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Abstract. This paper investigates connections between algebraic struc-
tures that are common in theoretical computer science and algebraic
logic. Idempotent semirings are the basis of Kleene algebras, relation
algebras, residuated lattices and bunched implication algebras. Extend-
ing a result of Chajda and Länger, we show that involutive residuated
lattices are determined by a pair of dually isomorphic idempotent semir-
ings on the same set, and this result also applies to relation algebras.
Generalized bunched implication algebras (GBI-algebras for short) are
residuated lattices expanded with a Heyting implication. We construct
bounded cyclic involutive GBI-algebras from so-called weakening rela-
tions, and prove that the class of weakening relation algebras is not
finitely axiomatizable. These algebras play a role similar to representable
relation algebras, and we identify a finitely-based variety of cyclic involu-
tive GBI-algebras that includes all weakening relation algebras. We also
show that algebras of down-closed sets of partially-ordered groupoids are
bounded cyclic involutive GBI-algebras.

1 Introduction

Idempotent semirings, also known as dioids, play an important role in many
applications in computer science, ranging from regular languages and Kleene al-
gebras to shortest path algorithms using tropical semirings such as the max-plus
semiring. They are also generalizations of distributive lattices, quantales, resid-
uated lattices and relation algebras, each of which have been studied extensively
in mathematics and logic. While it has been known for a long time that Boolean
algebras, relation algebras and involutive residuated lattices have two isomorphic
semiring reducts that are connected by an anti-isomorphism, the characteriza-
tion of these algebras by coupled semirings has only recently been formalized in
a result by Di Nola and Gerla [2] for MV-algebras and by Chajda and Länger
[1] for bounded commutative integral involutive residuated lattices. In Section
2 we show that a more general result holds for arbitrary involutive residuated
lattices, hence also for relation algebras. This leads to a shorter axiomatization
for involutive residuated lattices using only two binary operations, two unary op-
erations and a constant, which is useful for working with relation algebras and
their generalizations in automated theorem provers and finite model finders.

Residuated lattices are generalizations of relation algebras and of many other
mathematical structures, including Heyting algebras, MV-algebras, basic logic



algebras, lattice-ordered groups and quantales. They are also the algebraic se-
mantics of many logical systems, such as intuitionistic logic, relevance logic, lin-
ear logic and other substructural logics. Even though they span so many algebraic
and logical systems, residuated lattices have a simple definition and a surpris-
ingly deep and elegant algebraic theory that is shared by all the special cases. In
this paper we concentrate mostly on involutive residuated lattices expanded with
a Heyting arrow. In the bounded and commutative case these algebras are known
as bunched implication algebras, or BI-algebras, and have found significant ap-
plications in separation logic, a Hoare logic developed by Reynolds, O’Hearn,
Pym and others for the verification of pointer data-structures, memory man-
agement algorithms and concurrent software. Most of the algebraic properties
of BI-algebras hold also in the non-commutative setting of generalized bunched
implication algebras, or GBI-algebras for short, so we take this more general
approach. By definition a GBI-algebra is a residuated lattice with a Brouwerian
algebra defined on the same lattice. In Section 3 we observe that relation alge-
bras are a subvariety of bounded involutive GBI-algebras, so this provides an
interesting connection between these classes of algebras. We investigate weak-
ening relation algebras that are intuitionistic versions of representable relation
algebras, and show that they are not finitely axiomatizable. In Section 4 we
give partial-order semantics for these algebras and show that they are based on
groupoids, i.e. small categories in which all morphisms are isomorphisms.

2 Coupled semirings

A semilattice is of the form (A,∨) such that ∨ is a binary operation on the
set A that is associative, commutative and idempotent (x ∨ x = x), and in
such an algebra x ≤ y ⇐⇒ x ∨ y = y defines a partial order. A monoid
(A, ·, 1) has an associative operation · such that 1x = x1 = x. An idempotent
semiring is an algebra A = (A,∨, ·, 1) where (A,∨) is a semilattice, (A, ·, 1) is
a monoid and · distributes over ∨ in both arguments (i.e., x(y ∨ z) = xy ∨ xz
and (x ∨ y)z = xz ∨ yz). A lattice (A,∧,∨) is a pair of semilattices (A,∨) and
(A,∧) linked by the absorption laws x ∧ (x ∨ y) = x = x ∨ (x ∧ y). A residuated
lattice is of the form A = (A,∧,∨, ·, 1, \, /) where (A,∧,∨) is a lattice, (A, ·, 1)
is a monoid and \, / are the left and right residuals of ·, i.e., for all x, y, z ∈ A

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

These equivalences imply that (A,∨, ·, 1) is an idempotent semiring since, e.g.,
x(y ∨ z) ≤ w ⇐⇒ y ∨ z ≤ x\w ⇐⇒ y, z ≤ x\w ⇐⇒ xy ∨ xz ≤ w. A
residuated lattice is bounded if it has a bottom element ⊥, integral if 1 is the
top element and commutative if the identity xy = yx holds. For an arbitrary
constant 0 in a residuated lattice define the linear negations ∼x = x\0 and
−x = 0/x. The constant 0 is involutive if ∼−x = x = −∼x for all elements x,
and an involutive residuated lattice (also called an involutive FL-algebra) is a
residuated lattice with an involutive 0. Such an algebra is cyclic if ∼x = −x.



Note that a commutative involutive residuated lattice satisfies x\y = y/x and
hence is always cyclic.

For example, a relation algebra (A,∧,∨,¬, ; ,` , 1) is a cyclic involutive resid-
uated lattice if one defines x\y = ¬(x`;¬y), x/y = ¬(¬x; y`) and 0 = ¬1,
and omits the operations ¬,` from the signature. The cyclic linear negation
is given by ∼x = ¬(x`) = (¬x)`. An example that is a bounded commu-
tative integral involutive residuated lattice is provided by the standard MV-
algebra ([0, 1],min,max, ·, 1, \, /) where xy = max(x+y−1, 0) and x\y = y/x =
min(1 − x + y, 1). The class of all MV-algebras is the variety generated by this
unit-interval algebra (i.e. the smallest class closed under products, subalgebras
and homomorphic images). We note that the variety of involutive residuated
lattices has a decidable equational theory [17,3] while this is not the case for
relation algebras.

In [2] Di Nola and Gerla showed that every MV-algebra is determined by a
pair of coupled commutative semirings, and Chajda and Länger [1] generalized
this construction to bounded commutative integral involutive residuated lattices.
We show here that the result is actually valid in the general setting of involutive
residuated lattices and hence includes all (reducts of) relation algebras.

For two algebrasA,B with the same signature, an anti-isomorphism α : A→
B is like an isomorphism, except that for all binary operations ∗ we have

α(x ∗A y) = α(y) ∗B α(x)

(instead of α(x) ∗B α(y)).
A generalized coupled semiring is a triple ((A,∨, ·, 1), (A,∧,+, 0), α) such

that

(i) (A,∨, ·, 1) and (A,∧,+, 0) are idempotent semirings
(ii) (A,∧,∨) is a lattice (with order denoted by ≤)
(iii) α is an anti-isomorphism from (A,∨, ·, 1) to (A,∧,+, 0)
(iv) x ≤ y if and only if 1 ≤ α(x) + y

Theorem 1. Let A = (A,∧,∨, ·, 1, \, /, 0) be an involutive residuated lattice
with linear negations ∼x = x\0, −x = 0/x and define x + y = ∼((−y) · (−x)).
Then ((A,∨, ·, 1), (A,∧,+, 0),∼) is a generalized coupled semiring.

Proof. In any residuated lattice · distributes over ∨ since x(y ∨ z) ≤ w ⇐⇒
y ∨ z ≤ x\w ⇐⇒ y, z ≤ x\w ⇐⇒ xy, xz ≤ w ⇐⇒ xy ∨ xz ≤ w, and likewise
for (x ∨ y)z = xz ∨ yz. In an involutive residuated lattice the linear negations
are order-reversing bijections, hence ∼(x ∨ y) = ∼y ∧ ∼x. Replacing x, y by
∼x,∼y in the definition of + shows that ∼(xy) = ∼y +∼x, and ∼1 = 1\0 = 0
since x ≤ 1\0 ⇐⇒ x = 1x ≤ 0. Therefore (iii) is satisfied, and (i) follows since
anti-isomorphisms preserve the structure of idempotent semirings. Obviously (ii)
holds, so it remains to check (iv): 1 ≤ ∼x+y ⇐⇒ 1 ≤ ∼((−y)x) ⇐⇒ (−y)x ≤
0 ⇐⇒ x ≤ ∼ − y = y, where the middle equivalence holds because the linear
negations are order-reversing and −1 = 0.

We now show that the converse also holds.



Theorem 2. Let ((A,∨, ·, 1), (A,∧,+, 0), α) be a generalized coupled semiring
and define x\y = α(α−1(y)·x), x/y = α−1(y·α(x)). Then A = (A,∧,∨, ·, 1, \, /, 0)
is an involutive residuated lattice and α(x) = ∼x. If α = α−1 then A is cyclic,
and if 1 is the top element of the first semiring then A is bounded and integral.

Proof. By (i) and (ii) (A,∧,∨) is a lattice and (A, ·, 1) is a monoid, so we need
to show that \, / are residuals with 0 as involutive element. By (iv) we have

xy ≤ z ⇐⇒ 1 ≤ α(xy) + z

⇐⇒ 1 ≤ α(y) + α(x) + z

⇐⇒ y ≤ α(x) + z = α(x) + α(α−1(z)) = α(α−1(z) · x) = x\z.

To see that xy ≤ z ⇐⇒ x ≤ z/y, first observe that (iv) is equivalent to
x ≤ y ⇐⇒ 1 ≤ α(α−1(y) · x) and after replacing y by α(y) one obtains
x ≤ α(y) ⇐⇒ 1 ≤ α(y · x). From (iii) it follows that α and α−1 are order-
reversing, so we compute

xy ≤ z ⇐⇒ α(z) ≤ α(xy)
⇐⇒ 1 ≤ α(x · y · α(z))
⇐⇒ y · α(z) ≤ α(x)
⇐⇒ x ≤ α−1(y · α(z)) = z/y.

Condition (iv) also implies that α(0) = 1 since 1 ≤ 1 =⇒ 1 ≤ α(α−1(1) · 1) =
α(1 · α−1(1)) =⇒ α−1(1) ≤ α(1) = 0 =⇒ α(0) ≤ 1 and 0 ≤ 0 =⇒ 1 ≤
α(1 · 0) = α(0). The element 0 is involutive since, ∼x = x\0 = α(α−1(0) · x) =
α(1x) = α(x), and −x = 0/x = α−1(x · α(0)) = α−1(x1) = α−1(x). ut

The preceding theorems show that all involutive residuated lattices are com-
pletely determined by their ∨, · structure and by an order-reversing bijection
that satisfies property (iv). It also follows that the residuals are term-definable
x\y = ∼((−y) · x) and x/y = −(y · (∼x)), though this is a well-known result [6,
p. 153].

As an application of the above result we obtain a fairly concise equational ba-
sis for the variety of involutive residuated lattices using the signature ∨, ·, 1,∼,−
since the remaining operations are defined by x ∧ y = ∼(−x ∨ −y), x\y =
∼((−y) · x), x/y = −(y · (∼x)) and 0 = ∼1.

Theorem 3. An algebra (A,∨, ·, 1,∼,−) is (term equivalent to) an involutive
residuated lattice if and only if the following 12 identities hold:

• (x ∨ y) ∨ z = x ∨ (y ∨ z), x ∨ y = y ∨ x (associativity and commutativity)
• x(y ∨ z) = xy ∨ xz, (x ∨ y)z = xz ∨ yz (distributivity of · over ∨)
• (xy)z = x(yz), x1 = x (associativity and right identity of ·)
• ∼−x = x = −∼x (involution of linear negations)
• ∼(−(x ∨ y) ∨ −x) = x = ∼((−x) ∨ −y) ∨ x (absorption laws)
• 1 ≤ ∼(x(∼x)), x(∼(yx)) ≤ ∼y (equivalent to x ≤ ∼y ⇐⇒ 1 ≤ ∼(yx)).



Proof. From Theorem 1 it follows that an involutive residuated lattice satisfies
the above identities, where the last two are derived from condition (iv) of coupled
semirings by ∼y ≤ ∼y ⇒ 1 ≤ ∼(y(∼y)) and

∼(yx) ≤ ∼(yx)⇒ 1 ≤ ∼(yx(∼(yx))) = ∼(y(x∼(yx)))⇒ x(∼(yx)) ≤ ∼y.

Conversely, assume (A,∨, ·, 1,∼,−) is an algebra that satisfies the identities,
and define x ∧ y = ∼(−y ∨ −x), x + y = ∼((−y)(−x)) and 0 = ∼1. It remains
to show that ((A,∨, ·, 1), (A,∧,+, 0),∼) is a generalized coupled semiring. The
absorption laws translate to the usual form (x∨ y)∧ x = x = (x∧ y)∨ x, and it
is easy to see that ∧ is associative and commutative. Since idempotence of ∧,∨
follow from the absorption laws, (A,∧,∨) is a lattice. The definition of ∧,+, 0
and the involution identities show that ∼ is an anti-isomorphism from (A,∨, ·, 1)
to (A,∧,+, 0). Note that condition (iv) of coupled semirings is equivalent to
x ≤ ∼y ⇐⇒ 1 ≤ ∼(yx). To see this holds we compute: x ≤ ∼y ⇒ y ≤ −x,
hence 1 ≤ ∼(y(∼y)) ≤ ∼(y(∼−x)) = ∼(yx), and by distributivity over ∨, the
operation · is order-preserving in each argument, so

1 ≤ ∼(yx)⇒ x ≤ x(∼(yx)) ≤ ∼y.

Finally, since −y = (−y)1, we deduce 1x = x from the following equivalences:
x ≤ y ⇐⇒ 1 ≤ ∼((−y)x) = ∼((−y)1x) ⇐⇒ 1x ≤ y. Therefore (A,∨, ·, 1) is
an idempotent semiring, and the anti-isomorphism ∼ shows the same holds for
(A,∧,+, 0). ut

The standard equational basis for involutive residuated lattices has 15 iden-
tities and a signature with 5 binary operations. A short equational basis can be
useful when searching for finite counterexamples or using automated theorem
provers. It is not known if the given basis is irredundant, but it is interesting to
note that it suffices to assume that 1 is a right-identity element.

It is easy to extend the preceding theorems to a categorical equivalence be-
tween the categories of involutive residuated lattices and generalized coupled
semirings.

There is only one 2-element residuated lattice, namely the two-element lattice
2 = {0, 1} with x · y = x ∧ y. Clearly this is a bounded commutative involutive
lattice, and is in fact a Boolean algebra. There are three 3-element residuated
lattices, the 3-element Gödel algebra G3 = {⊥, a, 1} with aa = a is integral but
not involutive, the 3-element Łukasiewicz algebra L3 = {0, a, 1} with aa = 0
which is both integral and cyclic involutive, and the Sugihara algebra S3 =
{⊥, 1,>} which is cyclic involutive but not integral.

3 Distributive residuated lattices and generalized
bunched implication algebras

A distributive residuated lattice is a residuated lattice that satisfies the distribu-
tive law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). A typical example of a distributive



residuated lattice is given by a collection R of binary relations on a set X such
that R is closed under intersection ∩, union ∪, composition ◦, residuals \, / and
contains a relation E such that E ◦ R = R ◦ E = R for all R ∈ R. Here the
operations \, / are defined by the usual expressions for residuals on binary rela-
tions: R\S = (R` ◦ S′)′ and R/S = (R′ ◦ S`)′, where ` denotes the converse
operation and ′ is the operation of complementation with respect to the total
relation X2 = X×X. Note that we are not assuming R is closed under ′ or that
it includes X2.

A Brouwerian algebra is a residuated lattice that satisfies the identity x∧y =
xy. Residuated operations always distribute over lattice joins, hence Brouwerian
algebras satisfy the distributive law. Moreover, since x ∧ y ≤ x is equivalent to
y ≤ x\x, it follows that Brouwerian algebras have a top element, denoted by
the constant >, which is also the identity element for ∧. A Heyting algebra is
a bounded Brouwerian algebra, i.e., it also has a bottom element ⊥. The meet
operation is commutative, hence x\y = y/x and this operation is usually called a
Heyting implication and denoted x→ y. We now consider algebras that combine
the signatures of residuated lattices and Brouwerian algebras.

A generalized bunched implication algebra (or GBI-algebra for short) B =
(B,∧,∨,→,>, ·, 1, \, /) is a residuated lattice with an additional binary opera-
tion → that is a Heyting implication, i.e., for all x, y, z ∈ B

x ∧ y ≤ z ⇐⇒ y ≤ x→ z.

A GBI-algebra is bounded if it also contains a bottom element ⊥, and we consider
⊥ to be a constant operation of the algebra. Hence bounded GBI-algebras have
Heyting algebra reducts, while GBI-algebras have Brouwerian lattice reducts. In
a bounded GBI-algebra, the intuitionistic negation is defined by ¬x = x → ⊥.
An example of a GBI-algebra that is not bounded is given by the nonpositive
integers Z− with the operations x∧y = min(x, y), x∨y = max(x, y), xy = x+y,
x\y = y/x = min(y − x,>), 1 = > = 0 and

x→ y =

{
y if x > y

> otherwise.

An involutive GBI-algebra is a (necessarily bounded) GBI-algebra that has
an involutive constant 0, while a Boolean GBI-algebra is bounded GBI-algebra
that satisfies the double negation identity ¬¬x = x. For example, sequential
algebras [9,10] are (term-equivalent to) a subvariety of Boolean GBI-algebras
and relation algebras are (term-equivalent to) a subvariety of Boolean involutive
GBI-algebras (see Theorem 6 below). Boolean GBI-algebras are also known as
residuated Boolean monoids or rm-algebras [8,12].

A bunched implication algebra (or BI-algebra) is a bounded GBI-algebra that
satisfies the identity xy = yx. These algebras are the algebraic semantics of
separation logic, a programming logic for modeling mutable data structures and
concurrent processes [15,16]. An advantage of the varieties of GBI-algebras and
BI-algebras is that they have decidable equational theories [5,7], whereas the



subvarieties of Boolean GBI-algebras and Boolean BI-algebras have undecidable
equational theories [13].

In this section we study the algebraic structure of GBI-algebras and their
connections with relation algebras and residuated lattices. Table 1 summarizes
how many residuated lattices there are up to isomorphism on a set with n ele-
ments, and provides the same information for some of the subclasses introduced
above.

Number of elements: n = 1 2 3 4 5 6 7 8
Residuated lattices 1 1 3 20 149 1488 18554 295292

GBI-algebras 1 1 3 20 115 899 7782 80468
Bunched implication algebras 1 1 3 16 70 399 2261 14358
Involutive residuated lattices 1 1 2 9 21 101 284 1464
Cyclic involutive resid. lattices 1 1 2 9 21 101 279 1433

Involutive GBI-algebras 1 1 2 9 8 43 49 282
Cyclic involutive GBI-algebras 1 1 2 9 8 43 48 281

Involutive BI-algebras 1 1 2 9 8 42 46 263
Boolean involutive BI-algebras 1 1 0 5 0 0 0 25

Relation algebras 1 1 0 3 0 0 0 13

Table 1. Number of algebras up to isomorphism on a set with n elements

Since (bounded) GBI-algebras have Brouwerian algebra reducts, they also
satisfy the distributive law. A relational GBI-algebra is of the form (R,∩,∪,→
,>, ◦, E, \, /), where R is a collection of binary relations on a set X, and R
is closed under these operations. Note that ∪,∩, ◦ are the usual set-theoretic
operations on binary operations, but > need only be transitive, R ◦ E = R =
E ◦R, and →, \, / need only satisfy

R ∩ S ⊆ T ⇐⇒ S ⊆ R→ T , R ◦ S ⊆ T ⇐⇒ S ⊆ R\T ⇐⇒ R ⊆ T/S

for all R,S, T ∈ R.
Natural examples of relational GBI-algebras are constructed as follows: Let

P = (P,v) be a partially ordered set, Q ⊆ P 2 an equivalence relation that
contains v, and define the set of weakening relations on P by Wk(P, Q) =
{v ◦ R ◦ v : R ⊆ Q}. Since v is transitive and reflexive, this set can also be
defined by {R ⊆ Q : v ◦ R ◦ v = R}. Theorem 5 below shows that Wk(P, Q)
is a bounded cyclic involutive relational GBI-algebra with Q as top element. If
Q = P ×P , then we write Wk(P) instead of Wk(P, Q) and call this algebra the
full weakening relation algebra.

Weakening relations are the natural analogue of binary relations when the
category Set of sets and functions is replaced by the category Pos of partially
ordered sets and order-preserving functions. Since sets can be considered as dis-
crete posets (i.e. ordered by the identity relation), Pos contains Set as a full



subcategory, which implies that weakening relations are a substantial general-
ization of binary relations. They have applications in sequent calculi, proximity
lattices/spaces, order-enriched categories, cartesian bicategories, bi-intuitionistic
modal logic, mathematical morphology and program semantics, e.g. via separa-
tion logic.

Lemma 4. Let P = (P,v) be a poset, Q an equivalence relation that contains
v, R any binary relation on P and let R′ = Q−R. Then

1. v ◦R ◦ v = R is equivalent to w ◦R′ ◦ w = R′ , and
2. (w ◦R ◦ w)′ is a weakening relation.

Proof. 1. Assume v ◦ R ◦ v = R and (x, y) ∈ w ◦ R′ ◦ w. Then there exist
(u, v) ∈ Q such that x w u, (u, v) /∈ R and v w y. If (x, y) ∈ R then u v x and
y v v imply (u, v) ∈ R, which is a contradiction. Hence (x, y) ∈ R′ and therefore
w ◦R′ ◦ w = R′. The converse is proved by a dual argument.

2. Let (x, y) ∈ v ◦ (w ◦ R ◦ w)′ ◦ v. Then there exist (u, v) ∈ Q such that
x ≤ u, v ≤ y and (u, v) /∈ w◦R◦w. If (x, y) ∈ w◦R◦w then there exist (r, s) ∈ R
such that r v x and y v s. However, now transitivity implies r v u and v v s,
hence (u, v) ∈ w ◦ R ◦ w, a contradiction. Therefore (x, y) ∈ (w ◦ R ◦ w)′, and
it follows that v ◦ (w ◦R ◦ w)′ ◦ v ⊆ (w ◦R ◦ w)′. The reverse inclusion always
holds by reflexivity. ut

Theorem 5. Let P = (P,v) be a poset, Q an equivalence relation that contains
v, and for R,S ∈Wk(P, Q) define

• > = Q, ⊥ = ∅, 1 = v, 0 = w′,
• R→ S = (w ◦ (R ∩ S′) ◦ w)′ where S′ = Q− S,
• R\S = (w ◦R` ◦ S′ ◦ w)′ and R/S = (w ◦R′ ◦ S` ◦ w)′.

Then Wk(P, Q) = (Wk(P, Q),∩,∪,→,>,⊥, ◦, 1, \, /, 0) is a bounded cyclic in-
volutive relational GBI-algebra with involutive constant 0, and the linear negation
is ∼R = R\0 = 0/R = R`′ = R′`.

Proof. Note that Wk(P, Q) contains the empty set and is closed under ◦ and
under (arbitrary) meets and joins. The operation ′ is complementation with
respect to Q, but it is not an operation on Wk(P, Q). The relation v is an
identity element for weakening relations since v◦v = v. The formula for R→ S
is justified by the lemma above and the following equivalences:

R ∩ S ⊆ T ⇐⇒ R ∩ T ′ ∩ S = ∅
⇐⇒ R ∩ T ′ ⊆ S′

⇐⇒ R ∩ T ′ ⊆ (w ◦ (R ∩ T ′) ◦ w) ⊆ (w ◦ S′ ◦ w) = S′

⇐⇒ S ⊆ (w ◦ (R ∩ T ′) ◦ w)′

⇐⇒ S ⊆ R→ T.

For R\S the calculation is similar:



R ◦ S ⊆ T ⇐⇒ R` ◦ T ′ ⊆ S′ (by relation algebra)

⇐⇒ R` ◦ T ′ ⊆ (w ◦R` ◦ T ′ ◦ w) ⊆ (w ◦ S′ ◦ w) = S′

⇐⇒ S ⊆ (w ◦R` ◦ T ′ ◦ w)′

⇐⇒ S ⊆ R\T

and the argument for R/S is a mirror image.
Lemma 4 shows that 0 = w′ is a weakening relation and the linear negations

agree since

∼x = x\0 = (w◦x` ◦w′′ ◦w)′ = (w◦x` ◦w)′ = (w◦w′′ ◦x` ◦w)′ = 0/x = −x.

Hence ∼R = (v ◦R◦ v)`′ = R`′ = R′` for any weakening relation x, so
∼∼R = R`′`′ = R``′′ = x ut

In the previous proof we used the notation ` for the converse operation on
binary relations. In an abstract relation algebra, this operation is simply an
order-preserving permutation that satisfies x`` = x and (xy)` = y`x`, and
it is definable by the composition of (cyclic) linear negation and complement:
x` = ∼¬x (where ¬x = x → ⊥). We extend this notation to bounded cyclic
involutive GBI-algebras, but note that x`` = x only holds in the Boolean case,
and adding (xy)` = y`x` gives an alternative definition of abstract relation
algebras.

Theorem 6. Boolean cyclic involutive GBI-algebras satisfy the identities ∼¬x =
¬∼x, (x ∨ y)` = x` ∨ y`, (x ∧ y)` = x` ∧ y` and x`` = x. They are relation
algebras if and only if they also satisfy the identity (xy)` = y`x`.

Proof. By definition, Boolean GBI-algebras satisfy ¬¬x = x, where ¬x = x →
⊥. The linear negations ∼,− are anti-isomorphisms of the lattice structure, and
since the complement ¬ is uniquely determined by the lattice structure, both
∼ and − preserve complementation. Therefore ∼¬x = ¬∼x and −¬x = ¬−x
hold in any Boolean involutive residuated lattice. With x` defined as ∼¬x it
follows that x`` = ∼¬∼¬x = ∼∼¬¬x = ∼∼x, and if the algebra is cyclic, then
x`` = x.

Now assume a Boolean cyclic involutive GBI-algebra satisfies the identity
(xy)` = y`x`. To see that it is a relation algebra, it suffices to show that De
Morgan’s Theorem K holds, i.e., xy ∧ z = ⊥ ⇐⇒ x`z ∧ y = ⊥. This follows
from the calculation below:

xy ∧ z = ⊥ ⇐⇒ xy ≤ ¬z ⇐⇒ x ≤ (¬z)/y = −(y · (∼¬z))
⇐⇒ x` ≤ (−(y · z`))` = −(z · y`) = ¬y/z
⇐⇒ x`z ≤ ¬y ⇐⇒ x`z ∧ y = ⊥.

The converse is obvious since relation algebras are Boolean cyclic involutive GBI-
algebras and satisfy x`` = x. ut



We also note that the identities ∼¬x = ¬∼x and x`` = x both fail in
weakening relation algebras and in cyclic involutive GBI-algebras, e.g. in the
3-element Łukasiewicz algebra.

The smallest Boolean cyclic involutive GBI-algebra that fails the converse
identity has 8 elements and was originally found in the context of residuated
lattices with a De Morgan operation [4]. This algebra has atoms 1, a, b and
satisfies aa = a, bb = a∨ b and ab = > = ba. The involutive element 0 = a∨ b =
¬1, and the linear negation satisfies ∼1 = 0, ∼a = 1 ∨ a and ∼b = 1 ∨ b. Hence
a` = b and b` = a, which implies that (aa)` = a` = b 6= a`a` = bb = a ∨ b.

If P is a discrete poset then Wk(P) is the full representable relation al-
gebra on the set P , so algebras of weakening relations play a role similar to
representable relation algebras. Therefore we define the class WGBI of weak-
ening GBI-algebras as all algebras that are embedded in a weakening relation
algebra Wk(P, Q) for some poset P and equivalence relation Q that contains v.
In fact the variety RRA of representable relation algebras is finitely axiomatized
over WGBI.

Theorem 7. 1. WGBI is closed under subalgebras and products.
2. RRA is the subclass of algebras in WGBI that satisfy ¬¬x = x, i.e., have

Boolean algebra reducts.
3. The class WGBI is not finitely axiomatizable relative to the variety of all

bounded cyclic involutive GBI-algebras.

Proof. 1. Let {Ai : i ∈ I} be a family of algebras from WGBI. Then there exists
a family of posets {Pi : i ∈ I} and equivalence relations {Qi : i ∈ I} such that
Ai is embedded in Wk(Pi, Qi) for each i ∈ I. We can assume that the posets
are disjoint, and define P =

⋃
i∈I Pi, Q =

⋃
i∈I Qi. Then

∏
i∈I Wk(Pi, Qi) ∼=

Wk(P, Q) via the map that sends a tuple of disjoint weakening relations (Ri : i ∈
I) to

⋃
i∈I Ri. Since

∏
i∈I Ai is embedded in

∏
i∈I Wk(Pi, Qi), it follows that

WGBI is closed under products. The closure under subalgebras holds because a
composition of embeddings is again an embedding.

2. Let A be a member of WGBI that satisfies ¬¬x = x. Then A is embedded
in a weakening relation algebra Wk(P, Q), so the identity element of A maps
to the partial order v of the poset P. Assume that v is not the identity relation
on P , so there exist p 6= q such that p v q. Then (q, p) ∈ w◦ v ◦w, hence it is
not a member of ¬v = v → ⊥ = Q − w◦ v ◦w. It follows that (q, p) ∈ ¬¬v,
which means that the identity ¬¬x = x fails for the identity element of A, a
contradiction. Therefore v is the identity relation, so P is a discrete poset, and
A is a subalgebra of a representable relation algebra.

3. This is an immediate consequence of 2., since if WGBI were finitely axiom-
atizable, adding one more identity would give a finite axiomatization of RRA.
However, Monk [14] proved that RRA is not finitely axiomatizable. ut

Currently it has not been established whether WGBI is closed under ho-
momorphic images, hence a variety, and whether it is a discriminator variety.
Another interesting problem that arises is how to define a natural finitely-based



variety that contains WGBI similar to Tarski’s variety RA of (abstract) rela-
tion algebras relative to the variety RRA of all representable relation algebras.
Clearly such a basis would include the axioms of bounded cyclic involutive GBI-
algebras, but there are other simple identities that are satisfied by all weakening
relations. In particular, one can define domain and range of a relation by the
terms d(x) = x>∧1 and r(x) = >x∧1. In any lattice-ordered monoid with top el-
ement >, d(d(x)) = d(x)>∧1 ≤ x>> = x> and d(x) ≤ 1, hence d(d(x)) ≤ d(x).
Also d(x) = d(x)1 ≤ d(x)>, so d(x) ≤ d(d(x), and similarly r(r(x)) = r(x).

Lemma 8. WGBI satisfies the identities d(x)x = x, xr(x) = x and >x>x> =
>x>.

Proof. It suffices to show that the identities hold in any Wk(P, Q). From d(x) ≤
1 it follows that d(x)x ≤ x. For the reverse inclusion, let (p, q) ∈ x. Since
(q, p) ∈ Q and (p, p) ∈ 1, we have (p, p) ∈ d(x), hence (p, q) ∈ d(x)x.

Clearly >x> ≤ >, so >x>x> ≤ >x> = >d(x)x> ≤ >x>x>. ut

The smallest cyclic involutive GBI-algebra (or residuated lattice) where these
identities fail is the 3-element Łukasiewicz algebra, with 0 < a < 1 and satisfying
aa = 0. Since > = 1, we have d(a) = a = r(a), but aa 6= a.

4 Partially-ordered groupoid semantics for some cyclic
involutive GBI-algebras

For an element a in a lattice A = (A,∧,∨) the set {x ∈ A : x < a} always has
a least upper bound, which is either a or the largest element below a. In the
latter case a is called completely join-irreducible, and a lattice is join-perfect if
every element is a join of completely join-irreducible elements. Completely meet-
irreducible elements and meet-perfect lattices are defined dually. A perfect lattice
is defined to be both meet and join-perfect. Birkhoff showed that a finite dis-
tributive lattice A is determined by its poset J(A) of completely join-irreducible
elements (with the order induced by A). The result also holds for complete per-
fect distributive lattices. Conversely, if Q = (Q,≤) is a poset, then the set of
downward closed subsets D(Q) of Q forms a complete perfect distributive lat-
tice under intersection and union. Moreover, D(Q) is a Heyting algebra, with
U → V = Q− ↑(U − V ) for any U, V ∈ D(Q).

For a posetP the weakening relation algebra Wk(P) is a complete and perfect
GBI-algebra, and in this case the poset of completely join-irreducible elements
is isomorphic to Q = P × P∂ . The composition ◦ of Wk(P) is determined by
its restriction to pairs of Q, where it is a partial operation given by

(t, u) ◦ (v, w) =

{
(t, w) if u = v

undefined otherwise.

For an arbitrary complete perfect GBI-algebra A, the operation · is also de-
termined by restricting to J(A), but in general this requires a ternary relation



to represent ◦. Here we consider the special case when the restriction of · to
J(A) gives a partial operation on J(A). The aim is to characterize the partially-
ordered partial algebras that are the result of restricting from certain complete
perfect bounded cyclic involutive GBI-algebras to their partially-ordered set of
join-irreducibles.

For comparison, we first consider the classical case of relation algebras. A
complete perfect relation algebra has a complete atomic Boolean algebra as
reduct, and the set of join-irreducibles is the set of atoms. The operation of
composition, restricted to atoms, is a partial operation precisely when the atoms
form a (Brandt) groupoid [11, Section 5], or equivalently a small category with
all morphism being invertible. In this case the relation algebra is in fact repre-
sentable using the Cayley representation of the groupoid.

In the more general setting of cyclic involutive GBI-algebras we have a sim-
ilar situation using partially-ordered groupoids. We first recall the definitions.
A groupoid is defined as a partial algebra G =(G, ◦,−1 ) such that ◦ is a par-
tial binary operation and −1 is a (total) unary operation on G that satisfy the
following axioms:

1. x ◦ y, y ◦ z ∈ G =⇒ (x ◦ y) ◦ z = x ◦ (y ◦ z),
2. x ◦ y ∈ G ⇐⇒ x−1 ◦ x = y ◦ y−1,
3. x ◦ x−1 ◦ x = x and x−1−1 = x.

These axioms imply x ◦ x−1 ∈ G, as well as x ◦ y ∈ G =⇒ x ◦ y ◦ y−1 = x and
(x◦y)−1 = y−1◦x−1. Typical examples of groupoids are disjoint unions of groups
and the pair-groupoid (X ×X, ◦,` ), where (x, y)` = (y, x) and (x, y) ◦ (z, w) =
(x,w) if y = z (undefined otherwise). A partially-ordered groupoid (G,≤, ◦,−1 ),
or po-groupoid for short, is a groupoid (G, ◦,−1 ) such that (G,≤) is a poset and

4. x ≤ y and x ◦ z, y ◦ z ∈ G =⇒ x ◦ z ≤ y ◦ z,
5. x ≤ y =⇒ y−1 ≤ x−1,
6. x ◦ y ≤ z ◦ z−1 =⇒ x ≤ y−1.

Note that the implication x ≤ y and z ◦ x, z ◦ y ∈ G =⇒ z ◦ x ≤ z ◦ y
follows from these axioms. If P = (P,v) a poset with dual poset P∂ = (P,w)
then P×P∂ = (P ×P,≤, ◦,` ) is a po-groupoid, called a po-pair-groupoid, with
(a, b) ≤ (c, d) ⇐⇒ a v c and b w d.

Theorem 9. Let G = (G,≤, ◦,−1) be a partially-ordered groupoid. Then D(G)
is a bounded cyclic involutive GBI-algebra.

Proof. The downsets of any poset form a complete perfect Heyting algebra under
intersection and union. For downsets s, t the operation · is defined by s · t =
↓{x ◦ y : x ∈ s, y ∈ t}, and it is associative by Axiom 1. The identity of D(G) is
1 = ↓{x◦x−1 : x ∈ G}, and cyclic involution is defined by∼s = G−{x−1 : x ∈ s}.
Hence x ∈ ∼s ⇐⇒ x−1 /∈ s. Axiom 5 ensures that ∼s is again a downset, and
since x−1−1 = x, it follows that ∼∼s = s. It remains to check a version of the
coupled semirings axiom: s ⊆ ∼t ⇐⇒ t · s ⊆ 0 = ∼1. Since every downset is a
union of principal downsets, it suffices to consider s = ↓x and t = ↓y where x, y ∈



G. Now ↓x ⊆ ∼↓y ⇐⇒ x−1 /∈ ↓y ⇐⇒ x−1 � y ⇐⇒ x−1◦y−1 � z◦z−1 for all
z ∈ G using Axiom 6 in the forward direction, and using right-multiplication by
z−1 = y−1 in the reverse direction. This is equivalent to (y◦x)−1 /∈ 1, ↓(y◦x) ⊆ 0
and finally ↓y · ↓x ⊆ 0. ut

In fact for a poset P = (P,v) the weakening relation algebra Wk(P) is
obtained from the po-pair-groupoid G = P×P∂ , and for an equivalence relation
Q ⊆ P 2, Wk(P, Q) is obtained from the sub-po-groupoid (Q,≤, ◦,` ). Hence
every weakening relation algebra has po-groupoid semantics. For example, if one
takes the 2-element chain P = C2 = ({0, 1},v) with the usual order 0 v 1, then
P 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} and

Wk(C2) = {∅, {(0, 1)}, {(0, 0), (0, 1)}, {(0, 1), (1, 1)}, {(0, 0), (0, 1), (1, 1)}, P 2}.

The linear negation ∼ dualizes this 6-element lattice and interchanges a, b. The
3-element chain C3 gives a 9-element po-groupoid, and Wk(C3) has 20 elements
(see Figure 1).

(0, 1)

(1, 1)(0, 0)

(1, 0)

⊥

{(0, 1)} 0

↓{(1, 1)}↓{(0, 0)}

1

>

(0, 2)

(1, 2)

(2, 2)

(0, 1)

(2, 1)

(0, 0)

(1, 0)

(2, 0)

⊥

{(0, 2)}

↓{(1, 2)}

↓{(2, 2)}

↓{(0, 1)}

0↓{(0, 0)}

↓{(2, 1)}1↓{(1, 0)}

>

Fig. 1. Weakening relation algebrasWk(C2) andWk(C3) and their po-pair-groupoids

However, there exist po-groupoids G such that D(G) is not a weakening
relation algebra. The smallest such po-groupoid is based on the pair-groupoid
G = ({0, 1}2, ◦,` ), but has only two pairs that are comparable: (0, 1) ≤ (1, 0),
so (0, 0) and (1, 1) are not comparable to any other pairs. The cyclic involutive
GBI-algebra D(G) has 12 elements, which does not agree with the cardinality
of any of the algebras Wk(P, Q).

The last result shows that the cardinality of weakening relation algebras
determined by a finite linear order is given by the central binomial series.

Theorem 10. For an n-element chain Cn the weakening relation algebra Wk(Cn)
has cardinality

(
2n
n

)
.



Proof. This follows from the observation that D(Cm × Cn) has cardinality(
m+n
n

)
. For n = 1 this is immediate, since an m-element chain has m+ 1 down-

closed sets. Assuming the result holds for n, note that P = Cm ×Cn+1 is the
disjoint union of Cm×Cn and Cm, where we assume the additional m elements
are not below any of the elements of Cm×Cn. The number of downsets of P that
contain an element a from the extra chain Cm as a maximal element is given
by
(
k+n
n

)
where k is the number of elements above a. Hence the total number of

downsets of P is
∑m

k=0

(
k+n
n

)
=
(
m+n+1
n+1

)
. ut

5 Conclusion

The results in this paper provide connections between idempotent semirings,
involutive residuated lattices, generalized bunched implication algebras and re-
lation algebras. These ordered algebras have been extensively studied in algebraic
logic and theoretical computer science, and they share many common features
that allow techniques to transfer from one theory to the other. Weakening rela-
tion algebras extend representable relation algebras to nonclassical logic and are
worthy of further investigation.
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