
Concurrent Kleene algebra with tests

Peter Jipsen

Chapman University, Orange, California 92866, USA
jipsen@chapman.edu

Abstract. Concurrent Kleene algebras were introduced by Hoare, Möl-
ler, Struth and Wehrman in [HMSW09,HMSW09a,HMSW11] as idem-
potent bisemirings that satisfy a concurrency inequation and have a
Kleene-star for both sequential and concurrent composition. Kleene al-
gebra with tests (KAT) were de�ned earlier by Kozen and Smith [KS97].
Concurrent Kleene algebras with tests (CKAT) combine these concepts
and give a relatively simple algebraic model for reasoning about opera-
tional semantics of concurrent programs. We generalize guarded strings
to guarded series-parallel strings, or gsp-strings, to provide a concrete lan-
guage model for CKAT. Combining nondeterministic guarded automata
[Koz03] with branching automata of Lodaya and Weil [LW00] one obtains
a model for processing gsp-strings in parallel, and hence an operational
interpretation for CKAT. For gsp-strings that are simply guarded strings,
the model works like an ordinary nondeterministic guarded automaton.
If the test algebra is assumed to be {0, 1} the language model reduces to
the regular sets of bounded-width sp-strings of Lodaya and Weil.
Since the concurrent composition operator distributes over join, it can
also be added to relation algebras with transitive closure to obtain the
variety CRAT. We provide semantics for these algebras in the form of
coalgebraic arrow frames expanded with concurrency.

Keywords: Concurrent Kleene algebras, Kleene algebras with tests, parallel
programming models, series-parallel strings, relation algebras with transitive clo-
sure

1 Introduction

Relation algebras and Kleene algebras with tests have been used to model speci-
�cations and programs, while automata and coalgebras have been used to model
state based systems and object-oriented programs. To compensate for plateauing
processor speed, multi-core architectures and cluster-computing are becoming
widely available. However there is little agreement on how to e�ciently develop
software for these technologies or how to model them with suitably abstract
and simple principles. The recent development of concurrent Kleene algebra
[HMSW09,HMSW09a,HMSW11] builds on a computational model that is well
understood and has numerous applications. Hence it is useful to explore which
aspects of Kleene algebras can be lifted fairly easily to the concurrent setting,

and whether the simplicity of regular languages and guarded strings can be pre-
served along the way. For the nonguarded case many interesting results have
been obtained by Lodaya and Weil [LW00] using labeled posets (or pomsets)
of Pratt [Pra86] and Gisher [Gis88], but restricted to the class of series-parallel
pomsets called sp-posets. This is a special case of the set-based traces and de-
pendency relation used in [HMSW09,HMSW09a,HMSW11] to motivate the laws
of CKA. Here we investigate how to extend guarded strings to handle concurrent
composition with the same approach as for sp-posets in [LW00].

Recall from [KS97] that a Kleene algebra with tests (KAT) is an idempotent
semiring with a Boolean subalgebra of tests and a unary Kleene-star operation
that plays the role of re�exive-transitive closure. More precisely, it is a two-
sorted algebra of the form A = (A,A′,+, 0, ·, 1, ,̄∗) where A′ is a subset of A,
(A,+, 0, ·, 1,∗) is a Kleene algebra and (A′,+, 0, ·, 1,)̄ is a Boolean algebra (the
complementation operation is only de�ned on A′).

Let Σ be a set of basic program symbols p, q, r, p1, p2, . . . and T a set of
basic test symbols t, t1, t2, . . ., where we assume that Σ ∩ T = ∅. Elements of T
are Boolean generators, and we write 2T for the set of atomic tests, given by
characteristic functions on T and denoted by α, β, γ, α1, α2, . . .

The collection of guarded strings over Σ∪T is GSΣ,T = 2T×
⋃
n<ω(Σ×2T)n,

and a typical guarded string is denoted by α0p1α1p2α2 . . . pnαn, or by α0wαn
for short, where αi ∈ 2T and pi ∈ Σ. Note that for �nite T the members
of 2T ⊆ GSΣ,T can be identi�ed with the atoms of the free Boolean algebra
generated by T .

Concatenation of guarded strings is via the coalesced product: wα � βw′ =
wαw′ if α = β and unde�ned otherwise. For subsets L,M of GSΣ,T de�ne

� L+M = L ∪M ,
� LM = {v � w : v ∈ L,w ∈M and v � w is de�ned},
� 0 = ∅, 1 = 2T , L̄ = GSΣ,T \ L and
� L∗ =

⋃
n<ω L

n where L0 = L and Ln = LLn−1 for n > 0.

Then P(GSΣ,T) is a KAT under these operations, and one de�nes a map G from
KAT terms over Σ ∪ T to this concrete model by

� G(t) = {α ∈ 2T : α(t) = 1} for t ∈ T ,
� G(p) = {αpβ : α, β ∈ 2T } for p ∈ Σ,
� G(p + q) = G(p) + G(q), G(pq) = G(p)G(q), G(p∗) = G(p)∗, for any terms
p, q and

� G(0) = 0, G(1) = 1, G(b̄) = G(b) for any Boolean term b.

The language theoretic model GΣ,T is the subalgebra of P(GSΣ,T) generated by
{G(t) : t ∈ T} ∪ {G(p) : p ∈ Σ}. In fact GΣ,T is the free KAT and its members
are the regular guarded languages. Subsets of 2T are called Boolean tests, and
other members of GΣ,T are called programs.

A nondeterministic guarded automaton is a coalgebra

A : X → P(X)Σ∪P(2
T) × 2

where X is a set of states, A0(x)(y) is the set of successor states of x ∈ X for
symbol y ∈ Σ ∪ P(2T), and F = {x : A1(x) = 1} is the set of �nal states.
Alternatively one can describe these automata in the more traditional way as a
tuple A′ = (X, δ, F) where δ ⊆ X × (Σ ∪ P(2T)) ×X is the transition relation
and F ⊆ X is the set of �nal states. Acceptance of a guarded string w by A
starting from initial state x0 and ending in state xf is de�ned recursively by:

� If w = α ∈ 2T then w is accepted i� for some n ≥ 1 there is a path
x0t1x1t2 . . . xn−1tnxf in A of n test transitions ti ∈ P(2T) such that α ∈ ti
for i = 1, . . . , n.

� If w = αpv then w is accepted i� there exist states x1, x2 such that α is
accepted ending in state x1, there is a transition labeled p from x1 to x2
(i.e., x2 ∈ A0(x1)(p)) and v is accepted by A starting from initial state x2.

Finally, w is accepted by A starting from x0 if the ending state xf is indeed a
�nal state, i.e., satis�es xf ∈ F .

Kozen [Koz03] proved that the equational theory of KAT is decidable in
PSPACE. Moreover KAT is much more versatile that Kleene algebra since it
can faithfully express �if b then p else q� by the term bp+ b̄q and �while b do p�
using (bp)∗b̄, as well as several other standard programming constructs. It also
interprets Hoare logic and properly distinguishes between simple Boolean tests
and complex assertions.

2 Adding concurrency

After this rather brief discussion of the language semantics and operational se-
mantics of KAT, we now describe how these de�nitions generalize to handle
concurrency. Intuitively, elements P,Q of a concurrent Kleene algebra with tests
can be thought of as programs or program fragments, and they are represented
by sets of �computation paths�. The operation that needs to be added to KAT
is the concurrent composition P ||Q. Whereas in the sequential model the com-
putation paths are guarded strings, we now need to be able to place two such
sequential strings �next to each other�, and then we also need to be able to se-
quentially compose such �concurrent strings� etc. A convenient way to visualize
the semantic objects that we would like to construct is to view sequential com-
position as vertical concatenation (top to bottom) and concurrent composition
as horizontal concatenation.

So for example, given two guarded strings α0vαm and β0wβn we would like
to construct

α0 β0
v w
αm βn

As with sequential composition, this operation is not always de�ned. In order
for these type of objects to be sequentially (vertically) composable, we impose
the condition that α0 = β0 and αm = βn. So in fact we have α0vαm||α0wαm
and the resulting object is denoted by α0{|v, w|}αm or vertically by

α0

v w
αm

In particular, if α, β are distinct atomic tests then α||β is unde�ned and
α||α = α. Similarly, α||βwγ is unde�ned for all atomic tests α, β, γ. Also, we
de�ne concurrent composition to be commutative, which is already re�ected in
our choice of notation: {|v, w|} = {|w, v|} is a multiset. Moreover it is associative,
which means that in these �strings�, multisets are not members of multisets, i.e.,
{|{|u, v|}, w|} is normalized to {|u, v, w|}. This ensures that (αpβ||αqβ)||αrβ =
α{|p, q, r|}β = αpβ||(αqβ||αrβ). Via successive concurrent and sequential com-
positions we obtain guarded series-parallel strings, or gsp-strings for short. For-
mally the set of gsp-strings generated by Σ,T is the smallest set GSPΣ,T that
has 2T and 2T × Σ × 2T as subsets and is closed under the coalesced product
� as well as the concurrent product ||. For example, if Σ = {p, q} and T = {t}
then, abbreviating 2T by {α, β}, the following expressions are gsp-strings: α,
αpα, αpβ, α{|p, q|}α, α{|p, q|}αqβ, α{|p, {|p, q|}αq|}β, . . .

The language model over gsp-strings is de�ned as in the case of guarded
strings, except that we now have an additional operation. For L,M ∈ P(GSPΣ,T)
let

� L||M = {v||w : v ∈ L,w ∈M and v||w is de�ned}.

This makes P(GSPΣ,T) into a complete bisemiring with a Kleene-star for se-
quential composition. The map G from the previous section is extended to all
terms of KAT with ||, by de�ning G(p||q) = G(p)||G(q). The bi-Kleene algebra
of series-rational gsp-languages1, denoted by CΣ,T , is the subalgebra generated
by {G(t) : t ∈ T} ∪ {G(p) : p ∈ Σ}.

Note that for b ∈ P(2T) and for any subset p of GSPΣ,T the concurrent
composition b||p is equal to b ∩ p. In particular, concurrent and sequential com-
position coincide on tests. However, in general || is not idempotent for sets of
gsp-strings and the identity 1 of sequential composition is not an identity of
concurrent composition.

With this language model as guide, we now de�ne a concurrent Kleene algebra
with tests (CKAT) as an algebra A = (A,A′,+, 0, ||, ·, 1,∗ ,)̄ where

� (A,A′,+, 0, ·, 1,∗ ,)̄ is a Kleene algebra with tests,
� (A,+, 0, ||) is a commutative semiring with 0 (but possibly no unit), and
� b||c = bc for all b, c ∈ A′.

We do not include iterated parallel composition (i.e., parallel star) in the def-
inition of a CKAT since this operation prevents the generalization of Kleene's
theorem to gsp-languages ([LW00], see Section 3 for further discussion).

The language model also shows that the concurrency inequation (x||y)(z||w) ≤
(xz)||(yw) of CKA is not satis�ed under the present de�nition of CKAT. Take for

1 Lodaya and Weil used the name series-rational sp-language for the members of their
language model

example x = {αpβ}, y = {αqβ}, z = {βpγ}, and w = {βqγ}, then (x||y)(z||w) =
{α{|p, q|}β{|p, q|}γ} whereas (xz)||(yw) = {α{|pβp, qβq|}γ}. So each expression
produces a singleton set, but the two elements are distinct, hence the two expres-
sions are not comparable. However one can impose the concurrency inequation
on the generators of the regular gsp-languages to obtain a homomorphic image
that satis�es this condition. Not all forms of concurrency satisfy this inequation
(in some cases the reverse inequality is applicable), so having a more general
axiomatization could be advantageous.

3 Automata over guarded series-parallel strings

The notion of nondeterministic automaton for gsp-strings is based on the one
for guarded strings, but it is expanded with fork and join transitions taken
from the branching automata of Lodaya and Weil [LW00]. Speci�cally a guarded

branching automaton is a coalgebra for the functor F (X) = P(X)Σ∪P(2
T) ×

P(M(X)) × P(M(X)) × 2 de�ned on the category of sets, where M(X) is
the collection of multisets of X with more than one element. This means that
an automaton is a map α : X → F (X) where X is the set of states. As for
guarded automata, the transition function is given by the �rst component of
α and the set of �nal states is given by the last component in the form of
a characteristic function. The second and third component are the fork and
join relations respectively. In traditional notation, the automaton can also be
speci�ed by the tuple α′ = (X, δ, δfork, δjoin, F), where

� (X, δ, F) is a guarded automaton,
� δfork ⊆ X ×M(X) and
� δjoin ⊆M(X)×X.

Fork transitions in δfork are denoted (x, {|x1, x2, . . . , xn|}), and if the multiset has
n elements they are called forks of arity n. The join transitions of arity n are
de�ned similarly, but with the order of the two components reversed.

While coalgebraic automata do not have an explicit initial state, they can be
augmented with such a state whenever this is required. The advantages of the
coalgebraic point of view is that it turns the class of all automata for this func-
tor into a concrete category, and allows many standard results on bisimulation
and coalgebraic modal logic to be applied to this setting. We will not make use
of it at this point, but in the later part of this paper we again use the coalge-
braic perspective to de�ne frame semantics for concurrent relation algebras with
transitive closure.

The acceptance condition for gsp-strings does have to be de�ned carefully
since it substantially extends the one for guarded strings. Intuitively one can
think of an automaton as evaluating the acceptance condition for parallel parts
of the input string concurrently on separate processors. In many cases, when
large scale parallel programs are run on a distributed cluster of computers, (part
of) the program code is distributed to all the available processors and executes
in separate environments until at an appropriate point results are communicated

back to a subset of the processors (perhaps a single one) and combined into a
new state. This fork and join paradigm is of course a fairly restricted model of
concurrent programming, but it has the merit of being quite simple and alge-
braic since it avoids syntactic annotations for named channels and other more
architecture-dependent features. It also meshes well with our generalization of
guarded strings and with the laws of concurrent Kleene algebra.

For the actual de�nition of acceptance we do not need to have separate copies
of automata, instead we simply map the parallel parts of a gsp-string into the
same automaton. Looking back at the recursive de�nition of acceptance for a
(non-concurrent) guarded string relative to an initial state x0, it is apparent
that this condition is equivalent to �nding a path from x0 to some �nal state xf
such that the atomic program symbols in the string match with symbols along
the path in the same order, and if pi−1αipi occurs in the guarded string then
there is a path β1 . . . βni of Boolean tests βk ≥ αi along edges of the automaton
that lie between the edges matched by pi−1 and pi. For gsp-strings we de�ne
a similar �embedding� into the automaton where parallel branches correspond
to a fork transition, followed by parallel (not necessarily disjoint) paths along
matching edges until they reach a join transition. The precise recursive de�nition
is as follows: A weak guarded series parallel string (or wgsp-string for short) is
a gsp-string but possibly without the �rst and/or last atomic test. Acceptance
of a wgsp-string w by A starting from initial state x0 and ending at state xf , is
de�ned recursively by:

� If w = α ∈ 2T then w is accepted i� for some n ≥ 1 there is a sequential
path x0t1x1t2 . . . xn−1tnxf in A (i.e., (xi−1, ti, xi) is an edge in A) of n test
transitions ti ∈ P(2T) such that α ∈ ti for i = 1, . . . , n.

� If w = p ∈ Σ then w is accepted i� there exist a transition labelled p from
x0 to xf .

� If w = {|u1, . . . , um|}v for m > 1 then w is accepted i� there exist a fork
(x0, {|x1, . . . , xm|}) and a join ({|y1, . . . , ym|}, y0) in A such that ui is accepted
starting from xi and ending at yi for all i = 1, . . . ,m, and furthermore βv is
accepted by A starting at y0 and ending at xf .

� If w = uv then w is accepted i� there exist a state x such that u is accepted
ending in state x and v is accepted by A starting from initial state x and
ending at xf .

Finally, w is accepted by A starting from x0 if the ending state xf is indeed a
�nal state, i.e., satis�es A2(xf) = 1.

In the second recursive clause the fork transition corresponds to the cre-
ation of n separate processes that can work concurrently on the acceptance of
the wgsp-strings u1, . . . , un. The matching join-operation then corresponds to a
communication or merging of states that terminates these processes and contin-
ues in a single thread.

The sets of gsp-strings that are accepted by a �nite automaton are called
regular gsp-languages. For sets of (unguarded) strings, the regular languages and
the series-rational languages (i.e., those built from Kleene algebra terms) coin-
cide. However, Loyala and Weil pointed out that this is not the case for sp-posets

(de�ned like gsp-strings except without using atomic tests), since for example the
language {p, p||p, p||p||p, . . .} is regular, but not a series-rational language. The
width of an sp-poset or a gsp-string is the maximal cardinality of an antichain
in the underlying poset. A (g)sp-language is said to be of bounded width if there
exists n < ω such that every member of the language has width less than n.
Intuitively this means that the language can be accepted by a machine that has
no more than n processors. The series-rational languages are of bounded width
since concurrent iteration was not included as one of the operations of CKAT.
For languages of bounded width we regain familiar results such as Kleene's the-
orem which states that a language is series-rational if and only if it is regular
(i.e., accepted by a �nite automaton) and has bounded width.

We now use a method from Kozen and Smith [KS97] to relate the bounded-
width regular languages of Lodaya and Weil [LW00] to guarded bounded-width
regular languages. Let T = {t̄ : t ∈ T} be the set of negated basic tests. From
now on we will assume that T = {t1, . . . , tn} is �nite, and we consider atomic
tests α to be (sequential) strings of the form b1b2 . . . bn where each bi is either
the element ti or t̄i. Every term p can be transformed into a term p′ in negation
normal form using DeMorgan laws and ¯̄b = b, so that negation only appears on
ti.

Hence the term p′ is also a CKA term over the set Σ∪T ∪T . Let R(p′) be the
result of evaluating p′ in the set of sp-posets of Lodaya and Weil. In [KS97] it is
shown how to transform p′ further to a sum p̂ of externally guarded terms such
that p = p′ = p̂ in KAT and R(p̂) = G(p̂). This argument extends to terms of
CKAT since || distributes over +. Therefore the completeness result of Lodaya
and Weil [LW00] can be lifted to the following result.

Theorem 1. CKAT |= p = q ⇐⇒ G(p) = G(q)

It follows thatCΣ,T is indeed the free algebra of CKAT. With the same approach
one can also deduce the next result from [LW00].

Theorem 2. A set of gsp-strings is series-rational (i.e. an element of CΣ,T)
if and only if it is accepted by a �nite guarded branching automaton and has
bounded width.

The condition of bounded width can be rephrased as a restriction on the automa-
ton. A run of A is called fork-acylic if a matching fork-join pair never occurs
as a matched pair nested within itself. The automaton is fork-acylic if all the
accepted runs of A are fork-acyclic. Lodaya and Weil prove that if a language
is accepted by a fork-acyclic automaton then it has bounded width, and their
proof applies equally well to gsp-languages.

At this point it is not clear whether this correspondence can be used as a
decision procedure for the equational theory of concurrent Kleene algebras with
tests.

4 Trace semantics for concurrent Kleene algebras with

tests

Kozen and Tiuryn [KT03] (see also [Koz03]) show how to provide trace semantics
for programs (i.e. terms) of Kleene algebra with tests. This is based on an ele-
gant connection between computation traces in a Kripke structure and guarded
strings. Here we point out that this connection extends very simply to the set-
ting of concurrent Kleene algebras with tests, where traces are related to labeled
Hasse diagrams of posets and these objects in turn are associated with guarded
series-parallel strings.

Exactly as for KAT, a Kripke frame over Σ,T is a structure (K,mK) where
K is a set of states, mK : Σ → P(K×K) and mK : T → P(K). An sp-trace τ in
K is essentially a gsp-string with the atomic guards replaced by states inK, such
that whenever a triple spt ∈ K ×Σ ×K is a subtrace of τ then (s, t) ∈ mK(p).
As with gsp-strings one can form the coalesced product σ � τ of two sp-traces
σ, τ (if σ ends at the same state as where τ starts) as well as the parallel product
σ||τ (if σ and τ start at the same state and end at the same state). These partial
operations lift to sets X,Y of sp-traces by

� XY = {σ � τ : σ ∈ X, τ ∈ Y and σ � τ is de�ned}
� X||Y = {σ||τ : σ ∈ X, τ ∈ Y and σ||τ is de�ned}.

Programs (terms of CKAT) are interpreted in K using the inductive de�nition
of Kozen and Tiuryn [KT03] extended by a clause for ||:

� [[p]]K = {spt|(s, t) ∈ mK(p)} for p ∈ Σ
� [[0]]K = ∅ and [[b]]K = mK(b) for b ∈ T
� [[b̄]]K = K \mK(b) and [[p+ q]]K = [[p]]K ∪ [[q]]K
� [[pq]]K = ([[p]]K)([[q]]K) and [[p∗]]K =

⋃
n<ω[[p]]nK

� [[p||q]]K = [[p]]K ||[[q]]K .

Each sp-trace τ has an associated gsp-string gsp(τ) obtained by replacing every
state s in τ with the corresponding unique atomic test α ∈ 2T that satis�es
s ∈ [[α]]K . It follows that gsp(τ) is the unique guarded string over Σ,T such that
τ ∈ [[gsp(τ)]]K . As a result the connection between sp-trace semantics and gsp-
strings is the same as in [KT03] (the proof is also by induction on the structure
of p).

Theorem 3. For a Kripke frame K, program p and sp-trace τ , we have τ ∈ [[p]]K
if and only if gsp(τ) ∈ G(p), whence [[p]]K = gsp−1(G(p)). In fact gsp−1 is
a CKAT homomorphism from the free algebra CΣ,T to the algebra of series-
rational sets of sp-traces over K.

The trace model for guarded strings has many applications since each trace in
[[p]]K can be interpreted as a sequential run of the program p starting from the
�rst state of the trace. The sp-trace model provides a similar interpretation for
programs that fork and join threads during their runs. Each sp-trace in [[p]]K is
a representation of the basic programs and tests that were performed during the

possibly concurrent execution of the program p. Note that there are no explicit
fork and join transitions in an sp-trace since, unlike a gsp-automaton (which has
to allow for nondeterministic choice), whenever a state in an sp-trace has several
immediate successor states, this is the result of a fork, and similarly states with
several immediate predecessors represent a join.

While series-parallel traces are more complex than linear traces, they can,
like the gsp-strings in Section 2, still be represented by planar diagrams where
parallel composition is denoted by placing traces next to each other (with only
one copy of the start state and end state), and sequential composition is given
by placing traces vertically above each other (with only one connecting state
between them).

The sp-trace semantics are useful for analysing the behavior of threads that
communicate only indirectly with other concurrent threads via joint termination
in a single state. While this is a restricted model of concurrency, it has a simple
algebraic model based on Kleene algebras with tests, and it satis�es most of the
laws of concurrent Kleene algebra.

5 Expanding relation algebras with concurrency

Kleene algebra with tests provides a reasonable operational semantics for imper-
ative programs, but for speci�cation purposes it would be useful to also have the
full language of binary relations available when reasoning about concurrent soft-
ware. In this section we show how coalgebraic arrow frames of relation algebras
can be augmented with an additional component that corresponds to the || op-
eration. Recall that a relation algebra is of the form A = (A,+, 0,∧,>, ,̄ ; , 1,`)
where (A,+, 0,∧,>,)̄ is a Boolean algebra, (A, ; , 1) is a monoid and for all
x, y, z ∈ A

x; y ≤ z̄ ⇐⇒ x`; z ≤ ȳ ⇐⇒ z; y` ≤ x̄.
It follows that both ; and ` distribute over the Boolean join, and that ` is an
involution, i.e., x`` = x and (x; y)` = y`;x`. Jónsson and Tarski showed that
every relation algebra A can be embedded in a complete and atomic relation
algebra, and one can de�ne a relational structure on the set of atoms from
which the algebra can be reconstructed as a complex (powerset) algebra. The
structure is known as atom structure or ternary Kripke frame or arrow frame,
but it is in fact a coalgebra. Hence we de�ne an arrow coalgebra to be of the
form γ : X → P(X2)×X × 2 such that for all x, y, z ∈ X,

� (x ◦ y) ◦ z = x ◦ (y ◦ z) where x ◦ y = γ−10 {(x, y)} and A ◦ z = {a ◦ z : a ∈ A},
� I ◦ x = x = x ◦ I where I = γ−12 {1} and
� (x, y) ∈ γ0(z) ⇐⇒ (x`, z) ∈ γ0(y) ⇐⇒ (z, y`) ∈ γ0(x) where
x` = γ1(x).

For A,B ⊆ X, de�ne A;B = {a ◦ b : a ∈ A, b ∈ B} and A` = {a` : a ∈ A} and
1 = I. Then the complex algebra over γ, denoted

Cm(γ) = (P(X),∪, ∅,∩, X, ,̄ ; ,` , 1′)

is a complete relation algebra and ; ,` distribute over arbitrary unions. Hence
we can expand this algebra to a relation algebra with re�exive transitive closure
(or RAT for short):

� x∗ =
⋃
n<ω x

n, where x0 = 1′ and xn = x;xn−1 for n > 0.

The variety generated by these algebras has a �nite equational axiomatization,
and has been studied by Tarski and Ng [NT77,Ng84]. We now expand arrow
coalgebras further by adding another factor P(X2) to the type functor. A con-
current arrow coalgebra is of the form γ : X → P(X2) × X × 2 × P(X2) such
that the projection onto the �rst three components is an arrow coalgebra and
for all x, y ∈ X,

� (x||y)||z = x||(y||z) and x||y = y||x where x||y = γ−13 {x, y}
� x ∈ γ−12 (1) implies x||x = x and if x 6= y then x||y is unde�ned.

The complex algebra of a concurrent arrow coalgebra is a relation algebra with
an additional binary operation || de�ned on subsets A,B of X by A||B = {a||b :
a ∈ A, b ∈ B}. Adding re�exive transitive closure is done as before. Based on
this concrete model we have the following de�nition:

A concurrent relation algebra with re�exive transitive closure (or CRAT) is
an algebra of the form

A = (A,+, 0,∧,>, ,̄ ||, ; , 1,` ,∗)

where A = (A,+, 0,∧,>, ,̄ ; , 1,` ,∗) is a RAT, (A,+, 0, ||) is a commutative
semiring with zero and (x ∧ 1)||y = x ∧ y ∧ 1 holds for all x, y ∈ A. The result
below follows from the theory of Boolean algebras with operators.

Theorem 4. The complex algebra of a concurrent arrow coalgebra is a com-
plete and atomic CRAT, and every CRAT can be embedded into such a complex
algebra.

The next result establishes a connection between CRAT and concurrent Kleene
algebras with test.

Theorem 5. Let A = (A,+, 0,∧,>, ,̄ ||, ; , 1,` ,∗) be a CRAT and de�ne A′ =
{b ∈ A : b ≤ 1}. Then A′′ = (A,A′,+, 0, ||, ·, 1, ,̄ ,∗) is a CKAT.

The proof is simply a matter of checking that the axioms of CKAT hold for A′′.
It is currently not known if every CKAT is embeddable into an algebra of the
form A′′. Some related results about KAT can be found in [Koz06].

The concurrency inequality (x||y); (z||w) ≤ (x; z)||(y;w) can be added to
CRAT and de�nes a proper subvariety. In the language of concurrent arrow
coalgebras the inequality takes the following form: for all t, u, v, w, x, y, z ∈ X

� t ∈ u ◦ v and u ∈ x||y and v ∈ z||w =⇒ ∃r, s ∈ X (t ∈ r||s and r ∈ x ◦ z
and s ∈ y ◦ w).

Other inequations that could be considered are x||x = x or x; y ≤ x||y or x||y ≤
x; y.

Unlike Kleene algebras with tests, the equational theory of relation algebras
is known to be undecidable. This is a consequence of having complementation
de�ned on the whole algebra, together with the associativity of a join-preserving
operation (see [KNSS93] for such general results). However Andreka, Mikulas
and Nemeti [AMN11] have recently proved that the theory of Kleene lattices is
decidable. It is an interesting question whether their result can be extended to
Kleene lattices with tests or concurrent Kleene lattices (with tests).

6 Conclusion

Many theoretical models of concurrency have been proposed and studied dur-
ing the last �ve decades. Here we have taken an algebraic approach starting
from Kleene algebras with tests and adapting them to concurrent Kleene alge-
bras of Hoare et. al. and bounded-width series-parallel language models. This
provides semantics for concurrency based on standard notions such as regular
languages and automata. The addition of tests allows KAT to express standard
imperative programming constructs such as if-then-else and while-do. Adding
concurrency into this elegant algebraic model is likely to lead to new applica-
tions such as verifying compiler optimizations targeting multicore architectures
or modeling computations on large distributed clusters. In the last section we
have also shown how to add concurrency to relation algebras with re�exive and
transitive closure, thus making concurrent composition part of this well-known
and expressive algebraic setting.

References

[AMN11] Andréka, H., Mikulás, S.: Németi, I., The equational theory of Kleene
lattices. Theoret. Comput. Sci. 412 (2011), no. 52, 7099�7108.

[Gis88] Gisher, L.: The equational theory of pomsets. Theoretical Computer Sci-
ence 62 (1988) 299�224

[HMSW11] Hoare, C. A. R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene
algebra and its foundations. J. Log. Algebr. Program. 80 (2011), no. 6,
266�296.

[HMSW09] Hoare, C. A. R., Möller, B., Struth, G., Wehrman, I.: Foundations of con-
current Kleene algebra. Relations and Kleene algebra in computer science,
166�186, Lecture Notes in Comput. Sci., 5827, Springer, Berlin, 2009.

[HMSW09a] Hoare, C. A. R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene
algebra. CONCUR 2009�concurrency theory, 399�414, Lecture Notes in
Comput. Sci., 5710, Springer, Berlin, 2009.

[KNSS93] Kurucz, Á., Németi, I., Sain, I., Simon, A.: Undecidable varieties of
semilattice-ordered semigroups, of Boolean algebras with operators, and
logics extending Lambek calculus. Logic Journal of IGPL, 1(1) (1993) 91�
98.

[Koz03] Kozen, D.: Automata on guarded strings and applications. 8th Work-
shop on Logic, Language, Informations and Computation�WoLLIC'2001
(Brasília). Mat. Contemp. 24 (2003), 117�139.

[Koz06] Kozen, D.: On the representation of Kleene algebras with tests. Math-
ematical foundations of computer science 2006, 73�83, Lecture Notes in
Comput. Sci., 4162, Springer, Berlin, 2006.

[KS97] Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decid-
ability. Computer science logic (Utrecht, 1996), 244�259, Lecture Notes in
Comput. Sci., 1258, Springer, Berlin, 1997.

[KT03] Kozen, D., Tiuryn, J.: Substructural logic and partial correctness. ACM
Trans. Computational Logic, 4(3) (2003) 355�378.

[LW00] Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width
property. Theoret. Comput. Sci. 237 (2000), no. 1-2, 347�380.

[Ng84] Ng, K. C.: Relation Algebras with Transitive Closure. PhD thesis, Univer-
sity of California, Berkeley, 1984.

[NT77] Ng, K. C., Tarski, A.: Relation algebras with transitive closure, Abstract
742-02-09, Notices Amer. Math. Soc. 24 (1977), A29�A30.

[Pra86] Pratt, V.: Modelling concurrency with partial orders. Internat. J. Parallel
Prog. 15 (1) (1986) 33�71.

