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1. Introduction

Lattices have many applications in mathematics and logic, in which they

occur together with additional operations. For example, in applications of

Hilbert spaces, one is often concerned with the lattice of closed subspaces of

a fixed space. This lattice is not distributive, but there is an operation taking

a given subspace to its orthogonal subspace. More generally, ortholattices are

lattices with a unary operation (−)† that is involutive (a = a††), sends finite

joins to meets and for which a and a† are complements. Bounded modal lat-

tices (L,∨,∧,0,1,◊,◻) are models of (not necessarily distributive) modal logic,

where ◊ and ◻ are unary operations that preserve finite join and finite meet,

respectively, and represent possible and necessary. Bounded lattice-ordered

monoids are bounded lattices with an associative binary operation ⋅ and an

identity element 1. In these examples it is postulated that the additional oper-

ations “preserve structure” in various different senses. Orthocomplementation

sends finite joins to meets (and finite meets to joins). The modal operators

preserve finite joins and finite meets, respectively. Similarly, the monoid op-

eration distributes over finite joins. Bounded residuated lattices are bounded

lattice-ordered monoids with two further operations /, / that interact with ⋅
via the universally quantified residuation law :

x ⋅ y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x/z.

This law implies / is join-reversing (i.e. sends joins to meets) in the first

argument and meet-preserving in the second, whereas / is meet-preserving in

the first and join-reversing in the second argument.

These examples illustrate that the additional operations on lattices can

preserve structure in a variety of ways. Each one, however, is a quasioperator,

which means it is join-preserving or meet-reversing in each argument, or dually

is meet-preserving or join-reversing in each argument.
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The main objective of this paper (the second of two parts) is to show that

quasioperators can be dealt with smoothly in the topological duality estab-

lished in Part I. Similar operators have been discussed by [6], [7], and in the

setting of canonical extensions and generalized Kripke frames by [1], [2].

Each quasioperator f ∶ Ln → L has an associated monotonicity type ε ∈
{1, ∂}n+1 which determines whether f is join or meet preserving or reversing

in each argument. Here L∂ denotes the order-dual of L, and L1 = L. The

value of εi is chosen so that f will be join-preserving in each argument when

considered as a map from ∏n−1
i=0 L

εi to Lεn . For example the operation /
has monotonicity type (1, ∂, ∂). In a bounded modal lattice, the “possible”

operator has monotonicity type (1,1), whereas the “necessary” operator has

type (∂, ∂).

2. Summary of Part I

In Part I, [8], we prove duality theorems for bounded lattices involving the

following notions. We refer the reader to Part I for proofs of all results in this

section.

The category Lat consists of bounded lattices and bounded lattice homo-

morphisms. Taking the meet semilattice reducts of lattices yields a larger

category Lat∧,1 of lattices and meet semilattice homomorphisms. Also, the

category SLat consists of meet semilattices and meet semilattice homomor-

phisms.

The specialization (pre)order on a topological space X is defined by x ⊑X
y if and only if every neighborhood of x is also a neighborhood of y. The

T0 axiom says exactly that this is a partial order; the T1 axiom says that

it is trivial. A saturated set is an upper set with respect to specialization.

Alternatively, because of how the specialization order is defined, saturated sets

are characterized as the intersections of opens. A filter of X is a saturated

subset F ⊆X that is also downward directed, i. e., it is non-empty and for any

x, y ∈ F , there exists z ∈ F so that z ⊑ x and z ⊑ y.

Define the following collections of subsets of X.

● K(X): the collection of compact saturated subsets of X.

● O(X): the collection of open subsets of X.

● F(X): the collection of filters of X.

Intersections of these are denoted by concatenation, e.g., OF(X) = O(X) ∩
F(X). In particular, OF, KO and KOF will be important.

In any topological space X, a filter of X is compact if and only if it is a

principal filter. So the collection KOF(X) consists of certain principal filters.

Letting ↑x denote the upper set (equivalently, filter) generated by x, define

● Fin(X) = {x ∈X ∣ ↑x ∈ KOF(X)}.

So there is an order reversing bijection between KOF(X) and Fin(X).
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For set A ⊆X, define the F -saturation of A by

fsat(A) = ⋂{F ∈ OF(X) ∣ A ⊆ F}.

Say that a set is F -saturated if it is its own F -saturation. Clearly, in any

topological space, the F -saturated sets form a complete lattice in which meets

are formed by taking intersections and joins are formed by ⊔i Si = fsat(⋃i Si).
We let FSat(X) denote this complete lattice.

Consider the following properties of a topological space X:

(1) X is sober;

(2) KO(X) is closed under finite intersection and forms a basis for the topology

on X;

(3) OF(X) is closed under finite intersection and forms a basis for the topology

on X;

(4) fsat(U) is open whenever U is open.

A space satisfying (1) and (2) is called a spectral space. Spectral spaces are the

spaces that Stone identified as the duals of distributive lattices [9]. A space

satisfying (1), (2) and (3) is called a Hofmann-Mislove-Stralka space (HMS

space for short; see [8] for justification of the name). A space satisfying (1),

(2), (3) and (4) is called a bounded lattice space (BL space).

For sets A,B ⊆ X, say that A is way-below B (written A ≪ B) if every

open cover of B contains a finite subcover of A. In particular, A ≪ A holds

if and only if A is compact in the usual sense. A function f ∶X → Y between

topological spaces is spectral if f is continuous and f−1 preserves the way below

relation on open sets. In the case of open subsets of spectral spaces, U ≪ V

holds if and only if there is a compact open K so that U ⊆ K ⊆ V . So a

function between spectral spaces is spectral if and only if f−1 sends compact

opens in Y to compact opens in X.

For HMS spaces X and Y , a function f ∶X → Y is called F -continuous

if it is spectral and fsat(f−1(U)) ⊆ f−1(fsat(U)) holds for all opens U ⊆ Y .

Furthermore, f is F -stable if it is spectral and fsat(f−1(U)) = f−1(fsat(U)) for

all opens U ⊆ Y .

Clearly, F -continuous maps and F -stable maps compose, so we have three

categories:

● HMS – HMS spaces and F -continuous maps;

● BLc – the full subcategory of HMS consisting of BL spaces;

● BL – the subcategory of BLc consisting of BL spaces and F -stable maps.

The following results are summarized from Part I.

Lemma 2.1. In a HMS space X, the set KOF(X) is closed under finite in-

tersection. For an F -continuous map f ∶X → Y , f−1(K) ∈ KOF(X) whenever

K ∈ KOF(Y ). If X is a BL space, then KOF(X) is a sublattice of the com-

plete lattice FSat(X). Moreover, if X and Y are BL spaces and f ∶X → Y is

F -stable, then f−1 also preserves joins of compact open filters.
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This lemma tells us that KOF extends to a contravariant functor KOF ∶
HMS⇒ SLat via KOF(f) = f−1. The lemma also says that KOF restricts and

co-restricts to contravariant functors KOF ∶ BLc ⇒ Lat∧,1 and KOF ∶ BL ⇒
Lat.

For a semilattice L, let Filt(L) be the space of filters of L. The topology on

Filt(L) is generated by the basic opens

ϕa = {F ∈ Filt(L) ∣ a ∈ F}

for each a ∈ L.

Lemma 2.2. For any meet semilattice L, Filt(L) is an HMS space. For any

meet semilattice homomorphism h∶L → M , h−1 preserves filters and h−1 is

F -continuous as a map Filt(M) → Filt(L). If X is a lattice, then Filt(L) is

a BL space. Moreover, if L and M are lattices and h∶L → M is a lattice

homomorphism, then h−1 is F -stable.

Thus Filt is a contravariant functor SLat ⇒ HMS that restricts and co-

restricts to Lat∧,1 ⇒ BLc and to Lat⇒ BL.

Theorem 2.3. The functors KOF and Filt determine dual equivalences:

● SLat ≡HMSop

● Lat∧,1 ≡ BLop
c

● Lat ≡ BLop

Although the details of the proof are found in [8], we will need explicit

definitions for the unit and co-unit of the adjunction. For lattices L, one

checks that a ↦ ϕa is the required natural isomorphism L → KOF(Filt(L)).
For BL spaces X, the natural homeomorphism X → Filt(KOF(X)) is given by

θx = {K ∈ KOF(X) ∣ x ∈K}.

A complete lattice C is a completion of a lattice L if L is a sublattice of C

(more generally, L is embedded in C). L is lattice dense in C if

MeetsC(JoinsC(L)) = C = JoinsC(MeetsC(L)),

where

MeetsC(A) = {⋀A′ ∣ A′ ⊆ A}
JoinsC(A) = {⋁A′ ∣ A′ ⊆ A}

Furthermore L is lattice compact in C if for all U,V ⊆ L, ⋀C U ≤ ⋁C V implies

there exist finite U0 ⊆ U , V0 ⊆ V for which ⋀U0 ≤ ⋁V0.

A completion C is a canonical extension of L if L is lattice dense and lattice

compact in C. The existence and uniqueness of a canonical extension is due to

Gehrke and Harding [3]. In [8] it is proved in the following topological form.

Theorem 2.4. For every BL space X, FSat(X) is a canonical extension of

KOF(X).
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Corollary 2.5. Every lattice has a canonical extension, unique up to isomor-

phism.

3. The Opposite Lattice

The construction of a BL space from a lattice L can be performed on the

order opposite lattice L∂ , yielding Filt(L∂) = Idl(L). So KOF(Idl(L)) is iso-

morphic to L∂ . This is essentially the duality theorem (on objects) that is de-

veloped in [4]. However open filters in Filt(L) correspond to ideals of L. This

leads to a direct construction of a space X ′ for which KOF(X)∂ ≃ KOF(X ′).
For an HMS space X, define a topology on OF(X) generated by opens

ψx = {F ∈ OF(X) ∣ x ∈ F}.
We take OF(X) to be this topological space. Notice that the co-unit θ of

the dual equivalence KOF ⊣ Filt is almost identical to ψ. Specifically, θx =
ψx ∩ KOF(X).

The results below make use of the following technical observation from [8].

Lemma 3.1. In a topological space X, let F1, . . . , Fm be pairwise incompa-

rable filters. Then F1 ∪ ⋅ ⋅ ⋅ ∪Fm is compact if and only if each Fi is a principal

filter.

Lemma 3.2. Let X be an HMS space. The defining sub-basis of the topology

on OF(X) is closed under finite intersection, hence is a basis. The specializa-

tion order is inclusion. Moreover, ψx is compact if and only if x ∈ Fin(X).

Proof. Evidently, ψx ∩ ψy = ψx⊓y and ψ⊺ = OF(X), where ⊺ denotes the max-

imal element of X. Obviously, if x ∈ F ∖G, then F /⊑ G because F ∈ ψx, but

G ∉ ψx. On the other hand, if F ⊆ G, then F ⊑ G because the basic opens ψx
are defined by membership.

Suppose ψx is compact. Obviously each ψx is an open filter in OF(X), so

by Lemma 3.1 ψx is principal. That is, there exists G ∈ OF(X) so that for all

F ∈ OF(X), G ⊆ F if and only if x ∈ F . In particular, x ∈ G, so ↑x ⊆ G. Suppose

x /⊑ y. Then there is an open filter F containing x, but not y. Hence y ∉ G.

That is, G = ↑x and it follows that x ∈ Fin(X). Conversely, if x ∈ Fin(X), then

apparently x ∈ F if and only if ↑x ⊆ F . So ψx is a principal open filter. �

The next two results are used in Section 5 where they lead to the concept

of mirrored BL spaces.

Lemma 3.3. For an HMS space X, if OF(X) is a spectral space, then X is a

BL space.

Proof. By Theorem 3.2 of [8] it suffices to check that fsat(↑x ∪ ↑y) is open

whenever x, y ∈ Fin(X). In that case, ψx and ψy are compact open filters in

OF(X). Since OF(X) is spectral, ψx ∩ψy = ψx⊓y is also a compact open filter.

Hence x ⊓ y ∈ Fin(X) and fsat(↑x ∪ ↑y) = ↑(x ⊓ y) is open. �



6 M. Andrew Moshier and Peter Jipsen Algebra univers.

Theorem 3.4. For any BL space X, OF(X) is a BL space and KOF(X)∂ ≃
KOF(OF(X)). Also, OF(OF(X)) is homeomorphic to X.

Proof. We first use Theorem 2.5 of [8] to show that OF(X) is an HMS space,

i.e., we show that OF(X) is a spectral space with OF(OF(X)) as a basis and

that OF(X) is a meet semilattice and has a least element.

A compact open K ⊆ OF(X) is a finite union of basic opens ψx, which can

be chosen to be pairwise incomparable. So by Lemma 3.1, each ψx is principal,

hence is compact. In other words, K = ψx1∪⋅ ⋅ ⋅∪ψxm where x1, . . . , xm ∈ Fin(X).
An intersection of two such compact opens is thus a finite union of basic opens

of the form ψxi⊓yj , where each xi and yj is finite. Since X is a BL space,

xi ⊓ yj is also finite. Likewise, OF(X) itself is an open filter in OF(X). To

see that OF(X) is sober, consider a completely prime filter P of O(OF(X)).
Then the set FP = {x ∈X ∣ ψx ∈ P} is a filter, and it is open since if ⊔↑D ∈ FP
then ψ⊔↑D ∈ P , i.e. ⋃d∈D ψd ∈ P . So by complete primality ψd0 ∈ P for some

d0 ∈ D, whence d0 ∈ FP . It follows that FP ∈ OF(X) and by definition ψx is

a basic open neighborhood of FP precisely when x ∈ FP , i.e. when ψx ∈ P .

Therefore OF(X) is sober and hence spectral. Clearly OF(X) is a semilattice

and OF(OF(X)) is a basis. Moreover, the greatest element ⊺ of X is finite. So

{⊺} is the smallest element of OF(X).
To see that it is in fact a BL space, consider some Ψ = ⋃x∈A ψx. Evidently,

this is contained in ψ⊔A. On the other hand, suppose Ψ is a filter and consider

F ∈ ψ⊔A. That is, ⊔A ∈ F . Because F is open in X, there exist x1, . . . , xm ∈ A
so that x1 ⊔⋯⊔xm ∈ F . And so there exist a1, . . . , am ∈ Fin(X) so that ai ⊑ xi
and a1 ⊔ ⋯ ⊔ am ∈ F . Hence Ψ = ψ⊔A. It follows that KOF(X) = Fin(OF(X))
and the map x↦ ψx is a bijection from X to OF(OF(X)).

In OF(OF(X)), the basic opens are the sets

ΨF = {ψx ∈ OF(OF(X)) ∣ F ∈ ψx} = {ψx ∈ OF(OF(X)) ∣ x ∈ F}

for F ∈ OF(X). So the bijection ψ is open and continuous. �

4. Products of BL spaces

Categorically, a co-product of lattices is dual to a product of BL spaces (in

the category of BL spaces). So we know such products exist. Moreover, they

are crucial to applications to quasioperators.

Lemma 4.1. Let {Xα}α∈I be a family of HMS spaces. In the product space,

a set A is an open filter if and only if A = π−1α0
(F0) ∩ ⋅ ⋅ ⋅ ∩ π−1αm−1

(Fm−1) where

{α0, . . . , αm−1} is finite, and for each i <m, Fi ∈ OF(Xαi).

Proof. Specialization in a product space is determined coordinate-wise. Ev-

idently, π−1α (F ) is an open filter for any open filter F ⊆ Xα. And since the

product space is a semilattice with respect to specialization, finite intersections

of open filters are open filters.
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Suppose F ⊆ ∏αXα is an open filter. Since projection maps are open maps,

πα(F ) is an open filter. Hence for any (finite) set of indices {α0, . . . , αm−1},

we have F ⊆ π−1α0
(πα0(F )) ∩ ⋅ ⋅ ⋅ ∩ π−1αm−1

(παm−1(F )). Choose {α0, . . . , αm−1} so

that πβ(F ) =Xβ for every index β ∉ {α0, . . . , αm−1}. Suppose x ∉ F . Then for

some i <m, παi(x) ∉ παi(F ). So x ∉ π−1α0
(πα0(F ))∩ ⋅ ⋅ ⋅ ∩π−1αm−1

(παm−1(F )). �

Lemma 4.2. The topological product of HMS (BL) spaces is an HMS (respec-

tively, BL) space, and the projections are F -continuous.

Proof. The topological product of spectral spaces is spectral and the projec-

tions are spectral. Lemma 4.1 implies that open filters in the product are

closed under finite intersection. A sub-basic open π−1α (U) for open U ⊆Xα is a

union of open filters of the form π−1α (F ). So a basic open in the product space

is a union of open filters. Since specialization in a product space is determined

coordinate-wise, the product is a meet semilattice. For an open filter F ⊆Xα,

π−1α (F ) is an open filter in the product space. So the projection maps are F -

continuous. Moreover, for an open filter F ′ ⊆ ∏αXα, πα(F ′) is a filter in Xα.

It is open because projections are open maps. So π−1α (fsat(U)) ⊆ fsat(π−1α (U))
for any open U ⊆Xα. Thus the projections are F -continuous.

If the component spaces are BL spaces, then π−1α (U) ⊆ π−1α (fsat(U)), and

the latter is an open filter. So πα is F -stable. �

5. Mirrored BL Spaces

The relation between a lattice and its order opposite is represented in BL

spaces by a space X and its “opposite” OF. This hides the underlying sym-

metry in the lattices themselves. In this section we develop a symmetrical

representation of BL spaces paired with their opposites. This is a useful step

toward connecting Hartonas and Dunn’s duality theory [7] and ours.

Suppose that we have two HMS spaces X and X ′ and a homeomorphism

i ∶ X ≃ OF(X ′). Note that here X and X ′ are not assumed to have the

same underlying set. Per Lemma 3.3 and Theorem 3.4, the homeomorphism

means that for the corresponding lattices, KOF(X)∂ ≃ KOF(X ′). In other

words, the triple (X,X ′, i) is a representation of the lattice KOF(X) which

explicitly accounts for the fact that a lattice is essentially two semilattices on

the same underlying set that are “glued together” properly. Because OF(X ′)
is a collection of subsets of X ′, the homeomorphism i is concretely given by a

binary relation between X and X ′.

Lemma 5.1. Suppose X and X ′ are HMS spaces and R ⊆X ×X ′ satisfies the

following:

(1) R is open in the product topology;

(2) xRy1 and xRy2 implies xR(y1 ⊓ y2);

(3) x1Ry and x2Ry implies (x1 ⊓ x2)Ry;

(4) for any F ∈ OF(X), there exists y ∈X ′ so that x ∈ F ↔ xRy; and
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(5) for any G ∈ OF(X ′), there exists x ∈X so that y ∈ G↔ xRy.

Then the map x ↦ R[x] is a homeomorphism from X to OF(X ′). So X and

X ′ are BL spaces representing order opposite lattices.

Proof. From (1) it follows that R[x] (= {y ∈X ′ ∣ xRy}) is open, hence an upper

set, and together with (2) we have R[x] ∈ OF(X ′) for all x ∈ X. Moreover,

x↦ R[x] is a continuous map from X to OF(X ′). From (5), the map is onto.

Suppose x /⊑ x′. Then there is an open filter F so that x ∈ F and x′ ∉ F . By

(4), there is a y ∈ X ′ so that xRy and ¬(x′Ry). So the map is one-to-one.

It remains to check that it is open. Since open filters in X form a basis, it

suffices to check that R[F ] is open in OF(X ′) for each F ∈ OF(X). By (4), let

y be such that for all x ∈ X, x ∈ F ↔ xRy. Then immediately, R[x] ∈ ψy for

all x ∈ F . For the inclusion ψy ⊆ R[F ], consider G ∈ ψy. By (5), let x be such

R[x] = G. In particular, xRy, so x ∈ F , hence G = R[x] ∈ R[F ]. �

Call a triple (X,X ′,R) consisting of two HMS spaces and a binary relation

satisfying the conditions in the lemma a mirrored BL space. We will refer to

R as a mirror relation. Obviously, since the conditions on mirror relations

are symmetric, if R is a mirror relation from X to X ′, then the converse

relation, denoted by R̆, is a mirror relation from X ′ to X. Since x ↦ R[x]
is a homeomorphism (when co-restricted to OF(X ′)), we write R∗(F ) for the

unique x for which F = R[x]. Because both R̆ and R∗ play a role in the

following, the reader will need to keep this distinction in mind. To spell things

out, for a mirror relation R ⊆X ×X ′, we have the following related notions:

● R[−], the homeomorphism X → OF(X ′);
● R̆[−], the homeomorphism X ′ → OF(X);
● R∗(−), the homeomorphism OF(X ′) →X; and

● R̆∗(−), the homeomorphism OF(X) →X ′.

It is immediately clear that for a BL space X, the triple (X,OF(X), ∈) is a

mirrored BL space, which naturally can be called the mirroring of X.

We are headed for a categorical equivalence between BL spaces and mirrored

BL spaces. To do this we still need to define the morphisms equivalent to F-

stable maps (and hence dual to lattice homomorphisms). For applications to

lattice expansions, we can also consider other “structure preserving” maps:

● An F -continuous map f ∶X → Y corresponds to a meet-preserving map

between lattices.

● An F -continuous map f ∶X ′ → Y ′ corresponds to a join-preserving map

between lattices.

● An F -continuous map f ∶X → Y ′ corresponds to a map that sends joins

to meets.

● An F -continuous map f ∶X ′ → Y corresponds to a map that sends meets

to joins.
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Evidently, a pair of suitably compatible F -continuous maps will correspond

to an F -stable map from X to Y . The next lemma characterizes this compat-

ibility.

Lemma 5.2. Suppose (X,X ′,R) and (Y,Y ′, S) are mirrored BL spaces, and

f ∶X → Y and f ′∶X ′ → Y ′ are F -continuous maps satisfying:

(1) f ′−1(S[y]) ⊆ R[x] if and only if y ⊑ f(x); and

(2) f−1(S̆[y′]) ⊆ R̆[x′] if and only if y′ ⊑ f ′(x′).

Then both f and f ′ are F -stable. Moreover, if g∶X → Y is F -stable, then

there is a unique F -continuous map h∶X ′ → Y ′ so that the pair (g, h) satisfies

conditions (1) and (2).

Proof. Consider an open U ⊆ Y , and element x ∈ f−1(fsat(U)). We need to

show that for any F ∈ OF(X), if f−1(U) ⊆ F then x ∈ F . The open U is a

union of open filters. Because S is a mirror relation, for a suitable choice of

V ⊆ Y ′, we have U = ⋃v∈V S̆[v]. So we may fix v′ ∈ V for which f(x)Sv′.
Now consider any x′ ∈ X ′ for which f−1(U) ⊆ R̆[x′]. By (2), v′ ⊑ f ′(x′), so

f(x)Sf ′(x′). By (1), xRx′ holds as required for F -stability. The proof for f ′

is symmetric.

Uniqueness: Suppose g is F -stable, h and h′ are F -continuous, and the

pairs (g, h) and (g, h′) satisfy (1) and (2). Suppose h(x′) ≠ h′(x′) for some

fixed x′ ∈ X ′. Then there is an open filter in Y ′ separating these. Without

loss of generality, suppose y ∈ Y is such that ySh(x′) and ¬(ySh′(x′)).
By (2), for every y′ ∈ Y ′ such that ySy′, there exists x ∈X, so that f(x)Sy′

and not xRx′. In particular, since ySh(x′) holds, (1) implies that there exists

x so that g(x)Sh′(x′), which then implies xRx′, contradicting the choice of

x′.

Existence: Suppose g∶X → Y is F -stable. For x′ ∈X ′, define the following:

Dx′ = {y′ ∈ Y ′ ∣ g−1(S̆[y′]) ⊆ R̆[x′]}
h(x′) = ⊔Dx′

The map h∶X ′ → Y ′ is well defined because Y ′ is a complete lattice in its

specialization order. We make the following observations.

(1) Dx′ is directed because g is F -stable.

(2) h(x′) ∈Dx′ because the maps S̆[−] and R̆[−] are homeomorphisms and a

directed union of open filters is an open filter.

(3) h satisfies (2) by construction.

(4) For a filter y′ ∈ Y ′, h−1(↑y′) = ↑{R̆∗(g−1(S̆[y′]))} because y′ ⊑ h(x′) if

and only if g−1(S̆[y′]) ⊆ R̆[x′].
(5) Because of the previous observation, h is F -continuous. That is, con-

sider y′ ∈ Fin(Y ′). Then S̆[y′] ∈ KOF(Y ), so g−1(S̆[y′]) ∈ KOF(X), hence

R̆∗(g−1(S̆[y′])) ∈ Fin(X ′).
Fix x ∈ X and y ∈ Y . Because S[y] = ⋃{↑z′ ∣ ySz′}, we have h−1(S[y]) =

↑{R̆∗(g−1(S̆[z′])) ∣ ySz′}. And since R[x] is an upper set, we have that
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h−1(S[y]) ⊆ R[x] ⇐⇒ {R̆∗(g−1(S̆[z′])) ∣ ySz′} ⊆ R[x]
⇐⇒ g(x) ∈ S̆[z′] for all z′ ∈ S[y]
⇐⇒ S[y] ⊆ S[g(x)]
⇐⇒ y ⊑ g(x).

�

Theorem 5.3. The category of BL spaces and F -stable maps is equivalent

to the category of mirrored BL spaces and pairs of maps (f, f ′) satisfying the

compatibility conditions of Lemma 5.2.

Proof. Evidently, the construction (X,X ′,R) ↦ X, and (f, f ′) ↦ f is func-

torial. Likewise, X ↦ (X,OF(X), ∈) extends to a functor. The composition

in one direction is the identity on the category of BL spaces. In the other

direction it is a natural isomorphism because X ′ is homeomorphic via R to

OF(X). �

6. Lattices with quasioperators

The duality for lattices can be smoothly extended to handle n-ary quasiop-

erators. Our treatment is simplified by considering mirrored BL spaces.

Recall from the introduction that each quasioperator f ∶ Ln → L has an

associated monotonicity type ε ∈ {1, ∂}n+1 which determines whether f is join

or meet preserving or reversing in each argument. Here Lεi denotes the order-

dual of L if εi = ∂, and L1 = L. The value of εi is chosen so that f will be

join-preserving in each argument when considered as a map from ∏n−1
i=0 L

εi to

Lεn .

Before we consider the general n-ary case, consider the simplest case of a

unary quasioperator j∶L1 → L1, and a mirrored BL space (X,X ′,R) for which

L ≃ KOF(X). Since j is join-preserving it corresponds to a meet-preserving

map L∂ → L∂ . Hence its dual is an F -continuous map X ′ →X ′. According to

our duality theory, this relation is contravariant.

This suggests that a general topological representation of n-ary quasioper-

ators will need to account for this contravariance. It also suggests that a small

generalization will be helpful. Namely, we can look at maps j ∶ L0×⋅ ⋅ ⋅×Ln−1 →
Ln that preserve finite joins in each argument separately, and in which the

lattices Li are not assumed to be otherwise related. The point is that such a

map j is not a morphism in the category of lattices, or even in the category

of join semilattice reducts of lattices. We refer to such maps between lattices

as join-distributive maps.
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Again, the unary case is instructive. Consider mirrored BL spaces (X,X ′,R)
and (Y,Y ′, S) and, again for simplicity, an F -continuous map f ∶Y ′ →X ′. De-

fine the map f̂ ∶X → Y by

f̂(x) = S∗(f−1(R[x])).
Note that this is well defined precisely because the F -continuity of f guarantees

that f−1(R[x]) is an open filter in Y ′. There is no reason that f̂ should be

F -continuous, but it does have some useful properties, which can be read from

the characterization found in [5] Chapter 4 of the maps on arithmetic lattices

that correspond to join-preserving maps on lattices.

In a BL space, define a binary relation ≪X ⊆X×X by x0 ≪X x1 if and only

if there exists an open filter F ∈ OF(X) so that x1 ∈ F and for all G ∈ OF(X),
x0 ∈ G implies F ⊆ G. As usual, we omit the subscript on ≪ whenever

confusion is unlikely. In a mirrored BL space (X,X ′,R), x0 ≪X x1 is obviously

equivalent to there being some x′ ∈X ′ so that x1Rx
′ and for all x′′ ∈X ′, x0Rx

′′

implies x′ ⊑ x′′. Evidently, x ≪ x holds if and only if x ∈ Fin(X). Say that a

function f ∶X → Y between BL spaces is strongly continuous if it is continuous

and it preserves ≪.

Lemma 6.1. Let (X,X ′,R) and (Y,Y ′, S) be mirrored BL spaces and f ∶Y ′ →
X ′ be F -continuous. Then the map f̂ defined above satisfies the following:

● f̂ is strongly continuous; and

● f̂ preserves finite meets.

Moreover, for any strongly continuous meet-preserving g∶X → Y , there is a

unique F -continuous f ∶Y ′ →X ′ so that g = f̂ .

Proof. Since f−1 is Scott continuous as a map from OF(X ′) to OF(Y ′), f̂ is a

composite of continuous functions. Likewise, f−1 preserves finite intersections.

The other two maps are homeomorphisms, and so preserve all specialization

structure. If x0 ≪X x1, then every open cover of R[x1] has a finite subcover

of R[x0]. Because f is spectral, every open cover of f−1(R[x1]) has a finite

subcover of f−1(R[x0]). The open filter f−1(R[x1]) is a directed union of

compact open filters, so for some y′ ∈ Y ′, f−1(R[x0]) ⊆ ↑y′ ⊆ f−1(R[x1]).
Suppose g satisfies the conditions. Define ǧ(y′) = R̆∗(g−1(S̆[y′])). Because

g is continuous and preserves finite meets, g−1(S̆[y′]) is an open filter. So

ǧ is well defined. Consider x′ ∈ Fin(X ′). Then x′ ≪ x′, so there exists x

for which R̆[x′] = ↑x. Hence x is also finite and x′ ⊑ ǧ(y′) if and only if

g(x)Sy′. So ǧ is F -continuous. Finally, ̂̌g(x) = S̆∗[ǧ−1(R̆[x])], and xRǧ(y′) if

and only if g(x)Sy′. So ̂̌g(x) = g(x). The analogous argument shows that for

F -continuous f ∶Y ′ →X ′, f = ˇ̂
f . �

These lemmas suggest how to represent a join-distributive function of higher

arity directly.

Theorem 6.2. Let X0, . . . , Xn be BL spaces. The join-distributive maps

j∶KOF(X0) × ⋅ ⋅ ⋅ × KOF(Xn−1) → KOF(Xn)
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are bijective with maps f ∶X0 × ⋅ ⋅ ⋅ ×Xn−1 →Xn satisfying

(1) f is strongly continuous in the product topology; and

(2) f preserves finite meets in each argument.

Proof. The product space X0 × ⋅ ⋅ ⋅ ×Xn−1 is a BL space, and by Lemma 4.1,

the ≪ relation on the product is determined coordinate-wise.

Suppose f satisfies the listed conditions. We define a map from jf ∶ FSat(X0)×
⋅ ⋅ ⋅ × FSat(Xn−1) → FSat(Xn) as

jf(F0, . . . , Fn−1) = ⋂{G ∈ OF(Xn) ∣ F0 × ⋅ ⋅ ⋅ × Fn−1 ⊆ f−1(G)}.
Since x ≪ x holds in a BL space X if and only if x ∈ Fin(X), jf restricted

to compact open filters in all arguments co-restricts to compact open filters

in Xn. Moreover, with fixed x1 ∈ Fin(X1), . . . , xn−1 ∈ Fin(Xn−1), the map

x↦ f(x,x1, . . . , xn−1) satisfies the conditions of Lemma 6.1, and likewise for all

other argument positions. So jf restricts and co-restricts to a join-distributive

map.

Suppose j∶L0 × ⋅ ⋅ ⋅ ×Ln−1 → Ln is a join-distributive map on lattices. Define

fj ∶Filt(L0) × ⋅ ⋅ ⋅ × Filt(Ln−1) → Filt(Ln) by

fj(F0, . . . , Fn−1) = ⋂{G ∈ Filt(Ln) ∣ F0 × ⋅ ⋅ ⋅ × Fn−1 ⊆ j−1(G)}.
To check continuity, it suffices to check that fj preserves directed unions in

each argument separately. But (⋃α Fα)×F1×⋅ ⋅ ⋅×Fn−1 = ⋃α(Fα×F1×⋅ ⋅ ⋅×Fn−1).
So y ∉ fj(Fα, F1, . . . , Fn−1) for all α implies that for all α, there is some Gα
for which y ∉ Gα and Fα × F1 × ⋅ ⋅ ⋅ × Fn−1 ⊆ j−1(Gα). Taking the intersection

⋂αGα provides a witness that y ∉ fj(⋃α Fα, F1, . . . , Fn−1).
Consider filters satisfying (F0 ∩ F ′

0) × F1 × ⋅ ⋅ ⋅ × Fn−1 ⊆ j−1(G). Then y ∉
G implies that for all a0 ∈ F0, a′0 ∈ F ′

0, a1 ∈ F1,. . . , an−1 ∈ Fn−1, we have

j(a0∨a′0, a1, . . . , an−1) ≠ y. So y ∉ fj(F0, . . . , Fn−1)∩fj(F ′
0, . . . , Fn−1). In other

words, fj(F0, . . . , Fn−1) ∩ fj(F ′
0, . . . , Fn−1) ⊆ G. But obviously, (F0 ∩ F ′

0) ×
F1 × ⋅ ⋅ ⋅ × Fn−1 ⊆ j−1(jf(F0, . . . , Fn−1)). Thus fj preserves meets in the first

argument, and all other arguments separately for the same reason.

In Filt(Li), the relation ≪ is especially simple: F ≪ G holds if and only if

F ⊆ ↑a ⊆ G for some a ∈ Li. So clearly, if Fi ≪ Gi holds for each i < n − 1,

there are elements ai ∈ Li witnessing this. Obviously, jf(F0, . . . , Fn−1) ≪
jf(G0, . . . ,Gn−1) is witnessed by j(a0, . . . , an−1).

Finally, let j∶L0 × ⋅ ⋅ ⋅ ×Ln−1 → Ln be join-distributive. Consider a0 ∈ L0,

. . . , an−1 ∈ Ln−1 and F ∈ Filt(Ln). Then j(a0, . . . , an−1) ∈ F if and only

if fj(↑a0, . . . , ↑an−1) ⊆ F , if and only if F ∈ jfj(ϕa0 , . . . , ϕan−1). Likewise,

let f ∶X0 × ⋅ ⋅ ⋅ ×Xn−1 → Xn be strongly continuous and preserve finite meets

in each argument. Consider x0 ∈ X0, . . . , xn−1 ∈ Xn−1 and F ∈ KOF(Xn).
Then f(x0, . . . , xn−1) ∈ F if and only if jf(↑x0, . . . , ↑xn−1) ⊆ F if and only

if F ∈ fjf (θx0 , . . . , θxn−1). Since a ↦ ϕa is the natural isomorphism L →
KOF(Filt(L)) and x↦ θx, the natural homeomorphism X → Filt(KOF(X)), for

the dual equivalence, these show that the construction f ↦ jf is the desired

bijection. �
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Finally, we are in a position to represent quasioperators on a lattice. A

given lattice L is represented by a mirrored BL space (X,X ′,R), i.e., L1 =
L ≅ KOF(X) and L∂ ≅ KOF(X ′). For notational convenience, we also de-

fine X1 = X and X∂ = X ′. For a fixed monotonicity type ε ∈ {1, ∂}n+1,

a quasioperator j∶Ln → L of monotonicity ε is therefore a join-distributive

map j∶Lε0 × ⋅ ⋅ ⋅ ×Lεn−1 → Lεn . And this is uniquely represented by a strongly

continuous function f ∶Xε0 × ⋅ ⋅ ⋅ ×Xεn−1 → Xεn that preserves meets in each

argument.

7. Conclusions

The results of this paper show that the duality between Lat and BL de-

veloped in [8] can be extended to a duality between lattices with quasiop-

erators and mirrored BL spaces with strongly continuous functions that are

meet-preserving in each argument. The dual objects in this treatment are con-

structed within a natural topological framework, providing connections with

other areas of research, such as domain theory and positive modal logic, as

well as applications of these results to specific varieties of lattices with qua-

sioperators, such as modal lattices, lattice-ordered monoids and residuated

lattices.
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