is clearly surjective, so it
suffices to check that it is a homomorphism, then the
homomorphic image will be a residuated lattice since
homomorphisms preserve identities. Distributivity of
· over ∨ shows that h preserves ∨, centrality and as-
sociativity imply that h preserves ·, h(x) ∧c h(y) =

(xc ∧c yc) = (xc ∧ yc)c ≤ (x ∧ y)c = h(x ∧ y) since
c ≤ 1, while (x ∧ y)c ≤ xc and (x ∧ y)c ≤ yc im-
ply (x ∧ y)c ≤ (xc ∧ yc)c. In any residuated lattice
(x/y)y ≤ x, so (x/y)yz ≤ xz and therefore x/y ≤
xz/yz. In particular, (x/y)c ≤ (xc/yc)c, which proves
h(x/y) ≤ h(x)/ch(y). For the opposite inequality we
have (xc/yc)yc ≤ xc ≤ x, hence by centrality and
idempotence (xc/yc)c ≤ (x/y)c. ut

The theorem works for arbitrary residuated lat-
tices. However in general it does not construct all ho-
momorphic images, only those where the 1-congruence
class of the kernel (and hence every congruence class)
has a smallest element.

Corollary 7 Let A be a finite (or complete) residu-
ated lattice and B any (complete) homomorphic image
of A. Then B is isomorphic to Ac where c is the small-
est negative central idempotent of A that is mapped by
the homomorphism to 1 in B.

Commutative generalized hoops are called hoops. In
this case x/y = y\x and this operation is usually
written as y → x. As we saw in the previous sec-
tion, generalized hoops are meet-semilattice-ordered
algebras. Integral generalized Basic Logic algebras, or
IGBL-algebras for short, are lattice-ordered general-
ized hoops, i.e., generalized hoops (A,∧, ·, 1, \, /) ex-
panded with a join operation ∨ such that (A,∧,∨) is

a lattice. Alternatively they can be defined as residu-
ated lattices that satisfy the identity x∧y = (x/y)y =

y(y\x), or equivalently satisfy the quasiequations
x ≤ y =⇒ x = (x/y)y = y(y\x).

Theorem 8 Let A be an IGBL-algebra with a cen-
tral idempotent element c ∈ A. Then Ac is isomorphic
to the principal ideal ↓c, hence ∧c = ∧ and the map
h(x) = xc does not identify any elements of this ideal.

Proof By the preceding quasiequation, if x ≤ c then
x = (x/c)c, and therefore x ∈ Ac. Also, h(x) = xc =

(x/c)cc = x, so h�↓c is the identity map. ut

Hajek’s Basic Logic algebras (BL-algebras) are de-
fined as IGBL-algebras that satisfy the identities xy =

yx and (x → y) ∨ (y → x) = 1 (prelinearity) and
have a new constant 0 that denotes the bottom el-
ement. The prelinearity property implies that sub-
directly irreducible BL-algebras are linearly ordered.
Generalized BL-algebras (or GBL-algebras) are just
divisible residuated lattices, but still retain many of
the properties of BL-algebras. For example they have
distributive lattice reducts, the fusion operation dis-
tributes over the meet operation, and in the n-potent
case they are integral and commutative [18]. Subdi-
rectly irreducible (I)GBL-algebras are, in general, not
linearly ordered, but in the finite case they have a
well-understood structure theory based on the poset
product construction [18,19], see Section 4 below.

It is easy to see that all finite generalized hoops are
reducts of integral GBL-algebras, since a finite meet
semilattice with a top element is a lattice. Moreover,
finite GBL-algebras are commutative [17], hence finite
generalized hoops are in fact hoops. The preceding
theorem also applies to generalized hoops, and in the
finite setting it describes all homomorphic images.

3 Finitely generated varieties of BL-algebras

In this section we give a description of finite sub-
directly irreducible BL-algebras and use it to calcu-
late the first few levels of the HS-poset of small BL-
algebras. The observations are known, but we recall
them here in preparation for extending them to gen-
eralized BL-algebras.

It is well known that subdirectly irreducible BL-
algebras are linearly ordered (this is more generally
true for commutative prelinear residuated lattices).
In the finite case this means that they are simply n-
element chains.

The ordinal sum A ⊕ B of two integral residu-
ated lattices (or posets) A,B is defined by taking the
disjoint union of A,B, then identifying the two units
1A = 1B = 1 and extending the partial order to all
elements so that every (non-unit) element of A is less
than every element of B. The operation · is extended
to A ⊕ B by ab = ba = a and the residuals are ex-
tended by a\b = b/a = 1 and b\a = a/b = a for all
a ∈ A− {1} and b ∈ B.
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The finite MV-chain with n + 1 elements is the
BL-algebra MVn = ({0 = cn < · · · < c1 < c0 =

1},∧,∨, ·,→, 1, 0) where ci · cj = cmin(i+j,n) and ci →
cj = cmax(j−i,0). Every finite subdirectly irreducible
BL-algebra A is an ordinal sum of finite MV-chains,
hence the structure of A is completely determined by
the idempotent elements in the chain. The top and
bottom of the chain are always idempotent, so if A has
n elements then there are 2n−2 choices for the idempo-
tent elements, and therefore 2n−2 nonisomorphic sub-
directly irreducible BL-algebras. We will denote each
of these algebras by Ba1a2...am where a1, a2, . . . , am is
a list of positive integers, m is the number of join-
irreducible idempotent elements and ai is one greater
than the number of non-idempotent elements between
the ith idempotent element and the (i+ 1)th idempo-
tent element in the chain, counting from the bottom.
Note that with this definition we have Ba1a2...am =

MVa1 ⊕MVa2 ⊕· · ·⊕MVam , hence B11...1 (with n 1’s
in the subscript) is the (n + 1)-element linear Heyt-
ing algebra, Bn = MVn, B1 is the 2-element Boolean
algebra, and we use B0 to denote the trivial algebra.
The length of the chain is always a1 +a2 + · · ·+am+1.

Theorem 9 Let A,B be finite subdirectly irreducible
BL-algebras. Every subalgebra of A is subdirectly irre-
ducible, and if B is a homomorphic image of A then B
is isomorphic to a subalgebra of A. Hence B ∈ HS(A)

if and only if B ∈ S(A).

Proof As mentioned before, subdirectly irreducible BL-
algebras are chains, so let A = Ba1a2...am and B =

Bb1b2...bk denote the two finite BL-chains. Conversely
any finite linearly-ordered residuated lattice is subdi-
rectly irreducible, since it has a largest negative cen-
tral idempotent < 1. Hence every subalgebra of A is
subdirectly irreducible.

Let h : A→ B be a homomorphism. Then h maps
idempotent elements to idempotent elements, and by
Theorem 8 h maps the principal filter above an idem-
potent of A to 1B , and is injective on the comple-
ment of this filter. Hence h is uniquely determined by
an order-preserving surjection ĥ : {1 < · · · < k} →
{1 < · · · < m′} for some m′ ≤ m such that for all
i ∈ {1, . . . ,m′}, if j = min ĥ−1[{i}] then ai|bj . In this
case define hi : MVai →MVbj by hi(c`) = cni` where
ni =

bj
ai
. Given such a map ĥ, the homomorphism h

is defined by h(1) = 1 and h(x) = 1 if x ∈ MVai for
i > m′, while h(x) = hi(x) for i ≤ m′ where . Thus
the MV components of A that correspond to numbers
abovem′ are collapsed to the top element of B and for
i ≤ m′ the ith component of A is embedded into the
least component j of B such that ĥ(j) = i. The ho-
momorphic image h[A] is isomorphic to a subalgebra
of A since for i ≤ m′ the ith ordinal sum components
of A and h[A] are both isomorphic to MVai . ut

Note that the map ĥ is a special case of the weight
preserving p-morphisms in [3].

A variety V of algebras of finite similarity type is
said to be finitely generated if V = HSP (K) for some
finite set K of finite algebras. If, in addition, V is con-
gruence distributive then by Jónsson’s Lemma [20] the
subdirectly irreducible members of V are all contained
in HS(K), hence there are only finitely many such
members. In particular, for two finite subdirectly ir-
reducible algebras A,B of the same type, HSP (A) ⊆
HSP (B) if and only if A ∈ HS(B), and we write
A ≤HS B in case the latter relation holds.

Since HSHS = HS, the relation ≤HS is a partial
order on isomorphism classes of finite subdirectly irre-
ducible algebras. Since any variety is determined by it
subdirectly irreducible members, the lattice of finitely
generated subvarieties is isomorphic to the lattice of
finite downsets of this partial order.

The preceding result simplifies calculating the≤HS
partial order relation between subdirectly irreducible
BL-algebras. Komori gave a complete description of
the lattice of subvarieties of MV-algebras, showing
that it is countable and that the ≤HS poset of finite
subdirectly irreducible MV-algebras is isomorphic to
the divisibility lattice D = (N\{0}, |), withMVm ≤HS
MVn if and only if m|n. Here we describe the ≤HS
poset for finite subdirectly irreducible BL-algebras. As
observed previously, these algebras are chains deter-
mined by finite sequences of positive integers.

Theorem 10 The ≤HS poset of finite s.i. BL-algebras
is isomorphic to D∗ =

⋃∞
n=0Dn with the order on D∗

extending the pointwise divisibility order on each com-
ponent by (a1, . . . , am) ≤ (b1, . . . , bn) if and only if
there exists an order-preserving injection f : {1, . . . ,m}
→ {1, . . . , n} such that f(1) = 1 and ai|bf(i) for all
i ∈ {1, . . . ,m}.

The order relation (a1, . . . , am) ≤ (b1, . . . , bn) is a
covering relation if and only if either

• m = n and

(b1, . . . , bn) = (a1, . . . , ai−1, pai, ai+1, . . . , an)

for some prime p and some unique i ≤ n, or
• m+ 1 = n and

(b1, . . . , bn) = (a1, . . . , ai−1, 1, ai, . . . , am)

for some i ∈ {2, . . . , n}.

Proof To establish the first part we need to show that
A = Ba1,...,am is (isomorphic to) a subalgebra of B =

Bb1,...,bn iff a function f with the stated properties ex-
ists. Assume h : A→ B is an embedding. Then h sends
idempotent to idempotents, so let f : {1, . . .m} →
{1, . . . , n} be defined by f(i) = j if the ith idempo-
tent of A is sent by h to the jth idempotent of B
(numbered from bottom to top). Since BL-algebra ho-
momorphisms preserve the bottom element, we have
f(1) = 1, and since h is an embedding, the ith MV-
component of A is embedded in the f(i)th MV-compo-
nent of B, whence ai|bf(i).
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Fig. 2 Bottom of the HS-poset of s. i. BL-algebras

Conversely, if f is such an order-preserving func-
tion then one can construct an embedding h : A→ B

from the union of the embeddings hi : Ci → Df(i)

where Ci, Dj are the ith and jth MV-components of
A and B respectively.

The second part follows by observing that the con-
ditions capture the two possible ways for A to be iso-
morphic to a maximal proper subalgebra of B. ut

A schematic diagram of the HS-poset is shown in
Figure 1 followed by some detail of the bottom of this
poset in Figure 2. The lattice of finitely generated BL-
varieties is isomorphic to the lattice of downsets of this
poset.

4 The lattice of finitely generated varieties of
bounded GBL-algebras

We now extend the results about finitely-generated va-
rieties of BL-algebras to bounded integral GBL-alge-
bras. In this paper we use the adjective “bounded” to
mean that the lattice-ordered algebra has a least ele-
ment 0 that is also a constant operation of the algebra.

Recall that finite GBL-algebras are poset products of
finite simple Wajsberg hoops (= 0-free reducts of MV-
algebras) [18]. Similarly finite bounded GBL-algebras
are poset products of finite simple MV-algebras. Hence
they are integral, commutative, and we can construct
the HS-poset of finite bounded subdirectly irreducible
GBL-algebras by analyzing homomorphisms between
poset products of simple MV-algebras. The results do
not depend on the divisibility law, so we first consider
the more general setting of a poset product of bounded
integral simple commutative residuated lattices.

Let P be a poset. The (dual) poset product of a
family {Li : i ∈ P} of bounded integral residuated
lattices is defined on a subset of the cartesian product
by

∏
P

Li = {f ∈
∏
i∈P

Li : ∀i > j ∈ P (f(i)=0 or f(j)=1)}.

The operations ∧,∨, · are defined pointwise and the
bounds are the constant functions 0,1. The residuals
are given by

(f\g)(i) =

{
f(i)\g(i) if f(j) ≤ g(j) for all j < i

0 otherwise

(g/f)(i) =

{
g(i)/f(i) if f(j) ≤ g(j) for all j < i

0 otherwise.

It is shown in [18] that a (dual) poset product (called
poset sum in that paper) of bounded residuated lat-
tices is again a bounded residuated lattice, and if the
factors are divisible, so is the poset product. Hence
a poset product of bounded GBL-algebras is also a
bounded GBL-algebra. Note that if the poset P is lin-
ear then the poset product is an ordinal sum of the
factors. If the poset is an antichain, then the poset
product is the direct product. If the factors Li are 2-
element Boolean algebras, then the poset product is a
Heyting algebra.

Recall that an algebra is simple if it only has two
congruence relations. As in Section 2, an element c
in a monoid is central if it commutes with every ele-
ment of the monoid, and it is idempotent if cc = c. For
any central idempotent c ≤ 1 in a residuated lattice,
the principal filter ↑c is a normal filter and hence de-
termines a congruence of the residuated lattice. Since
finite GBL-algebras are commutative, every element is
central. Let S be the class of all bounded commutative
integral simple residuated lattices, where we denote
the bounds by 0, 1 and assume that 1 is the monoid
identity. By simplicity 0, 1 are the only idempotents
of each member of S. It follows that the only idem-
potents in a poset product of members of S will be
the functions with range {0, 1}. In addition, the set
of idempotents is a Heyting subalgebra of the poset
product (i.e., f · g = f ∧ g for idempotents).

For a complete lattice A we let J(A) denote the
poset of all completely join-irreducible elements, with
the order induced by A. An element j ∈ J(A) has
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a unique lower cover denoted j∗. A lattice is join-
perfect if every element is the join of completely join-
irreducible elements. For Heyting algebras, it is the
case that join-perfect implies the dual notion of meet-
perfect, hence they are simply called perfect.

For posets P,Q a p-morphism is a map q : Q→ P

such that q[↓a] = ↓q(a), where ↓x is the principal
downset {y : y ≤ x}. For a set X ⊆ P the downset
↓X =

⋃
x∈X ↓x, and the family of all downsets of P is

D(P ) = {↓X : X ⊆ P}. The sets ↑x and ↑X are de-
fined dually. For a complete homomorphism h : A →
B define J(h) : J(B)→ J(A) by J(h)(j) =

∧
h−1[↑j].

It follows from the completeness of h that h−1[↑j] is a
principal upset, and if A is a complete perfect Heyt-
ing algebra then the meet is in J(A) and J(h) is a
p-morphism.

It is easy to see that (D(P ),∩,∪,→, ∅, P ) is a com-
plete perfect Heyting algebra with X → Y = P \↑(X\
Y ). Given a p-morphism q : Q → P , define a map
D(q) : D(P ) → D(Q) by D(q)(X) = q−1[X]. Then
D(q) is a complete Heyting algebra morphism. More-
over J : cpHA → pPos and D : pPos → cpHA are
functors and D(J(A)) ∼= A and J(D(P )) ∼= P , hence
the category cpHA of complete perfect Heyting alge-
bras with complete homomorphisms is dually equiva-
lent to the category pPos of posets with p-morphisms
(this duality extends Tarski’s duality between com-
plete and atomic Boolean algebras with complete ho-
momorphisms and the category of sets). Note that the
complete perfect Heyting algebra D(P ) can also be
constructed as a poset product

∏
P 2 where 2 = {0, 1}

is the two-element Boolean algebra. It is well known
that a Heyting algebra is subdirectly irreducible if and
only if the top element 1 is completely join-irreducible,
or equivalently if the dual poset has a top element.

The next result effectively extends this duality to
certain poset products.

Theorem 11 (i) Suppose A =
∏

P Ci is a poset prod-
uct of a family of simple integral bounded commutative
residuated lattices, and let IA be the set of idempotents
of A. For each i ∈ P define the function î : P → Ci
by î(k) = 1 if k ≤ i and î(k) = 0 otherwise. Then IA
is a complete perfect Heyting subalgebra of A and the
map i 7→ î is an isomorphism from P to J(IA).

(ii) The residuated lattice A =
∏

P Ci is subdirectly
irreducible if and only if P has a top element.

(iii) Suppose B =
∏

QDj is also a poset product
with Dj ∈ S and h : A→ B is a homomorphism such
that h restricted to IA is a complete Heyting algebra
homomorphism. Then h�IA maps into IB, and h is
uniquely determined by a p-morphism h̄ : Q→ P and
by the maps hj : Ah̄(j) → Bj where Ai = [̂i∗, î] ∼= Ci,
Bj = [ĵ∗, ĵ] ∼= Dj and hj(f) = (h(f) ∧ ĵ) ∨ ĵ∗.

(iv) Now assume Ci, Dj are complete for all i ∈
P, j ∈ Q. Given a p-morphism h̄ : Q → P and com-
plete homomorphisms hj : Ch̄(j) → Dj define a map
h : A → B by h(f)(j) = hj(f(h̄(j))). Then A,B are
complete, h is a complete homomorphism, and every

complete homomorphism from A to B can be obtained
in this way.

Proof (i) IA is the subposet of functions in A =
∏

P Ci
with range {0, 1}, and is isomorphic to D(P ), which
is a complete perfect Heyting algebra. For all i ∈ P ,
the function î is in J(IA) since it corresponds to the
principal ideal ↓i of P and hence to a completely join-
irreducible element of D(P ).

(ii) This is similar to the proof that Heyting al-
gebras are subdirectly irreducible if and only if they
have a unique co-atom, using the observation that in a
simple bounded commutative residuated lattices any
element a < 1 generates a normal filter that is equal
to the whole algebra.

(iii) Let h have the stated properties. Then h re-
stricted to IA maps into IB since homomorphisms
send idempotents to idempotents. Being a complete
homomorphism, h�IA is determined by its dual p-mor-
phism from J(IB) to J(IA), and these posets are iso-
morphic to Q and P respectively via the map î 7→ i.
The factors of the poset product A can be obtained as
intervals between a completely join-irreducible î ∈ IA
and its unique lower cover in IA (note that î need not
be completely join-irreducible in A).

(iv) This result is a generalization of the obser-
vation that a cartesian product of complete lattices
is complete, and that if the factors are simple then
complete homomorphisms between two such cartesian
products can be built from families of complete homo-
morphisms between the factors. ut

Since every finite bounded GBL-algebra is a poset
product of finite simple MV-algebras, the preceding
theorem simplifies the calculation of the HS-poset of
finite bounded subdirectly irreducible GBL-algebras.
The bottom part of the HS-poset for finite subdi-
rectly irreducible Heyting algebras is shown in Fig-
ure 3, where the algebras are represented by their dual
posets of join-irreducibles. For finite bounded GBL-
algebras, the HS-posets extends this one by noting
that if A is a subalgebra of B then IA is a Heyting sub-
algebra of IB and all MV-components of A have a size
that divides the size of the corresponding component
of B, and if A is a homomorphic image of B then IA is
a homomorphic image of IB and each MV-component
of B is either collapsed or mapped isomorphically to
the corresponding component of A.

Recall that a preorder (P,�) is a set P with a re-
flexive transitive relation �, and by the usual quotient
construction using the equivalence relation p ∼ q ⇐⇒
(p � q and q � p) one obtains a poset (P/∼,≤) where
p/∼ ≤ q/∼ ⇐⇒ p � q. Conversely, given a poset
Q = (Q,≤) and a family of disjoint nonempty sets
{Pi : i ∈ Q} define the preorder P =

⋃
i∈Q Pi and �

on P by p � q ⇐⇒ ∃i, j ∈ Q (p ∈ Pi, q ∈ Pj and i ≤
j). Then (P,�) is a preorder and (P/∼,≤) is isomor-
phic to Q.

A closure algebra (B,∨,¬, 0,♦) (also called an S4-
modal algebra) is a Boolean algebra (B,∨,¬, 0) with
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Fig. 3 Bottom of HS-poset of s. i. Heyting algebra duals

a unary operation ♦ that satisfies ♦0 = 0, ♦(x ∨ y) =

♦x ∨ ♦y and x ≤ ♦x = ♦♦x. It is well known from
modal logic that the duals of finite closure algebras are
preorders defined on the atoms of the Boolean algebra.

The last result in this section provides a novel
connection between divisible substructural logics and
classical modal logic. It follows from the above re-
marks, together with the observation that a finite sim-
ple MV-algebra is determined by its cardinality.

Theorem 12 (i) For a finite bounded GBL-algebra
A, let

∏
QAi be a poset product of simple MV-algebras

that is isomorphic to A, and let (P,�) be the preorder
constructed from Q and the family of sets {J(Ai) :

i ∈ Q}. Then (P/∼,≤) ∼= (J(IA),≤) and the preorder
(P,�) uniquely determines A.

(ii) The number of (bounded) GBL-algebras with n
join-irreducible elements is (up to isomorphism) equal
to the number of preorders on an n-element set (up to
isomorphism), hence the same as the number of clo-
sure algebras with 2n elements.

(iii) Let F be the map that sends a finite bounded
GBL-algebra A to the closure algebra (P(P ),∪,¬, ∅,♦),
where ♦X = {y ∈ P : y � x for some x ∈ X} and
(P,�) is the preorder from (i). For a homomorphism
h : A → A′ let F (h) : P(P ) → P(P ′) be given by
F (h)(X) = J(h)−1[X]. Then F is a faithful functor
from the category of finite bounded GBL-algebras to
the category of finite closure algebras that is full on
objects.

The number of homomorphisms between GBL-algebras
is, in general, less than the number of homomorphisms
between the corresponding closure algebras, since sim-
ple MV-algebras are rigid and there is at most one ho-
momorphism between two simple MV-algebras, while
simple closure algebras (i.e., monadic algebras, also
known as S5-modal algebras) with 2n elements have
n! automorphisms, hence there are many homomor-
phisms between two simple closure algebras with more
than 2 elements.

5 Deciding propositional Basic Logic with
SMT-solvers

Basic Logic was introduced by Hájek [16] to provide
a unified approach to fuzzy logics, and judging by its
rapid adoption in the research community, it has en-
joyed considerable success in this regard. One of the
reasons is that while it is a very general logic, it has
elegant semantics with respect to the real unit inter-
val, which allow for practical applications and tools
over a suitably broad range. In particular, for propo-
sitional Basic Logic it is decidable whether a formula
is a tautology, while for generalized Basic Logic this
is still an open problem. Here we present an imple-
mentation of a decision procedure for propositional
Basic Logic by encoding it into the Satisfiability Mod-
ulo Theories (SMT) framework. This method is based
on an interpretation of Lukasiewicz logic, Gödel logic
and product logic into SMT [4]. Ultimately these ideas
go back to Mundici’s result [21] that satisfiablity for
Lukasiewicz logic is NP-complete, and Hähnle’s trans-
lation from Lukasiewicz logic to integer linear pro-
gramming [14,15]. In the current setting the transla-
tion to SMT is very simple, and since there are several
efficient SMT-solvers available, this is an effective and
flexible ways of implementing a decision procedure for
propositional basic logic.

Boolean satisfiability solvers (SAT-solvers) are pro-
grams that take a classical propositional formula (of-
ten restricted to conjunctive normal form) as input
and search for an assignment of truth values to the
variables such that the formula is true, or report that
no such assignment exists. Satisfiability modulo theo-
ries solvers (SMT-solvers) are generalizations of SAT-
solvers that take as input a formula of typed first-
order logic with equality (perhaps restricted to be
quantifier-free), and determine if there is an assign-
ment into a specific model (such as R or Z) under
which the formula is true. The “modulo theories” in
the name of SMT-solvers refers to the theory of the
model in which satisfiability is tested. E.g. a formula
such 0 < x + y < 10 & x + x − y − y = 1 would be
satisfiable in R but not in Z.

Applying SMT-solvers to decide propositional for-
mulas in Lukasiewicz logic or Gödel logic is straight
forward, as shown in [4]. We take an algebraic view,
and implement decision procedures for prelinear Heyt-
ing algebras, abelian lattice-ordered groups, MV-alge-
bras and BL-algebras. Recall that (A,∧,∨,→, 1, 0) is
a Heyting algebra if (A,∧,∨, 1, 0) is a bounded dis-
tributive lattice and x∧ y ≤ z ⇐⇒ y ≤ x→ z for all
x, y, z ∈ A. It is prelinear if the identity (x→ y)∨(y →
x) = 1 holds, in which case the subdirectly irreducible
models are linearly ordered. Prelinear Heyting alge-
bras are the algebraic semantics of Gödel logic, and a
propositional formula ϕ of Gödel logic is a tautology
precisely when the equation ϕ = 1 is an identity of
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prelinear Heyting algebras. The same correspondence
holds for Lukasiewicz logic and MV-algebras.

An abelian lattice-ordered group is of the form
(A,∧,∨,+,−, 0) where (A,∧,∨) is a (necessarily dis-
tributive) lattice, (A,+,−, 0) is an abelian group and
+ is order-preserving in both arguments. The variety
of abelian lattice-ordered groups is generated by the
model (Z,min,max,+,−, 0) as well as by (R,min,max,

+,−, 0).
A MV-algebra is given by (A,∧,∨, ·,¬, 1, 0) where

(A,∧,∨) is a lattice, (A, ·, 1) is a commutative monoid,
· is order-preserving in both arguments, ¬¬x = x,
0 = ¬1 and x · y ≤ z ⇐⇒ y ≤ ¬x∨ z. This definition
of MV-algebras emphasizes that they are residuated
lattices, though they are often defined equationally
using the dual operation x⊕ y = ¬(¬x · ¬y).

The input for SMT-solvers is usually written in
a standard language called SMT-LIB2. The input for
deciding MV-identities is given below and can be used
with a variety of solvers, such as CVC4, Z3, SMTinter-
pol, opensmt, etc. For the algebraic operations we use
standard LATEX names for the symbols. Any semicolon
and all following characters up to the end of each line
are optional comments. The SMT-LIB2 language has
a syntax similar to LISP, so expressions are lists of
tokens separated by spaces and enclosed in parenthe-
ses. The first token is usually a command or function
name, and the remaining tokens are inputs for the
function. E.g. (ite (< x y) x y) is the if-then-else func-
tion applied to a boolean test and producing (in this
case) the smaller of the two values as output. The full
syntax is defined at www.smtlib.org.

The first line of the code is a descriptive com-
ment and the second line selects quantifier-free lin-
ear real arithmetic (QF_LRA) as the theory used
by the SMT-solver. The next 7 lines define the MV-
operations on the unit interval by x ∧ y = min(x, y),
x ∨ y = max(x, y), x ⊕ y = (x + y) ∧ 1, x · y =

(x+ y − 1) ∨ 0, ¬x = 1− x, x→ y = (1− x+ y) ∧ 1,
and x↔ y = (x→ y) ∧ (y → x). The lines that start
with “declare-const” define two real variables x, y and
restrict their values to the interval [0, 1]. The third
last line asserts the formula that is to be checked,
followed by a comment showing the formula in stan-
dard notation. The last line asks the SMT-solver to
check if the formula ϕ < 1 is satisfiable, in which case
the formula ϕ is not a tautology. To test if an equa-
tion s = t is an identity, one would check the formula
s↔ t, adding more “declare-const” lines if the formula
contains more than 2 variables. Other commands like
(get-model), (push 1), (pop 1) can be used to get infor-
mation about a specific assignment where the formula
does not evaluate to 1, or to assert, check and remove
several formulas in a single file.

; Testing MV formulas in SMT
(set-logic QF_LRA)
(define-fun wedge ((x Real) (y Real)) Real

(ite (> x y) y x)); x ∧ y
(define-fun vee ((x Real) (y Real)) Real

(ite (> x y) x y)); x ∨ y
(define-fun oplus ((x Real) (y Real)) Real

(wedge (+ x y) 1)); x⊕ y
(define-fun cdot ((x Real) (y Real)) Real

(vee (- (+ x y) 1) 0)); x · y
(define-fun neg ((x Real)) Real (- 1 x)); ¬x = 1− x
(define-fun to ((x Real) (y Real)) Real

(wedge 1 (- (+ 1 y) x))); x→ y

(define-fun leftrightarrow ((x Real) (y Real)) Real
(wedge (to x y) (to y x)))

(declare-const x Real)
(assert (<= 0 x)) (assert (<= x 1))
(declare-const y Real)
(assert (<= 0 y)) (assert (<= y 1))
(assert (< (to (vee (cdot x x) (cdot y y))

(cdot (vee x y) (vee x y))) 1))
; test if (x2 ∨ y2)→ (x ∨ y)2 < 1 is satisfiable
(check-sat)

Checking equations in prelinear Heyting algebras
is a matter of deleting the definitions for oplus and
cdot, and replacing the next two lines by:
(define-fun neg ((x Real)) Real (ite (= x 0) 1 0)); ¬x
(define-fun to ((x Real) (y Real)) Real (ite (<= x y)
1 y)); x→ y

An abelian `-group inequation s ≤ t can be ex-
pressed directly using the operations +,−, 0 of the
logic QF_LRA, and the SMT-solver is used to check
if s > t is satisfiable. The assertions that restrict vari-
ables to the unit interval have to be removed in this
case. For equations s = t one checks if s > t or t > s

is satisfiable, i.e., (assert (or (< s t) (< t s))) in SMT-
LIB2 syntax. A similar approach can be used to check
(in)equations in the negative cone of R by defining
x ·y = (x+y)∧0. By using a translation with an extra
variable z as in [13] one can also check (in)equations
in the negative cone of R with a new bottom element,
which is equivalent to checking propositional formu-
las in product logic. This is an improvement over the
suggestion in [4] to use full real arithmetic for product
logic, since implementations of linear real arithmetic
in SMT-solvers are currently more efficient.

To decide propositional basic logic with an SMT-
solver requires the following result of [2] (see also [1]).

Theorem 13 Let An =
⊕n

i=0[0, 1] be the ordinal sum
of n + 1 unit-interval MV-algebras, and let Vn be the
variety generated by all n-generated BL-algebras. Then
Vn = HSP (An), hence an n-variable BL-identity holds
in An if and only if it holds in all BL-algebras.

By constructing the algebra An of the above result
within the SMT language, one obtains an effective
means of checking n-variable BL-identities. The uni-
verse for An is taken to be the interval [0, n+ 1]. The
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definition of fusion and implication are

x · y =

{
max(x+ y − 1− byc, bxc) if bxc = byc
min(x, y) otherwise

x→ y =


n+ 1 if x ≤ y
y if byc < bxc
min(1+y−x+bxc, 1+byc) otherwise

Some SMT-solvers can express the floor function
bxc in which case one can use the above definitions
as given. However the the floor function is not part
of the standard SMT-LIB2 language. Instead we give
here a straightforward SMT-LIB2 implementation of
these operations that uses n + 1 cases. So the length
of the formula grows linearly with respect to n. For
n = 1 and n = 2, here are the formulas that can be
used to check 1-variable and 2-variable BL-identities.

n = 1:
(define-fun cdot ((x Real) (y Real)) Real (ite (and (<
x 1) (< y 1)) (vee (- (+ x y) 1) 0) (ite (and (>= x 1)
(>= y 1)) (vee (- (+ x y) 2) 1) (wedge x y) ) ) )
(define-fun to ((x Real) (y Real)) Real (ite (<= x y)
2 (ite (and (>= x 1) (< y 1)) y (wedge 1 (- (+ 1 y)
x)) ) ) )

n = 2:
(define-fun cdot ((x Real) (y Real)) Real (ite (and (<
x 1) (< y 1)) (vee (- (+ x y) 1) 0) (ite (and (>= x 1)
(< x 2) (>= y 1) (< y 2)) (vee (- (+ x y) 2) 1) (ite
(and (>= x 2) (>= y 2)) (vee (- (+ x y) 3) 2) (wedge
x y)) ) ) )
(define-fun to ((x Real) (y Real)) Real (ite (<= x y)
3 (ite (and (< x 1) (< y 1)) (+ (- 1 x) y) (ite (and
(<= 1 x) (< x 2) (<= 1 y) (< y 2)) (+ (- 2 x) y) (ite
(and (<= 2 x) (<= 2 y) ) (+ (- 3 x) y) y)) ) ) )

For larger values of n such formulas can be gener-
ated algorithmically. A program has been written in
Python that takes a BL-formula written in LATEX as
input, counts the number of distinct variables, trans-
lates the formula to SMT-LIB2, generates the code of
the operations for this number of variables, submits
this code to the CVC4 SMT-solver and finally indi-
cates whether the formula is a BL-tautology.
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