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Varieties of Lattices
Peter Jipsen and Henry Rose

In this chapter we discuss some of the more recent results and give a general
overview of what is currently known about lattice varieties. Of course it is
impossible to give a comprehensive account. Often we only cite recent or
survey papers, which themselves have many more references. We would like to
apologize in advance for any errors, omissions, or miscrediting of results.

For proofs of the results mentioned here, we refer the reader to the original
papers. Details of many of the results from before 1992 can also be found in
our monograph, P. Jipsen and H. Rose [39].

1-1. The lattice Λ

Recall from [LTF Section VI.2] that the lattice Λ of all lattice varieties is a
dually algebraic, distributive lattice that has the variety L of all lattices at
the top, the variety T of all trivial lattices at the bottom, and the variety
D = Var(C2) of all distributive lattices as the unique atom. To conclude that
L is join-irreducible and has no coatoms, B. Jónsson [40] argued as follows:
Let V, W be proper subvarieties of L and choose lattices K /∈ V, L /∈W.
Using P. M. Whitman’s [79] result that every lattice can be embedded in a
partition lattice, one obtains a subdirectly irreducible lattice S that extends
K × L. Since S /∈ Si(V) ∪ Si(W) = Si(V ∨W), it follows that V ∨W is a
proper subvariety as well, hence L is join-irreducible. By R. A. Dean [13], L
is generated by its finite members, so we may assume that K is finite. The
distributivity of Λ and Jónsson’s Lemma imply that the interval from V to
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2 1. Varieties of Lattices

V ∨Var(K) is finite, so every proper subvariety has at least one cover in Λ,
and L has no co-atoms since V < V ∨Var(K) < L (by join-irreducibility).

A substantial amount of research has been done on the structure near the
bottom of Λ. One of the aims was to investigate this lattice by finding all
varieties of a given finite height. By Jónsson’s Lemma (LTF Theorem 475),
a finite lattice generates a variety of finite height. The converse assertion,
called the Finite Height Conjecture, was a longstanding open problem. Finally,
J. B. Nation [60] found a counterexample (see LTF VI.2.2).

Specific lattices are labeled by capital letter and the varieties they generate
are referred to by the corresponding boldface letter (for example, N5 =
Var(N5)). We say that a variety V is strongly covered by a collection C of
varieties, if every variety that properly contains V also contains at least one
member of C.

The first few levels above the trivial variety are described in [LTF Sec-
tions VI.2 and VI.3] (see LTF Figure 104). G. Grätzer [23] proved that any
finitely generated modular variety is strictly above M3 is above M4 or M32

(or both). B. Jónsson [41] removed the restriction that the variety be finitely
generated by proving the following result:

Theorem 1-1.1. For a modular variety V the following conditions are equiv-
alent:

(i) M32 /∈ V,

(ii) every subdirectly irreducible member of V has length ≤ 2,

(iii) the inequality x ∧ (y ∨ (z ∧w)) ∧ (z ∨w) ≤ y ∨ (x ∧ z) ∨ (x ∧w) holds in
V.

The only subdirectly irreducible lattices of length 2 are Mκ where κ ≥ 3 is
the cardinality of elements of height 1. For infinite κ these lattices all generate
the same variety Mω, and for κ = n finite they generate (by Jónsson’s Lemma)
a covering chain of varieties Mn above M3 that joins to Mω. The preceding
theorem implies that any modular variety that does not contain M32 must be
trivial, distributive or one of the varieties Mn (n ≥ 3) or Mω. Jónsson [41]
deduces the following result.

Theorem 1-1.2. For n ≥ 3, the covers of Mn are Mn+1, Mn ∨M32 and
Mn ∨N5. The variety Mω is strongly covered by Mω ∨M32 and Mω ∨N5.

Let M3n , A1, A2, A3 be the lattices in Figures 1 and suppose that M
is a subdirectly irreducible modular lattice. The main technical result of
D. X. Hong [33] is that if M3n , A1, A2, A3 /∈ HS{M}, then M has length at
most n. This is a typical exclusion result which is very useful when it comes
to finding covers of varieties.
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Let Ml
w be the variety generated by all modular lattices of length at most

l and of width at most w (1 ≤ l, w ≤ ∞). For example, M2
∞ = Mω and M3

∞
is the variety generated by all subspace lattices of projective planes (see the
proof of Theorem 444 in LTF). With this notation, Hong’s result implies that
for any variety V of modular lattices, M33 , A1, A2, A3 /∈ V if and only if
V ⊆M3

∞. It follows immediately that M3
∞ has exactly five covers in Λ, given

by M3
∞ ∨V where V ∈ {M33 ,A1,A2,A3,N5}.

It is easy to check that the varieties A1, A2, A3, M33 , F2 (generated by
the corresponding lattices in Figures 1) each cover the variety M32 . Using the
above exclusion result and some added detail, D. X. Hong [32] proves that they
are the only join-irreducible covers. More generally, he shows the following.

Theorem 1-1.3.

(i) For n ≥ 2, the covers of M3n are M3n+1 and M3n ∨ V, where V ∈
{M4,A1,A2,A3,F2,N5}.

(ii) Let V be a variety generated by a finite collection of finite modular
lattices of length ≤ 3 and let W be a variety generated by a finite
collection of lattices of the form Mn1,...,nk

(see Figure 1). Then each of
the following varieties is strongly covered by finitely many varieties that
can be effectively found:

V ∨W, M2
∞ ∨V ∨W, M3

∞ ∨V ∨W.

This result gives a fairly good description of the bottom of Λ on the modular
side.

Problem 1. Find all the covers of A1, A2, A3.

Problem 2. Does the Finite Height Conjecture hold for modular varieties?
Does it hold for the variety of modular 2-distributive lattices?

A stronger form of the Finite Height Conjecture for modular lattices asks
whether every finite modular lattice has only finitely many modular covers,
each generated by a finite lattice. C. Herrmann and A. Nurakunov [30] proved
that for the class of modular lattices of finite height this stronger conjecture
holds.

Problem 3. Does the variety of modular lattices or the variety of arguesian
lattices have any dual covers?

A planar lattice is defined to be a finite lattice for which there exists a 2-
dimensional Hasse diagram with no intersecting lines. The class PM of planar
modular lattices and the variety VPM = Var(PM) has been investigated
by G. Grätzer and R. W. Quackenbush [27]. Given a planar modular lattice
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A1 A2 A3

M3 M33 M3n

· · ·

· · ·

· · ·

a11

a21

a1n1

a2n2

ak1 aknk

Mn1,...,nk F2 = L(F3
2,F2)

Figure 1: Modular lattices that generate varieties of finite height
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M

M∞,∞

M4,∞M∞,4

F2

D

T

M4

M3

M32

M5 M4,3 M3,4

M6 M5,3 M4,4 M3,5

M∞

M7 M6,3 M5,4 M4,5

M3,5

M3,6

M∞,3 M3,∞

M33

M34

M35

A1 A2 A3

Figure 2: Some varieties of modular lattices ordered by inclusion
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M , a frame of M is defined to be a maximal distributive sublattice. It is
proved that for a planar modular lattice all maximal distributive sublattices
are isomorphic, hence one can denote such a sublattice by FrameM . For
example, the frame of Mn1,...,nk

is Ck+1×C2, whereas the frame of A2 (or A3)
is C3 ×C3 (see Figure 1). The following distributive lattices that can occur as
frames of subdirectly irreducible planar modular lattices.

Theorem 1-1.4 ([27]). Let D be a planar distributive lattice with more than
two elements. Then D is isomorphic to FrameM for some subdirectly irre-
ducible planar modular lattice if and only if every element of D − {0, 1} is
incomparable to some element in D, i.e. D is vertically indecomposable.

To describe all subdirectly irreducible planar modular lattices, Grätzer and
Quackenbush first observe that any Mn sublattices must occur as covering
sublattices, which means that if x ≺ y holds in the sublattice, then it also
holds in the original lattice. Given two comparable elements a < b in a lattice,
the interval b/a is defined to be the set {x | a ≤ x ≤ b}, and it is called a
prime interval if it contains only a, b. Two intervals b/a, d/c are perspective
if a = b ∧ c and b ∨ c = d. A modular zig-zag connecting two prime intervals
b/a and d/c is a sequence S1, . . . , Sm, m ≥ 1, of covering M3-s such that b/a
is perspective to a prime interval in S1, d/c is perspective to a prime interval
in Sm, and any two adjacent members of this sequence form a sublattice
isomorphic to M32 or M3,2,3 (see Figure 1).

Theorem 1-1.5 (Structure theorem of subdirectly irreducible planar modular
lattices [27]). To construct every subdirectly irreducible planar modular lattice
M , start with a vertically indecomposable planar distributive lattice D and
insert doubly irreducible elements into covering squares of D so that in L any
two prime intervals of D are connected by a modular zig-zag.

The results in [27] are proved more generally for modular lattices of order-
dimension 2, which is the analogue of planarity without the restriction to finite
lattices.

For nonmodular varieties, B. Jónsson and I. Rival [45] proved that R. N. McKen-
zie’s [52] list of 15 covers of N5 is complete (LTF Theorem 486). The lattices
which generate these covers are shown in Figure 3.

The above result makes use of the semidistributive implications

(SD∨) x ∨ y = x ∨ z =⇒ x ∨ (y ∧ z) = x ∨ y
(SD∧) x ∧ y = x ∧ z =⇒ x ∧ (y ∨ z) = x ∧ y

(see LTF Section VII). A variety of lattices is said to be semidistributive, if
every member satisfies both laws. The standard meet-sequence terms tn(x, y, z)
for variables x, y, z are defined by

t0(x, y, z) = y,

tn+1(x, y, z) = y ∧ (x ∨ tn(x, z, y)).
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N5 L1 L2 L3

L4 L5 L6 L7 L8

L9 L10 L11 L12

L13 L14 L15

Figure 3: N5 and the lattices that generate join-irreducible covers of N5
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The key exclusion result by B. Jónsson and I. Rival [45] is the following.

Theorem 1-1.6. For any variety V, the following are equivalent.

(i) V is semidistributive.

(ii) M3, L1, L2, L3, L4, L5 /∈ V.

(iii) For some n, the equation

(SDn
∨) x ∨ (y ∧ z) = x ∨ tn(x, y, z)

and its dual (SDn
∧) hold in V.

It follows from this result that semidistributivity is not an equational
property.

The above equations define an increasing sequence of semidistributive
varieties SDn = Mod((SDn

∨), (SDn
∧)). Since

x ∨ (y ∧ z) = x ∨ y(SD0
∨)

x ∨ (y ∧ z) = x ∨ (y ∧ (x ∨ z))(SD1
∨)

x ∨ (y ∧ z) = x ∨ (y ∧ (x ∨ (z ∧ (x ∨ y))))(SD2
∨)

SD0 = T and SD1 = D. Lattices and subvarieties of SD2 are called near
distributive. A useful characterization is given by the next exclusion result.

Theorem 1-1.7. A lattice variety V is neardistributive if and only if it is
semidistributive and L11, L12 /∈ V. (J. G. Lee [49].)

A lattice is said to be almost distributive if it is near distributive and
satisfies the inequality

(AD∨) u ∧ (w ∨ (v ∧ ((x ∨ y) ∧ (x ∨ z)))) ≤ v ∨ (u ∧ w),

where w = x∨ (y∧ (x∨ z)), and it’s dual (AD∧). The variety AD of all almost
distributive lattices is studied by H. Rose [67] and J. G. Lee [49].

The main structural results about subdirectly irreducible almost distributive
lattices require (a special case of) A. Day’s doubling construction. The
version described here is a generalization due to R. Freese, G. McNulty, and
J. B. Nation [22] which will also be used later in the description of inherently
nonfinitely based lattices. Given a lattice L, a convex subset C of L and a
{0, 1}-lattice K, one defines a lattice L ?C K, called the inflation of L at C by
K, as follows. The underlying set is (L−C) ∪ (C ×K), and for elements x, y
in this set, put x ≤ y if

(i) x, y ∈ L− C and x ≤ y holds in L,
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Figure 4: C2 × C3 and (C2 × C3) ?C M3

(ii) x, y ∈ C ×K and x ≤ y holds in C ×K,

(iii) x ∈ L− C, y = 〈c, k〉 ∈ C ×K, and x ≤ c holds in L, or

(iv) x = 〈c, k〉 ∈ C ×K, y ∈ L− C, and c ≤ y holds in L.

Day’s original doubling construction is obtained when K = C2, in which
case L ?C C2 is denoted by L[C], and when C = {c} this is further simplified
to L[c]. For example, if we take L = C2×C3 and C = L−{0, 1} then L?CM3

is the lattice in Figure 4, and (C3 × C3)[d] gives the lattice L15 (Figure 3).
The doubling construction for single elements was actually used in the context
of transferable lattices before Day’s construction.

For a variety V, let ΛV be the lattice of subvarieties of V. If V is a lattice
variety, then ΛV is, of course, a principal ideal of Λ.

Theorem 1-1.8.

(i) A subdirectly irreducible lattice L is almost distributive if and only if
L ∼= D[d], for some distributive lattice D and d ∈ D.

(ii) A lattice variety V is almost distributive if and only if it is semidistribu-
tive and L6, . . . , L12 /∈ V.

(iii) AD is locally finite (that is, every finitely generated member is finite),
hence the Finite Height Conjecture holds for almost distributive varieties
and AD is generated by its finite members.

(iv) The cardinality of ΛAD is 2ℵ0 .

(v) There exists an infinite descending chain in ΛAD.

(vi) There exists an almost distributive variety with infinitely many covers in
ΛAD and one with infinitely many dual covers.

(H. Rose [67], J. G. Lee [49].)
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Judging from the above results and additional details by Rose and Lee,
one might say that the structure of ΛAD is fairly well understood.

Problem 4. Is there a variety with uncountably many covers (or dual covers)
in Λ or ΛAD?

Problem 5. Does AD have any dual covers?

We list below additional results about covers in Λ. In each case these
results are established by long technical computations and the original papers
contain further results that are of interest in their own right.

Theorem 1-1.9. For i = 6, 7, 8, 9, 10, 13, 14, 15 and n ≥ 0, the variety
Ln+1
i is the only join-irreducible cover of Lni (where L0

i = Li, see Figure 5).
(H. Rose [67].)

Theorem 1-1.10. L12 has exactly two join-irreducible covers L1
12 and G1.

For n ≥ 1, Ln+1
12 is the only join-irreducible cover of Ln12, and Gn+1 is the only

join-irreducible cover of Gn. Above L11, the dual results hold (see Figure 5).
(J. B. Nation [57].)

Theorem 1-1.11. The join-irreducible covers of L1 are L16, . . . , L25. The
covers of L2 are dual (see Figure 6). (J. B. Nation [58].)

An approach to finding covers in Λ has been developed by J. B. Nation [59]
(see also A. Day and J. B. Nation [12]).

C. Y. Wong [81] investigates weakened forms of distributivity similar to
semidistributivity to find the covers of L3, L4 and L5. A lattice is said to be
weakly distributive if it satisfies the following implications:

x ∧ y = x ∧ z implies that x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),(WD∨)

x ∨ y = x ∨ z implies that x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).(WD∧)

A variety of lattices is said to be weakly distributive, if this is true for every
member. This property can also be characterized by an exclusion result.

Theorem 1-1.12. For any variety V, the following are equivalent.

(i) V is weakly distributive.

(ii) M3, L1, L2, L4, L5, L11, L12, L13, L14, T1, T2, T3, T4, P4, P5, P10 /∈ V (see
Figures 3, 7 and 9).

(iii) For some n, the equation x ∧ (tn(x, y, z) ∨ tn(x, z, y)) ≤ (x ∧ y) ∨ (x ∧ z)
and its dual hold in V (tn(x, y, z) are the standard meet sequence terms
defined on page 6).
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···

···

···

Ln6

· · ·

· · ·

···

(C2)n+2

Ln7

···

··· ···

···

Ln9

···

···

···

Ln11

···

···

···

Gn∂

· · ·
(C2)n+2

Ln13

· · ·

· · ·

· · ·

(C2)
n+2

(C2)
n+2

Ln15

Figure 5: Sequences of lattices generating join-irreducible varieties. Ln8 , Ln10,
Ln12, Gn, Ln14 are dual to Ln7 , Ln9 , Ln11, Gn∂ , Ln13 respectively. (Here n is a
superscript label, whereas (C2)n+2 is a power of C2.)
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L16 L17 L18 L19 L20

L21 L22 L23 L24 L25

Figure 6: Lattices that generate covers of L1

P1

P7 is dual

P2

P8 is dual

P3

P9 is dual

P4

P10 is dual

P5 P6

Figure 7: Lattices that generate covers of L3
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K1 K2 K3

K4 K5 K6

Figure 8: Lattices that generate covers of L4

T1
T2 is dual

T3
T4 is dual

Figure 9:
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V1 V2
V3 is dual

V4
V5 is dual

V6
V7 is dual

V8

Figure 10: Lattices that generate finitely generated covers of M3 ∨N5

Note that L4 is not weakly distributive, but does satisfy (WD∧). Wong
shows that (WD∧) cannot be characterized by an exclusion result, i.e., there
is no finite list of finite subdirectly irreducible lattices such that a variety
satisfies (WD∧) if and only if it contains none of these lattices. He then goes
on to prove that (WD∧) is weakly finitely definable with respect to L4 which
means that there is a finite list of finite subdirectly irreducible lattices not in
L4 such that if (WD∧) fails in a variety then it contains one of these lattices.
Using this result together with the approach from J. B. Nation [59] and (lots
of) additional details, he succeeds in proving the following result.

Theorem 1-1.13. The join-irreducible covers of L3 are P1, . . . , P10 (see
Figure 7). The join-irreducible covers of L4 are K1, . . . , K6 (see Figure 8).
The covers of L5 are dual. (C. Y. Wong [81].)

For the variety M3 ∨N5, only the finitely generated covers are known at
this point.

Theorem 1-1.14. The finitely generated join-irreducible covers of M3 ∨N5

are V1, . . . , V8 (see Figure 10). (W. Ruckelshausen [68].)

Problem 6. Does M3 ∨N5 have any nonfinitely generated covers?

All the preceding results support the Finite Height Conjecture in that
every finitely generated lattice variety of height at most 4 has only finitely
many covers, each generated by a finite lattice (see Figure 11). However,
J. B. Nation [60] showed that the conjecture fails for lattices in general (see
LTF VI.2.2). In the same paper it is also shown that there is a variety of finite
height that has countably infinite many covers.

Calculations that enumerate small lattices have led to the results summa-
rized here. The lattices of size n up to isomorphism were computed up to
n = 18 by J. Heitzig and J. Reinhold [28] and extended to n = 19 by P. Jipsen
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Figure 11: Known join-irreducible covers near the bottom of Λ
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and N. Lawless [37]. The subdirectly irreducible lattices of size up to n = 12
were filtered out which produced the following result.

n = 5 6 7 8 9 10 11 12
Number of s.i. lattices 2 4 16 69 360 2103 13867 100853

Including the 1-element and 2-element lattice, there are 2556 subdirectly
irreducible lattices up to size 10, and the collection of these lattices is denoted
L10. For L,M ∈ L10, define L ≤M if L ∈ HS{M}. Then Jónsson’s Lemma
implies that Var(L) ⊆ Var(M) if and only if L ≤M , hence L10 ordered by
≤ is isomorphic to the poset of completely join-irreducible varieties in Λ that
are generated by a subdirectly irreducible lattices of size ≤ 10. This poset has
been computed, but due to its size, it is not useful to draw a Hasse diagram.
Since all varieties of height 3 in Λ are generated by a lattice of size ≤ 10, the
poset shows the first few levels of Λ as in Figure 11, except that V1, . . . ,V8

are in the position of M3 ∨N5. So there are 2+8+15=25 elements of height 3
in this poset. The height of L10 is 7, with the following number of elements of
each height:

Height in L10 = 0 1 2 3 4 5 6 7
Number of s.i. lattices 1 1 2 25 143 575 1060 749

Problem 7. Is every variety of finite height finitely based?

Problem 8. Is every variety of finite height generated by a lattice of finite
width?

Problem 9. Is there an algorithm to find the covers of a finitely generated
variety?

1-2. Generating sets of varieties

It is well known that the variety of all lattices is generated by its finite members
(R. A. Dean [13]). Using the doubling construction and R. N. McKenzie’s [52]
characterization of splitting lattices as finite subdirectly irreducible bounded
lattices, A. Day [9] was able to prove the following sharper version of Dean’s
result.

Theorem 1-2.1. The variety L of all lattices is generated by the class of all
splitting lattices.

The significance of this result is enhanced by the fact that it implies every
finitely generated free lattice is weakly atomic (R. N. McKenzie [52] and
A. Kostinsky [48] proved this condition equivalent to Day’s theorem).

More recently, R. N. McKenzie [53] showed that L is also generated by the
collection of all finite minimal simple lattices. (A simple lattice L is minimal
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if L 6∼= C2 and no simple lattice other than C2 generates a proper subvariety
of Var(L).)

For the variety of modular lattices, the situation is quite different.

Theorem 1-2.2.

(i) The variety M of all modular lattices is not generated by its finite
members. (R. Freese [16].)

(ii) Neither M nor the variety A of all arguesian lattices is generated by its
members of finite length. (C. Herrmann [29].)

Using P. Pudlák and J. Tůma’s [66] result that every finite lattice can be
embedded into a finite partition lattice, P. Bruyns and H. Rose [6] show that
every lattice is embeddable into an ultraproduct of finite partition lattices,
hence L = SPU ({Partn | n ∈ ω}). Furthermore, since any lattice variety
V satisfies the Embedding Property (see Section VI.4), there exists a lattice
L ∈ V such that every member of V is embeddable into an ultrapower of L,
that is, V = SPU (L). Such lattices L are referred to as ultra-universal (see
also C. Naturman and H. Rose [61]).

R. N. McKenzie [52] showed that splitting lattices in Λ are finite. However,
splitting lattices can be defined in any lattice of varieties.

Problem 10. Is every splitting lattice in ΛM finite?

Problem 11. Is M generated by all the splitting lattices in ΛM?

If L is a splitting lattice in Λ, then the largest variety that does not contain
L is called the conjugate variety of L.

Problem 12. Is there a nontrivial conjugate variety in Λ that is generated
by its finite members?

Problem 13. Is there a conjugate variety V with infinite subdirectly irre-
ducible members that are projective in V?

Note that if a variety V is generated by its finite members then every
subdirectly irreducible projective member is finite. Thus a positive answer to
the previous problem implies that V is not generated by its finite members.

1-3. Decidability of equational theories

A variety V is said to have a decidable equational theory if there is an algorithm
that takes any lattice equation as input and outputs true if the equation holds
in all members of V, and otherwise it outputs false. This is equivalent to the
solvability of the word problem for free lattices in the variety.
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The variety L of all lattices has a decidable equational theory since Whit-
man [78] showed in 1941 that the word problem for free lattices is solvable (LTF
Theorem 540). In fact, this result was proved already in 1920 by Skolem [74],
as pointed out by S. Burris in [7]. Skolem’s solution actually provides an
algorithm that has polynomial complexity, whereas Whitman’s solution, when
implemented in a naive way, has exponential complexity.

The variety of all lattices satisfies the stronger finite embeddability property
of T. Evans [14], whence it follows that the universal theory of lattices is
decidable.

Recall that a variety is finitely generated if it has finitely many fundamental
operations and is generated by a finite set of finite algebras. Such a variety
has a decidable equational theory, since one can simply check whether a given
equation holds in all of the finitely many finite generating algebras. Hence the
variety D of distributive lattices has a decidable equational theory, and the same
holds for the varieties T,Mn,M3n ,Mn1,...,nk

,A1,A2,A3,F2,L1, . . . ,L25, . . ..
In fact, P. Bloniarz, H. B. Hunt and D. Rosenkrantz [5] have shown that
the equational theory of any nontrivial finitely generated lattice variety is
co-NP-complete.

If a variety is defined by finitely many equations and generated by its
finite members then again one can decide any equation by an argument due
to J. C. C. McKinsey [54]: either the equation can be derived from the finite
equational basis or a finite counterexample can be found by examining the
denumerable list of all finite members. More generally, it suffices that a variety
is defined by a recursively enumerable set of identities and is generated by a
recursively enumerable collection of finite algebras, to conclude that such a
variety has a decidable equational theory. This result is useful for concluding,
for example, that M∞ has a decidable equational theory. It is also used by
L. Santocanale and F. Wehrung [70] to show that the variety generated by
all Tamari lattices and the variety generated by all permutohedra lattices
have decidable equational theories (see Chapter ?? for definitions and some
discussion).

As mentioned in LTF Theorem 542, R. Freese [17] proved that the word
problem for the free modular lattice on 5 generators is unsolvable, hence the
equational theory of modular lattices is undecidable. C. Herrmann [29] settled
the word problem for the 4-generated free modular lattice by showing it is also
unsolvable.

A lattice is n-distributive if it satisfies the identity

x ∧
n∨
i=0

yi =

n∨
i=0

x ∧ n∨
j=0,j 6=i

yi

 .

Thus 1-distributivity is simply distributivity x∧ (y0 ∨ y1) = (x∧ y0)∨ (x∧ y1),
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and 2-distributivity is the identity

x ∧ (y0 ∨ y1 ∨ y2) = (x ∧ (y1 ∨ y2)) ∨ (x ∧ (y0 ∨ y2)) ∨ (x ∧ (y0 ∨ y1)).

The variety Dn of all n-distributive lattices is distinct from the variety
D∂
n of dually n-distributive lattices for n > 1. For example, a lattice of least

cardinality in D2 that is not in D∂
2 is given by L13 in Figure 3.

The varieties D1,D2,D3, . . . form an increasing chain of distinct varieties,
as is shown by lattices of subspaces of n-dimensional vector spaces. Every
lattice with n elements is (n + 1)-distributive, and since the variety of all
lattices is generated by its finite members, it follows that the union of this
chain of varieties is the variety of all lattices.

Many fundamental results about n-distributive lattices were found by
A. Huhn [35, 36], initially mostly under the additional assumption of modularity.
An open problems in the latter paper asks if the variety Dn is generated by
its finite members.

An element in a poset is completely join-irreducible if the set of elements
strictly below it has a largest member, and a lattice is spatial if every element
is a join of completely join-irreducible elements. Recall that an element in a
lattice is compact if, whenever it is below the join of a set of elements, then it
is less or equal to the join of a finite subset of these elements. An algebraic
lattice is a complete lattice in which every element is the join of compact
elements.

L. Santocanale and F. Wehrung [69] prove that, for fixed n, every n-
distributive lattice can be embedded, within its variety, in an algebraic spatial
lattice, which is thus also n-distributive. To show that n-distributivity is
required in this result, they give an interesting counterexample of a join-
semidistributive lattice that cannot be embedded, within its variety, into an al-
gebraic spatial lattice. Using this geometric description of an n-distributive lat-
tice, they are then able to prove the following result, thus answering Huhn’s [36]
question positively.

Theorem 1-3.1 (L. Santocanale and F. Wehrung [69]). For each n ∈ ω, the
variety Dn of all n-distributive lattices is generated by its finite members, hence
it has a decidable equational theory.

The following property is used repeatedly in the proof: the nontrivial
direction of n-distributivity implies that if a join-irreducible x is less or equal
to y0 ∨ · · · ∨ yn, then x ≤ y0 ∨ · · · ∨ yi−1 ∨ yi+1 ∨ · · · ∨ yn for some i, and for
spatial lattices the converse also holds.

Two decades earlier, C. Herrmann, D. Pickering, and M. Roddy [31] proved
that every modular lattice can be embedded, within its variety, into an algebraic
spatial lattice. However, as noted above, it does not follow that the variety of
modular lattices is generated by its finite members.
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For a poset P one can consider the lattice Co(P ) of order-convex subsets of
P . These lattices have been studied by M. V. Semenova and F. Wehrung [72,
71, 73], and it is proved that they generate a finitely based variety determined
by the following identities (S), (U), (B) (named after the fictional characters
Stirlitz, Udav and Bond)

(S) x ∧ (y′ ∨ z) = (x ∧ y′) ∨
1∨
i=0

(x ∧ (yi ∨ z) ∧ ((y′ ∧ (x ∨ yi)) ∨ z))

where y′ = y ∧ (y0 ∨ y1),

x∧(y0 ∨ y1) ∧ (y1 ∨ y2) ∧ (y0 ∨ y2)

= (x ∧ y0 ∧ (y1 ∨ y2)) ∨ (x ∧ y1 ∧ (y0 ∨ y2)) ∨ (x ∧ y2 ∧ (y0 ∨ y1))(U)

x ∧ (y0 ∨ y1)∧(z0 ∨ z1) =

1∨
i=0

((x ∧ yi ∧ (z0 ∨ z1)) ∨ (x ∧ zi ∧ (y0 ∨ y1)))

∨
1∨
i=0

(x ∧ (y0 ∨ y1) ∧ (z0 ∨ z1) ∧ (y0 ∨ zi) ∧ (y1 ∨ z1−i)).(B)

The variety of lattices that satisfy these three identities is denoted by SUB.

Theorem 1-3.2 (M. V. Semenova and F. Wehrung [72]).

• A lattice L is a member of SUB if and only if it is embeddable into
Co(P ) for some poset P .

• The embedding can be chosen to preserve the bounds of L (if any).

• If L is finite, P can be finite with size ≤ 2n2 − 5n+ 4, where n is the
number of join irreducibles of L.

• The variety SUB is generated by its finite members, hence it has a
decidable equational theory.

In a subsequent paper, Semenova and Wehrung [71] consider lattices Co(P )
for posets P of height n. These lattices are also shown to generate a finitely
based variety, denoted SUBn, and it is proved that SUB2 is locally finite
while SUB3 is not. A third paper [73] in this series covers the case when the
posets P are chains. In this situation the variety SUBLO is generated as a
quasivariety by the lattices Co(P ), is locally finite, and has only finitely many
subquasivarieties.
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· · · · · ·

Figure 1: The lattice Lf

1-4. Equational Bases

Recall that an algebra is said to be finitely based if the variety which it
generates is determined by finitely many equations. Nonfinitely based lattices
were constructed by K. A. Baker [1], [2], R. Freese [15], C. Herrmann [29],
R. N. McKenzie [51] and R. Wille [80]. One such lattice, due to McKenzie, is
shown in Figure 1.

An algebra A is said to be inherently nonfinitely based if Var(A) is lo-
cally finite, and any locally finite variety to which A belongs is not finitely
based. This concept was introduced independently by V. L. Murskĭı [55] and
P. Perkins [64]. Inspired by J. B. Nation’s [60] counterexample to the Finite
Height Conjecture, R. Freese, G. McNulty, and J. B. Nation [22] construct
inherently nonfinitely based lattices. Here we only state a special case of their
main result (see page 8 for the definition of L ?C K).

Theorem 1-4.1. Let Lf be the lattice in Figure 1 and define C = Lf −{0, 1}.
Let K be a {0, 1}-lattice which belongs to a locally finite variety, and assume
that K has an automorphism with an infinite orbit. Then Lf ?CK is inherently
nonfinitely based.

The two least complicated lattices K with the required automorphism are
Mω and B (a chain isomorphic to the integers with top and bottom elements
added). The resulting lattices Lf ?C K are given in Figure 1. In the same
paper, it is also shown that the lattice Lf is not inherently nonfinitely based.

Problem 14. Are there any modular lattices that are inherently nonfinitely
based?

Analogously to the varieties Ml
w one defines Vl

w to be the variety generated
by all lattices of height l and width w. We allow l =∞ or w =∞ in which
case the respective parameter is not restricted. For l, w < ∞, the varieties
Ml

w and Vl
w are finitely generated and hence finitely based.
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Note that if a variety V is strongly covered by a finite set of varieties,
then it is finitely based. Results about whether the varieties Ml

w and Vl
w are

finitely based for l =∞ or w =∞, are as follows:

Theorem 1-4.2.

(i) M2
∞ (= V2

∞) and M3
∞ are finitely based (see, Theorems 1-1.2 and 1-1.3),

Mn
∞ is finitely based for all n (K. Baker, see C. Herrmann [1973]).

(ii) V3
∞ is finitely based (C. Herrmann [1973]), Vn

∞ is not finitely based for
n ≥ 4 (K. Baker [2]).

(iii) M∞1 = M∞2 = D, M∞3 = M3 (see Theorem 1-1.2, since both its modular
covers are generated by lattices of width 4), M∞4 is strongly covered by
10 varieties (each generated by M∞4 together with one of the lattices
in LTF Figure 114, F2 in Figure 1, or N5) and hence finitely based
(R. Freese [1977]), M∞n is not finitely based for n ≥ 5 (K. A. Baker [2]).

(iv) V∞2 = N5 (O. T. Nelson [1968]), hence finitely based, V∞n is not
finitely based for n ≥ 3 (n ≥ 4 due to K. A. Baker [2], n = 3 due to
Y.-C. Hsueh [34]).

B. Jónsson [1974] showed that the join of two finitely based lattice varieties
need not be finitely based, and K. A. Baker [2] did the same for two finitely
based modular varieties. In view of these result, it is natural to look for sufficient
conditions under which the join of two finitely based varieties remains finitely
based.

Theorem 1-4.3. Suppose that V and W are finitely based lattice varieties.
If one of the following conditions holds, then V ∨W is finitely based.

(i) V is modular and W is generated by a finite lattice that excludes M3.

(ii) V and W are locally finite and the projective radius of V ∩W is finite.

(iii) V and W are modular and W is generated by a lattice of finite length.

(iv) V is modular and W is generated by a finite lattice with finite projective
radius.

(v) V ∩W = D, the variety of all distributive lattices.

(i) and (ii) are due to J. G. Lee [50], (iii) is due to Jónsson and the remaining
statements are due to Y. Y. Kang [46].

Note that it follows from part (i) above that M ∨ N5 is finitely based.
B. Jónsson [42] constructed an explicit basis of eight identities for this variety.
The following problem was inspired by this result.
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Problem 15. Is the unique cover of a conjugate variety in Λ always finitely
based? (A. Day.)

Problem 16. Recall that VPM is the variety generated by all planar modular
lattices. Is this variety finitely based?

1-5. Amalgamation and absolute retracts

G. Grätzer, B. Jónsson, and H. Lakser [25] showed that, besides the varieties
T and D, no modular variety has the amalgamation property (see Section
VI.4 for a discussion). A. Day and J. Ježek [11] finally extended this result to
all lattice varieties.

Theorem 1-5.1. T, D, and L are the only lattice varieties with the amalga-
mation property.

For other varieties of algebras the amalgamation property also turned
out to be rarely satisfied. A comprehensive survey about amalgamation for
various types of algebras can be found in E. W. Kiss, L. Márki, P. Pröhle,
and W. Tholen [47]. These results indicate that the concept of amalgamation
does not mesh well with that of a variety. However the amalgamation class
Amal(V) of a variety V, introduced by G. Grätzer and H. Lakser [26], has
proved to be very fruitful. M. Yasuhara [82] showed that for any variety V of
algebras, each member of V has an extension in Amal(V), hence Amal(V) is
a proper class (Theorem VI.4.10). At present the main directions of study are
to characterize the amalgamation class of a given variety and to decide whether
it is (strictly) elementary, i.e., if it can be defined by a (finite) collection of first
order sentences. Although we do not know anything about a single member
of Amal(M), significant progress has been made with residually small lattice
varieties. This started with a characterization of the amalgamation class of
finitely generated lattice varieties by B. Jónsson [44], and was generalized by
P. Jipsen and H. Rose [38] (see also P. Ouwehand and H. Rose [62]).

Many of the results below are valid for various congruence distributive
varieties (not only lattice varieties), so we will state the more general results
where applicable. A retraction of an embedding f : A→ B is a homomorphism
g : B → A such that g ◦ f = idA. An algebra A in a class K is said to be
an absolute retract in K if for every embedding f : A ↪→ B ∈ K, there is a
retraction. The class of all absolute retracts of K is denoted by Ar(K). The
concept of absolute retract is of interest here since C. Bergman [3] observed
that for any variety V we have Ar(V) ⊆ Amal(V).

A variety is said to be residually small, if there is an upper bound on the
cardinality of its subdirectly irreducible members. W. Taylor [75] proved that
a variety V is residually small if and only if V = SAr(V).
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Theorem 1-5.2. Let V be a residually small congruence distributive variety
in which every member has a one-element subalgebra. Then A ∈ Amal(V)
if and only if for any embedding f : A ↪→ B ∈ V and any homomorphism
h : A→ M ∈ Si(Ar(V)) there exists a homomorphism g : B → M such that
h = fg.

The reverse implication is due to C. Bergman [3] and the forward direction
is from P. Jipsen and H. Rose [38]. A useful corollary is that for finite algebras
the condition in the preceding theorem can be checked.

Corollary 1-5.3. Let V be a finitely generated congruence distributive variety
in which every member has a one-element subalgebra. For finite algebras in
V, membership in Amal(V) is decidable. (B. Jónsson [44], P. Jipsen and
H. Rose [38].)

Since the amalgamation class of a variety is in general a proper subclass,
it is interesting to ask whether it is an elementary class. Even for a finitely
generated lattice variety this is a nontrivial problem.

Theorem 1-5.4. The amalgamation class of any finitely generated nondis-
tributive modular lattice variety is not elementary. (C. Bergman [4].)

Problem 17. For which finitely generated varieties is the amalgamation class
elementary?

Recent progress on this problem has been made by P. Ouwehand and H. Rose [63].

Theorem 1-5.5. Let V be a finitely generated variety of lattices. Suppose
that there is a lattice L ∈ Amal(V) with either a bottom or a top element,
which does not have C2 as homomorphic image, but some ultrapower LI/U
does have C2 as homomorphic image. Then LI/U /∈ Amal(V), and hence
neither Amal(V) nor its complement are elementary.

The lattice L is usually constructed by glueing countably many copies of a
maximal subdirectly irreducible member on top of eachother (identifying the
top of one member with the bottom of the next). Applications of this result
include a simple proof of Theorem 1-5.4 as well as the result that any lattice
variety generated by a finite simple lattice has a nonelementary amalgamation
class. Further generalizations to nonfinitely generated varieties imply, for
example, that Mω does not have an elementary amalgamation class.

Problem 18. If Amal(V) is an elementary class, does it follow that it is a
Horn class?

P. Ouwehand and H. Rose [62] show that if an elementary class K is
closed under updirected unions, then it is closed under finite direct products
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if and only if it is closed under reduced products (and hence definable by
Horn sentences). This result applies to elementary amalgamation classes since
M. Yasuhara [82] showed that they are closed under updirected unions. Hence
the above problem is equivalent to asking if every elementary amalgamation
class is closed under finite products.

Problem 19. Is there a nonfinitely generated variety other than L whose
amalgamation class is elementary? In particular, is Amal(M) an elementary
class?

Absolute retracts We now consider the problem of how the class of all
absolute retracts of a variety can be constructed from its subdirectly irre-
ducible members. Even for congruence distributive varieties, the product of
two absolute retracts need not be an absolute retract (W. Taylor [76]), but
fortunately lattices are well behaved.

Theorem 1-5.6. Let V be a congruence distributive variety in which every
member has a one-element subalgebra. Then the class of absolute retracts of V
is closed under direct products and direct factors, that is,

∏
i∈I Ai ∈ Ar(V)

iff {Ai | i ∈ I } ⊆ Ar(V). (P. Jipsen and H. Rose [38], P. Ouwehand and
H. Rose [62].)

In fact, P. Ouwehand and H. Rose [62] show that for congruence distributive
varieties, all finite absolute retracts can be obtained as products of subdirectly
irreducible absolute retracts. The general case is more complicated and requires
the concept of equational compactness (see also Section 1.9 of Appendix A).
Here we only need the algebraic formulation: an algebra A is equationally
compact if for every diagonal embedding of A into an ultrapower of A, there
is a retraction. Clearly every finite algebra and every absolute retract with
respect to some variety is equationally compact. Ouwehand and Rose also
observe that equationally compact lattices are complete (a result implicit in
B. Weglorz [77]). Hence absolute retracts in a lattice variety are complete
lattices.

Consider the following characterization:

(∗) An algebra A is in Ar(V) if and only if A is a product of equationally
compact reduced powers of Si(Ar(V)).

Theorem 1-5.7. Let V be a finitely generated variety of lattices.

(i) Every equationally compact reduced power of a finite absolute retract
in V is an absolute retract in V (hence the reverse implication of (∗)
holds).

(ii) If none of the subdirectly irreducible absolute retracts in V are homo-
morphic images of each other then V satisfies (∗).
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(iii) Assume every proper subvariety satisfies (∗). If V is the join of its
proper subvarieties or contains only one subdirectly irreducible absolute
retract, then V satisfies (∗).

(P. Ouwehand and H. Rose [62].)

Note that the previous theorem is a generalization of the well known result
that the absolute retracts in D are precisely the complete Boolean lattices
(since every complete Boolean lattice is a reduced power of C2, which is the
only subdirectly irreducible in D). All finite lattices in Si(M) are simple,
hence (ii) implies that every finitely generated modular variety satisfies (∗).
It follows from Theorem 1-1.8(i) that any homomorphic image of a lattice in
Si(AD) is distributive, whence (∗) also holds for all finitely generated almost
distributive varieties.

1-6. Congruence varieties

A congruence variety is a variety of lattices which is generated by the congruence
lattices of some variety of algebras. An account of this area of research can be
found in B. Jónsson’s appendix to G. Grätzer [24] (see also B. Jónsson [43]). In
this section, we mention some more recent results and some additional results
not included there.

1-6.1 The nonmodular case: Polin’s variety

Contrary to the belief of many researchers, S. V. Polin [65] constructed a
variety of algebras whose congruence variety is a proper nonmodular subvariety
of L. In the reconstruction of Polin’s proof (from sketchy notes) A. Day showed
that there are infinitely many distinct nonmodular congruence varieties, each
of which contains no nondistributive modular lattices. Since the join of
congruence varieties is again a congruence variety, there are infinitely many
nonmodular congruence varieties. Moreover, we have the following results.

Theorem 1-6.1.

(i) Any nonmodular congruence variety contains the variety of all almost
distributive lattices. (A. Day 1977].)

(ii) Polin’s congruence variety is the unique minimal nonmodular congruence
variety. (A. Day and R. Freese [10].)

For further information about Polin’s variety see R. Freese [19].

Theorem 1-6.2. Each minimal modular nondistributive congruence variety is
determined by one of the varieties generated by all vector spaces of characteristic
p (a prime or 0). (R. Freese, C. Herrmann and A. P. Huhn [20].)
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Since D is meet-irreducible in the lattice of modular varieties, it follows
from this result that the meet of two congruence varieties does not have to be
a congruence variety.

Corollary 1-6.3. The set of all congruence varieties is not a sublattice of Λ.

Problem 20. Is there a unique largest modular congruence variety?

We now turn to the question of congruence identities. Among the most
significant results are the following.

Theorem 1-6.4.

(i) There is a lattice equation strictly weaker than the modular law such
that any congruence variety which satisfies this law is a modular variety.
(J. B. Nation [56].)

(ii) Every modular congruence variety is arguesian. (R. Freese and B. Jónsson [21].)

(iii) No modular nondistributive congruence variety is finitely based. (R. Freese [18])

(iv) For each n ≥ 0, the congruence lattice ConFn of the free n-generated
Polin algebra is a splitting lattice. Thus (by Theorem 1-6.1(ii)) a variety
is congruence modular if and only if it satisfies the conjugate equation of
one of these splitting lattices. (A. Day and R. Freese [10].)

(v) It is decidable whether a lattice equation implies congruence modularity
(or distributivity). (G. Czédli and R. Freese [8].)

Problem 21. Is there a nondistributive congruence variety which is finitely
based?
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