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Peter Jipsen and Henry Rose1

In this appendix, we discuss some of the more recent results and give a general
overview of what is currently known about lattice varieties. Of course, it is
impossible to give a comprehensive account. Often we only cite recent or survey
papers, which themselves have many more references. We would like to apologize
in advance for any errors, omissions, or miscrediting of results.

For proofs of the results mentioned here, we refer the reader to the original
papers. Details of many of the results from before 1992 can also be found in our
monograph, P. Jipsen and H. Rose [A21].

1. The lattice Λ

Recall from Section V.2 that the lattice Λ of all lattice varieties is a dually
algebraic, distributive lattice that has the variety L of all lattices at the top, the
variety T of all trivial lattices at the bottom, and the variety D = Var(C2) of all
distributive lattices as the unique atom. To conclude that L is join-irreducible
and has no coatoms, B. Jónsson [1967] argued as follows: Let V, W be proper
subvarieties of L and choose lattices K /∈ V, L /∈ W. Using Ph. M. Whitman’s
[1946] result that every lattice can be embedded in a partition lattice, one obtains
a subdirectly irreducible lattice S that extends K×L. Since S /∈ Si(V)∪Si(W) =
Si(V∨W), it follows that V∨W is a proper subvariety as well, hence L is join-
irreducible. By R. A. Dean [1956], L is generated by its finite members, so we

1The second author’s work was supported by grants from the South African Foundation for
Research and Development, and the University of Cape Town Research Committee.

1



2 A. Varieties of Lattices

may assume that K is finite. The distributivity of Λ and Jónsson’s Lemma imply
that the interval from V to V∨Var(K) is finite, so every proper subvariety has
at least one cover in Λ, and L has no co-atoms since V < V ∨Var(K) < L (by
join-irreducibility).

A substantial amount of research has been done on the structure near the
bottom of Λ. One of the aims was to investigate this lattice by finding all varieties
of a given finite height. By Jónsson’s Lemma (Theorem V.1.9), a finite lattice
generates a variety of finite height. The converse assertion, called the Finite
Height Conjecture, was a longstanding open problem. Finally, J. B. Nation [A35]
found a counterexample, which we discuss after presenting results about the
known coverings near the bottom of Λ.

Specific lattices are labeled by German capital letter and the varieties they
generate are referred to by the corresponding boldface letter (for example, N5 =
Var(N5)). We say that a variety V is strongly covered by a collection C of
varieties, if every variety that properly contains V also contains at least one
member of C.

The first few levels above the trivial variety are described in Sections V.2
and V.3 (see Figure V.2.1). B. Jónsson [1968] showed that for any variety V of
modular lattices, M32 /∈ V if and only if every subdirectly irreducible member
of V has length ≤ 2 (see also G. Grätzer [1966]). From this result, he deduced
the following general form of Theorem V.3.6.

Theorem 1 For n ≥ 3, the covers of Mn are Mn+1, Mn∨M32 and Mn∨N5.
The variety Mω is strongly covered by Mω ∨M32 and Mω ∨N5.

Here Mω is the variety generated by Mω, the countable lattice of length 2.
Let M3n , A1, A2, A3 be the lattices in Figures 1, V.3.5, V.3.4 and suppose

that M is a subdirectly irreducible modular lattice. The main technical result
of D. X. Hong [1972] is that if M3n , A1, A2, A3 /∈ HS{M}, then M has length
at most n. This is a typical exclusion result which is very useful when it comes
to finding covers of varieties.

Let Ml
w be the variety generated by all modular lattices of length at most l

and of width at most w (1 ≤ l, w ≤ ∞). For example, M2
∞ = Mω and M3

∞ is
the variety generated by all subspace lattices of projective planes (see the proof
of Theorem IV.5.23). With this notation, Hong’s result implies that for any
variety V of modular lattices, M33 , A1, A2, A3 /∈ V if and only if V ⊆ M3

∞.
It follows immediately that M3

∞ has exactly five covers in Λ, given by M3
∞ ∨V

where V ∈ {M33 ,A1,A2,A3,N5}.
It is easy to check that the varieties A1, A2, A3, M33 , F2 (generated by the

corresponding lattices in Figures 1, V.3.5, V.3.4, V.3.7, IV.3.4b, respectively)
each cover the variety M32 . Using the above exclusion result and some added
detail, D. X. Hong [A18] proves that they are the only join-irreducible covers.
More generally, he shows the following.
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Figure 1:

Theorem 2

(i) For n ≥ 2, the covers of M3n are M3n+1 and M3n ∨ V, where V ∈
{M4,A1,A2,A3,F2,N5}.

(ii) Let V be a variety generated by a finite collection of finite modular lattices
of length ≤ 3 and let W be a variety generated by a finite collection of
lattices of the form M[n1,...,nk] (see Figure 1). Then each of the following
varieties is strongly covered by finitely many varieties that can be effectively
found:

V ∨W, M2
∞ ∨V ∨W, M3

∞ ∨V ∨W.

This result gives a fairly good description of the bottom of Λ on the modular
side.

Problem 1. Find the covers of A1, A2, A3.

Problem 2. Does the Finite Height Conjecture hold for modular varieties? Does
it hold for the variety of modular 2-distributive lattices?

Problem 3. Does the variety of modular lattices or the variety of arguesian
lattices have any dual covers?

For nonmodular varieties, B. Jónsson and I. Rival [A25] proved that R. N. McKen-
zie’s [1972] list of 15 covers of N5 is complete. The lattices which generate these
covers are called L1, . . . , L15 and are shown in Figures V.2.3–10 in the order

L5 (L4 is dual), L3, L7 (L8 is dual),
L9 (L10 is dual), L13 (L14 is dual), L15,
L11 (L12 is dual), L1 (L2 is dual), L6.



4 A. Varieties of Lattices

Theorem 3 The covers of N5 are M3 ∨N5, L1, . . . , L15.

Theorem 4 The covers of N5 are M3 ∨N, L1, . . . , L15.

The above result makes use of the semidistributive implications (SD∨) and
(SD∧) (see Section VI.1). A variety of lattices is said to be semidistributive, if
every member satisfies both laws. The standard meet-sequence terms yn, zn, for
variables x, y, z are defined by

y0 = y,

z0 = z,

yn+1 = y ∧ (x ∨ zn),
zn+1 = z ∧ (x ∨ yn).

The key exclusion result by B. Jónsson and I. Rival [A25] is the following.

Theorem 5 For any variety V, the following are equivalent.

(i) V is semidistributive.

(ii) M3,L1,L2,L3,L4,L5 /∈ V.

(iii) For some n, the equation

(SDn
∨) x ∨ (y ∧ z) = x ∨ yn

and its dual (SDn
∧) hold in V.

It follows from this result that semidistributivity is not an equational prop-
erty.

The above equations define an increasing sequence of semidistributive vari-
eties SDn = Mod((SDn

∨), (SDn
∧)). Obviously, SD0 = T and SD1 = D. Lattices

and subvarieties of SD2 are called near distributive. A useful characterization is
given by the next exclusion result.

Theorem 6 A lattice variety V is neardistributive if and only if it is semidis-
tributive and L11,L12 /∈ V. (J. G. Lee [A28].)

A lattice is said to be almost distributive if it is near distributive and satisfies
the inequality

(AD∨) u ∧ (w ∨ (v ∧ ((x ∨ y) ∧ (x ∨ z)))) ≤ v ∨ (u ∧ w),
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Figure 2: (C2 × C3) ?C M3

where w = x ∨ (y ∧ (x ∨ z)), and it’s dual (AD∧). The variety AD of all almost
distributive lattices is studied by H. Rose [A43] and J. G. Lee [A28].

The main structural results about subdirectly irreducible almost distribu-
tive lattices require (a special case of) A. Day’s doubling construction. The
version described here is a generalization due to R. Freese, G. McNulty, and
J. B. Nation [A15] which will also be used later in the description of inherently
nonfinitely based lattices and Nation’s counterexample to the Finite Height Con-
jecture. Given a lattice L, a convex subset C of L and a {0, 1}-lattice K, one
defines a lattice L ?C K, called the inflation of L at C by K, as follows. The
underlying set is (L−C)∪ (C ×K), and for elements x, y in this set, put x ≤ y
if

(i) x, y ∈ L− C and x ≤ y holds in L,

(ii) x, y ∈ C ×K and x ≤ y holds in C ×K,

(iii) x ∈ L− C, y = 〈c, k〉 ∈ C ×K, and x ≤ c holds in L, or

(iv) x = 〈c, k〉 ∈ C ×K, y ∈ L− C, and c ≤ y holds in L.

Day’s original doubling construction is obtained when K = C2, in which case
L ?C C2 is denoted by L[C], and when C = {c} this is further simplified to L[c].
For example, if we take L = C2 × C3 and C = L − {0, 1} then L ?C M3 is the
lattice in Figure 2, and (C3 × C3)[d] gives the lattice L15 (Figure V.2.8). The
doubling construction for single elements was actually used in the context of
transferable lattices before Day’s construction (see Appendix ??.1.3).

For a variety V, let ΛV be the lattice of subvarieties of V. If V is a lattice
variety, then ΛV is, of course, a principal ideal of Λ.
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Theorem 7

(i) A subdirectly irreducible lattice L is almost distributive if and only if
L ∼= D[d], for some distributive lattice D and d ∈ D.

(ii) A lattice variety V is almost distributive if and only if it is semidistributive
and L6, . . . , L12 /∈ V.

(iii) AD is locally finite (that is, every finitely generated member is finite),
hence the Finite Height Conjecture holds for almost distributive varieties
and AD is generated by its finite members.

(iv) The cardinality of ΛAD is 2ℵ0 .

(v) There exists an infinite descending chain in ΛAD.

(vi) There exists an almost distributive variety with infinitely many covers in
ΛAD and one with infinitely many dual covers.

(H. Rose [A43], J. G. Lee [A28].)

Judging from the above results and additional details by Rose and Lee, one
might say that the structure of ΛAD is fairly well understood.

Problem 4. Is there a variety with uncountably many covers (or dual covers)
in Λ or ΛAD?

Problem 5. Does AD have any dual covers?

We list below additional results about covers in Λ. In each case these results
are established by long technical computations and the original papers contain
further results that are of interest in their own right.

Theorem 8 For i = 6, 7, 8, 9, 10, 13, 14, 15 and n ≥ 0, the variety Ln+1
i is the

only join-irreducible cover of Ln
i (where L0

i = Li, see Figure 3). (H. Rose [A43].)

Theorem 9 L12 has exactly two join-irreducible covers L1
12 and G1. For

n ≥ 1, Ln+1
12 is the only join-irreducible cover of Ln

12, and Gn+1 is the only
join-irreducible cover of Gn. Above L11, the dual results hold (see Figure 3).
(J. B. Nation [A32].)
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Ln
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7
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Ln
9

Ln
11 Gn
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Ln

13

(C2)
n+3

Ln
15

(C2)
n+2

(C2)
n+2

Figure 3: Sequences of lattices generating join-irreducible varieties. Ln
8 , Ln

10,
Ln

12, Ln
14 are dual to Ln

7 , Ln
9 , Ln

11, Ln
13 respectively. (Here n is a superscript label,

whereas (C2)n+2 is a power of C2.)
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L16 L17 L18 L19 L20 L21

L22 L23 L24 L25

Figure 4: Lattices that generate covers of L1

P1

P7 is dual

P2

P8 is dual

P3

P9 is dual

P4

P10 is dual

P5 P6

Figure 5: Lattices that generate covers of L3
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K1 K2 K3

K4 K5 K6

Figure 6: Lattices that generate covers of L4

Theorem 10 The join-irreducible covers of L1 are L16, . . . , L25. The covers
of L2 are dual (see Figure 4). (J. B. Nation [A33].)

An approach to finding covers in Λ has been developed by J. B. Nation [A34]
(see also A. Day and J. B. Nation [A9]).

C. Y. Wong [A48] investigates weakened forms of distributivity similar to
semidistributivity to find the covers of L3, L4 and L5. A lattice is said to be
weakly distributive if it satisfies the following implications:

x ∧ y = x ∧ z implies that x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),(WD∨)
x ∨ y = x ∨ z implies that x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).(WD∧)

A variety of lattices is said to be weakly distributive, if this is true for every
member. This property can also be characterized by an exclusion result.

Theorem 11 For any variety V, the following are equivalent.

(i) V is weakly distributive.

(ii) M3,L1,L2,L4,L5,L11,L12,L13,L14,T1,T2,T3,T4,P4,P5,P10 /∈ V (see
remark before Theorem 3 and Figures 7, 5).

(iii) For some n, the equation x∧ (yn ∨ zn) ≤ (x∧ y)∨ (x∧ z) and its dual hold
in V (yn, zn are the standard meet sequence terms defined on page 4).
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T1

T2 is dual

T3

T4 is dual

Figure 7:

Note that L4 is not weakly distributive, but does satisfy (WD∧). Wong shows
that (WD∧) cannot be characterized by an exclusion result, i.e., there is no finite
list of finite subdirectly irreducible lattices such that a variety satisfies (WD∧)
if and only if it contains none of these lattices. He then goes on to prove that
(WD∧) is weakly finitely definable with respect to L4 which means that there is
a finite list of finite subdirectly irreducible lattices not in L4 such that if (WD∧)
fails in a variety then it contains one of these lattices. Using this result together
with the approach from J. B. Nation [A34] and (lots of) additional details, he
succeeds in proving the following.

Theorem 12 The join-irreducible covers of L3 are P1, . . . , P10 (see Figure 5).
The join-irreducible covers of L4 are K1, . . . , K6 (see Figure 6). The covers of
L5 are dual. (C. Y. Wong [A48].)

For the variety M3∨N5, only the finitely generated covers are known at this
point.

Theorem 13 The finitely generated join-irreducible covers of M3 ∨ N5 are
V1, . . . , V8 (see Figure 8). (W. Ruckelshausen [A44].)

Problem 6. Does M3 ∨N5 have any nonfinitely generated covers?

All the preceding results support the Finite Height Conjecture in that every
finitely generated lattice variety of height at most 4 has only finitely many finitely
generated covers (see Figure 9). Recently, however, J. B. Nation [A35] showed
that the conjecture fails for lattices in general. Consider the lattice J in Figure 10,
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V1 V2

V3 is dual

V4

V5 is dual

V6

V7 is dual

V8

Figure 8: Lattices that generate finitely generated covers of M3 ∨N5
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Figure 10: Nation’s counterexample to the Finite Height Conjecture

with the convex subset C given by the elements of height 2 and 3. Note that the
elements of equal height on the left and the right of C should be identified, so
C has actually 14 elements.

Let B be a chain isomorphic to the integers with top and bottom elements
added. The subdirectly irreducible lattice L is obtained by replacing each el-
ement in C with a copy of B, and defining the ordering as indicated in the
figure.

Theorem 14 The infinite subdirectly irreducible lattice L in Figure 10 gen-
erates a variety of finite height.

This beautiful counterexample shows that even varieties of finite height are
highly nontrivial, and has already inspired new results about inherently non-
finitely based varieties (see Section 3). Note that the lattice has a cyclic auto-
morphism of order 7 and is best visualized by rolling the page up into a cylin-
der. In essence, L is a slightly modified version of J ?C B, so that the prime
quotients in the 14 chains in L transpose in a spiral up and down this lattice
and are all collapsed by the smallest nontrivial congruence µ on L. The lat-
tice L/µ is isomorphic to J ?C C3, which is a subdirect product of two copies
of the finite subdirectly irreducible lattice F = J ?C C2. The proof proceeds by
showing that every finitely generated lattice in SiVar(L) is in HS(L), and that
HS(L)− I(L) ⊆ Var(F ), whence Var(L) is a cover of the variety Var(F ).

In an unpublished note, Nation points out that lattices other than J can serve
as the basis for the construction. For example the Boolean lattice (C2)5 gives a
narrower (but less easily visualizable) example with only 10 chains.
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J. B. Nation [A35] also shows that there is a variety of finite height that has
countably infinitely many covers.

Problem 7. Is every variety of finite height finitely based?

Problem 8. Is every variety of finite height generated by a lattice of finite width?

Problem 9. Is there an algorithm to find the covers of a finitely generated
variety?

2. Generating sets of varieties

It is well known that the variety of all lattices is generated by its finite mem-
bers (R. A. Dean [1956]). Using the doubling construction and R. N. McKen-
zie’s [1972] characterization of splitting lattices as finite subdirectly irreducible
bounded lattices, A. Day [1977] was able to prove the following sharper version
of Dean’s result.

Theorem 15 The variety L of all lattices is generated by the class of all
splitting lattices.

The significance of this result is enhanced by the fact that it implies ev-
ery finitely generated free lattice is weakly atomic (R. N. McKenzie [1972] and
A. Kostinsky [1972] proved this condition equivalent to Day’s theorem).

More recently, R. N. McKenzie [A30] showed that L is also generated by the
collection of all finite minimal simple lattices. (A simple lattice L is minimal
if L 6∼= C2 and no simple lattice other than C2 generates a proper subvariety of
Var(L).)

For the variety of modular lattices, the situation is quite different.

Theorem 16

(i) The variety M of all modular lattices is not generated by its finite members.
(R. Freese [A10].)

(ii) Neither M nor the variety A of all arguesian lattices is generated by its
members of finite length. (Ch. Herrmann [A17].)

Using P. Pudlák and J. Tůma’s [A42] result that every finite lattice can be
embedded into a finite partition lattice, P. Bruyns and H. Rose [A4] show that
every lattice is embeddable into an ultraproduct of finite partition lattices, hence
L = SPU ({Part n | n ∈ ω}). Furthermore, since any lattice variety V satisfies
the Embedding Property (see Section V.4), there exists a lattice L ∈ V such that
every member of V is embeddable into an ultrapower of L, that is, V = SPU (L).
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Such lattices L are referred to as ultra-universal (see also C. Naturman and
H. Rose [A36]).

R. N. McKenzie [1972] showed that splitting lattices in Λ are finite. However,
splitting lattices can be defined in any lattice of varieties.

Problem 10. Is every splitting lattice in ΛM finite?

Problem 11. Is M generated by all the splitting lattices in ΛM?

If L is a splitting lattice in Λ, then the largest variety that does not contain
L is called the conjugate variety of L.

Problem 12. Is there a nontrivial conjugate variety in Λ that is generated by
its finite members?

Problem 13. Is there a conjugate variety V with infinite subdirectly irreducible
members that are projective in V?

Note that if a variety V is generated by its finite members then every sub-
directly irreducible projective member is finite. Thus a positive answer to the
previous problem implies that V is not generated by its finite members.

3. Equational Bases

Recall that an algebra is said to be finitely based if the variety which it gener-
ates is determined by finitely many equations. Nonfinitely based lattices were
constructed by K. A. Baker [1969a], [A1], R. Freese [1977], Ch. Herrmann [A17],
R. N. McKenzie [1970] and R. Wille [1972]. One such lattice, due to McKenzie,
is shown in Figure 11.

An algebra A is said to be inherently nonfinitely based if Var(A) is lo-
cally finite, and any locally finite variety to which A belongs is not finitely
based. This concept was introduced independently by V. L. Murskĭı [A31] and
P. Perkins [A40]. Inspired by J. B. Nation’s [A35] counterexample to the Finite
Height Conjecture, R. Freese, G. McNulty, and J. B. Nation [A15] construct
inherently nonfinitely based lattices. Here we only state a special case of their
main result (see page 5 for the definition of L ?C K).

Theorem 17 Let Lf be the lattice in Figure 11 and define C = Lf − {0, 1}.
Let K be a {0, 1}-lattice which belongs to a locally finite variety, and assume
that K has an automorphism with an infinite orbit. Then Lf ?C K is inherently
nonfinitely based.

The two least complicated lattices K with the required automorphism are
Mω and B (a chain isomorphic to the integers with top and bottom elements
added). The resulting lattices Lf ?C K are given in Figure 11. In the same paper,
it is also shown that the lattice Lf is not inherently nonfinitely based.
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Figure 11: The lattice Lf

Problem 14. Are there any modular lattices that are inherently nonfinitely
based?

Analogously to the varieties Ml
w one defines Vl

w to be the variety generated
by all lattices of height l and width w. We allow l = ∞ or w = ∞ in which case
the respective parameter is not restricted. For l, w < ∞, the varieties Ml

w and
Vl

w are finitely generated and hence finitely based.
Note that if a variety V is strongly covered by a finite set of varieties, then

it is finitely based. Results about whether the varieties Ml
w and Vl

w are finitely
based for l = ∞ or w = ∞, are as follows:

Theorem 18

(i) M2
∞ (= V2

∞) and M3
∞ are finitely based (see, Theorems 1 and 2), Mn

∞ is
finitely based for all n (K. Baker, see Ch. Herrmann [1973]).

(ii) V3
∞ is finitely based (Ch. Herrmann [1973]), Vn

∞ is not finitely based for
n ≥ 4 (K. Baker [A1]).

(iii) M∞
1 = M∞

2 = D, M∞
3 = M3 (see Theorem 1, since both its modu-

lar covers are generated by lattices of width 4), M∞
4 is strongly covered

by 10 varieties (each generated by M∞
4 together with one of the lattices

in Figures V.3.3, . . . , V.3.10, IV.3.4b or N5) and hence finitely based
(R. Freese [1977]), M∞

n is not finitely based for n ≥ 5 (K. A. Baker [A1]).

(iv) V∞
2 = N5 (O. T. Nelson [1968]), hence finitely based, V∞

n is not finitely
based for n ≥ 3 (n ≥ 4 due to K. A. Baker [A1], n = 3 due to Y.-
C. Hsueh [A19]).

B. Jónsson [1974] showed that the join of two finitely based lattice varieties
need not be finitely based, and K. A. Baker [A1] did the same for two finitely
based modular varieties. In view of these result, it is natural to look for sufficient
conditions under which the join of two finitely based varieties remains finitely
based.



16 A. Varieties of Lattices

Theorem 19 Suppose that V and W are finitely based lattice varieties. If
one of the following conditions holds, then V ∨W is finitely based.

(i) V is modular and W is generated by a finite lattice that excludes M3.

(ii) V and W are locally finite and the projective radius of V ∩W is finite.

(iii) V and W are modular and W is generated by a lattice of finite length.

(iv) V is modular and W is generated by a finite lattice with finite projective
radius.

(v) V ∩W = D, the variety of all distributive lattices.

(i) and (ii) are due to J. G. Lee [A29], (iii) is due to Jónsson and the remaining
statements are due to Y. Y. Kang [A26].

Note that it follows from part (i) above that M ∨ N5 is finitely based.
B. Jónsson [A22] constructed an explicit basis for this variety of eight identi-
ties. The following problem was inspired by this result.

Problem 15. Is the unique cover of a conjugate variety in Λ always finitely
based? (A. Day.)

4. Amalgamation and absolute retracts

G. Grätzer, B. Jónsson, and H. Lakser [1973] showed that, besides the varieties
T and D, no modular variety has the amalgamation property (see Section V.4
for a discussion). A. Day and J. Ježek [A8] finally extended this result to all
lattice varieties.

Theorem 20 T, D, and L are the only lattice varieties with the amalgama-
tion property.

For other varieties of algebras the amalgamation property also turned out
to be rarely satisfied. A comprehensive survey about amalgamation for vari-
ous types of algebras can be found in E. W. Kiss, L. Márki, P. Pröhle, and
W. Tholen [A27]. These results indicate that the concept of amalgamation does
not mesh well with that of a variety. However the amalgamation class Amal(V)
of a variety V, introduced by G. Grätzer and H. Lakser [1971], has proved to
be very fruitful. M. Yasuhara [1974] showed that for any variety V of alge-
bras, each member of V has an extension in Amal(V), hence Amal(V) is a
proper class (Theorem V.4.10). At present the main directions of study are to
characterize the amalgamation class of a given variety and to decide whether it
is (strictly) elementary, i.e., if it can be defined by a (finite) collection of first
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order sentences. Although we do not know anything about a single member of
Amal(M), significant progress has been made with residually small lattice vari-
eties. This started with a characterization of the amalgamation class of finitely
generated lattice varieties by B. Jónsson [A24], and was generalized by P. Jipsen
and H. Rose [A20] (see also P. Ouwehand and H. Rose [A38]).

Many of the results below are valid for various congruence distributive va-
rieties (not only lattice varieties), so we will state the more general results
where applicable. A retraction of an embedding f : A → B is a homomor-
phism g : B → A such that g ◦ f = idA. An algebra A in a class K is said to
be an absolute retract in K if for every embedding f : A ↪→ B ∈ K, there is a
retraction. The class of all absolute retracts of K is denoted by Ar(K). The
concept of absolute retract is of interest here since C. Bergman [A2] observed
that for any variety V we have Ar(V) ⊆ Amal(V).

A variety is said to be residually small, if there is an upper bound on the
cardinality of its subdirectly irreducible members. W. Taylor [A45] proved that
a variety V is residually small if and only if V = SAr(V).

Theorem 21 Let V be a residually small congruence distributive variety
in which every member has a one-element subalgebra. Then A ∈ Amal(V)
if and only if for any embedding f : A ↪→ B ∈ V and any homomorphism
h : A → M ∈ Si(Ar(V)) there exists a homomorphism g : B → M such that
h = fg.

The reverse implication is due to C. Bergman [A2] and the forward direction
is from P. Jipsen and H. Rose [A20]. A useful corollary is that for finite algebras
the condition in the preceding theorem can be checked.

Corollary 22. Let V be a finitely generated congruence distributive variety in
which every member has a one-element subalgebra. For finite algebras in V,
membership in Amal(V) is decidable. (B. Jónsson [A24], P. Jipsen and H. Rose
[A20].)

Since the amalgamation class of a variety is in general a proper subclass, it is
interesting to ask whether it is an elementary class. Even for a finitely generated
lattice variety this is a nontrivial problem.

Theorem 23 The amalgamation class of any finitely generated nondistribu-
tive modular lattice variety is not elementary. (C. Bergman [A3].)

Problem 16. For which finitely generated varieties is the amalgamation class
elementary?

Recent progress on this problem has been made by P. Ouwehand and H. Rose [A39].
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Theorem 24 Let V be a finitely generated variety of lattices. Suppose that
there is a lattice L ∈ Amal(V) with either a bottom or a top element, which does
not have C2 as homomorphic image, but some ultrapower LI/U does have C2 as
homomorphic image. Then LI/U /∈ Amal(V), and hence neither Amal(V) nor
its complement are elementary.

The lattice L is usually constructed by glueing countably many copies of a
maximal subdirectly irreducible member on top of eachother (identifying the top
of one member with the bottom of the next). Applications of this result include a
simple proof of Theorem 23 as well as the result that any lattice variety generated
by a finite simple lattice has a nonelementary amalgamation class. Further
generalizations to nonfinitely generated varieties imply, for example, that Mω

does not have an elementary amalgamation class.

Problem 17. If Amal(V) is an elementary class, does it follow that it is a
Horn class?

P. Ouwehand and H. Rose [A38] show that if an elementary class K is closed
under updirected unions, then it is closed under finite direct products if and only
if it is closed under reduced products (and hence definable by Horn sentences).
This result applies to elementary amalgamation classes since M. Yasuhara [1974]
showed that they are closed under updirected unions. Hence the above problem
is equivalent to asking if every elementary amalgamation class is closed under
finite products.

Problem 18. Is there a nonfinitely generated variety other than L whose amal-
gamation class is elementary? In particular, is Amal(M) an elementary class?

Absolute retracts. We now consider the problem of how the class of all ab-
solute retracts of a variety can be constructed from its subdirectly irreducible
members. Even for congruence distributive varieties, the product of two abso-
lute retracts need not be an absolute retract (W. Taylor [A46]), but fortunately
lattices are well behaved.

Theorem 25 Let V be a congruence distributive variety in which every mem-
ber has a one-element subalgebra. Then the class of absolute retracts of V is
closed under direct products and direct factors, that is,

∏
i∈I Ai ∈ Ar(V) iff

{Ai | i ∈ I } ⊆ Ar(V). (P. Jipsen and H. Rose [A20], P. Ouwehand and
H. Rose [A38].)

In fact, P. Ouwehand and H. Rose [A38] show that for congruence distributive
varieties, all finite absolute retracts can be obtained as products of subdirectly
irreducible absolute retracts. The general case is more complicated and requires
the concept of equational compactness (see also Section 1.9 of Appendix A). Here
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we only need the algebraic formulation: an algebra A is equationally compact if
for every diagonal embedding of A into an ultrapower of A, there is a retraction.
Clearly every finite algebra and every absolute retract with respect to some vari-
ety is equationally compact. Ouwehand and Rose also observe that equationally
compact lattices are complete (a result implicit in B. Weglorz [A47]). Hence
absolute retracts in a lattice variety are complete lattices.

Consider the following characterization:

(∗) An algebra A is in Ar(V) if and only if A is a product of equationally
compact reduced powers of Si(Ar(V)).

Theorem 26 Let V be a finitely generated variety of lattices.

(i) Every equationally compact reduced power of a finite absolute retract in
V is an absolute retract in V (hence the reverse implication of (∗) holds).

(ii) If none of the subdirectly irreducible absolute retracts in V are homomor-
phic images of each other then V satisfies (∗).

(iii) Assume every proper subvariety satisfies (∗). If V is the join of its proper
subvarieties or contains only one subdirectly irreducible absolute retract,
then V satisfies (∗).

(P. Ouwehand and H. Rose [A38].)

Note that the previous theorem is a generalization of the well known result
that the absolute retracts in D are precisely the complete Boolean lattices (since
every complete Boolean lattice is a reduced power of C2, which is the only subdi-
rectly irreducible in D). All finite lattices in Si(M) are simple, hence (ii) implies
that every finitely generated modular variety satisfies (∗). It follows from The-
orem 7(i) that any homomorphic image of a lattice in Si(AD) is distributive,
whence (∗) also holds for all finitely generated almost distributive varieties.

5. Congruence varieties

A congruence variety is a variety of lattices which is generated by the congruence
lattices of some variety of algebras. An account of this area of research can be
found in B. Jónsson’s appendix to G. Grätzer [A16] (see also B. Jonsson [A23]).
In this section, we mention some more recent results and some additional results
not included there.
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5.1 The nonmodular case: Polin’s variety

Contrary to the belief of many researchers, S. V. Polin [A41] constructed a
variety of algebras whose congruence variety is a proper nonmodular subvariety
of L. In the reconstruction of Polin’s proof (from sketchy notes) A. Day showed
that there are infinitely many distinct nonmodular congruence varieties, each of
which contains no nondistributive modular lattices. Since the join of congruence
varieties is again a congruence variety, there are infinitely many nonmodular
congruence varieties. Moreover, we have the following results.

Theorem 27

(i) Any nonmodular congruence variety contains the variety of all almost dis-
tributive lattices. (A. Day 1977].)

(ii) Polin’s congruence variety is the unique minimal nonmodular congruence
variety. (A. Day and R. Freese [A7].)

For further information about Polin’s variety see R. Freese [A12].

Theorem 28 Each minimal modular nondistributive congruence variety is
determined by one of the varieties generated by all vector spaces of characteristic
p (a prime or 0). (R. Freese, Ch. Herrmann and A. P. Huhn [A13].)

Since D is meet-irreducible in the lattice of modular varieties, it follows from
this result that the meet of two congruence varieties does not have to be a
congruence variety.

Corollary 29. The set of all congruence varieties is not a sublattice of Λ.

Problem 19. Is there a unique largest modular congruence variety?

We now turn to the question of congruence identities. Among the most
significant results are the following.

Theorem 30

(i) There is a lattice equation strictly weaker than the modular law such
that any congruence variety which satisfies this law is a modular variety.
(J. B. Nation [1974].)

(ii) Every modular congruence variety is arguesian. (R. Freese and B. Jónsson [A14].)

(iii) No modular nondistributive congruence variety is finitely based. (R. Freese [A11])
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(iv) For each n ≥ 0, the congruence lattice Con Fn of the free n-generated
Polin algebra is a splitting lattice. Thus (by Theorem 27(ii)) a variety is
congruence modular if and only if it satisfies the conjugate equation of one
of these splitting lattices. (A. Day and R. Freese [A7].)

(v) It is decidable whether a lattice equation implies congruence modularity
(or distributivity). (G. Czédli and R. Freese [A5].)

Problem 20. Is there a nondistributive congruence variety which is finitely
based?
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