Differences

This shows you the differences between two versions of the page.

basic_logic_algebras [2010/07/29 15:23]
127.0.0.1 external edit
basic_logic_algebras [2019/11/17 13:33] (current)
pnotthesamejipsen
Line 4: Line 4:
====Definition==== ====Definition====
-A \emph{basic logic algebra} or \emph{BL-algebra} is a structure $\mathbf{A}=\left\langle A,\vee ,0,\wedge ,1,\cdot ,\rightarrow \right\rangle $ such that+A \emph{basic logic algebra} or \emph{BL-algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,\cdot ,\to \rangle $ such that
-$\left\langle A,\vee ,0,\wedge ,1\right\rangle $ is a +$\langle A,\vee ,0,\wedge ,1\rangle $ is a
[[bounded lattice]] [[bounded lattice]]
-$\left\langle A,\cdot ,1\right\rangle $ is a [[commutative monoid]]+$\langle A,\cdot ,1\rangle $ is a [[commutative monoid]]
-$\rightarrow $ gives the residual of $\cdot $:  $x\cdot y\leq z\Longleftrightarrow y\leq x\rightarrow z$+$\to$ gives the residual of $\cdot $:  $x\cdot y\leq z\Longleftrightarrow y\leq x\to z$
-linearity:  $\left( x\rightarrow y\right) \vee \left( y\rightarrow x\right) =1$+prelinearity:  $( x\to y) \vee ( y\to x) =1$
-BL:  $x\cdot(x\rightarrow y)=x\wedge y$+BL:  $x\cdot(x\to y)=x\wedge y$
Remark: Remark:
Line 21: Line 21:
====Definition==== ====Definition====
-A \emph{basic logic algebra} is a [[FLe-algebra]] $\mathbf{A}=\left\langle +A \emph{basic logic algebra} is a [[FLe-algebra]] $\mathbf{A}=\langle 
-A,\vee ,0,\wedge ,1,\cdot ,\rightarrow \right\rangle $ such that+A,\vee ,0,\wedge ,1,\cdot ,\to \rangle $ such that
-linearity:  $\left( x\rightarrow y\right) \vee \left( y\rightarrow x\right) =1$+linearity:  $( x\to y) \vee ( y\to x) =1$
-BL:  $x\cdot (x\rightarrow y)=x\wedge y$+BL:  $x\cdot (x\to y)=x\wedge y$
Remark: Remark:
Line 32: Line 32:
==Morphisms== ==Morphisms==
-Let $\mathbf{A}$ and $\mathbf{B}$ be basic logic algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a +Let $\mathbf{A}$ and $\mathbf{B}$ be basic logic algebras.  
-homomorphism: +A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(1)=1$, $h(x\wedge $h(x\vee y)=h(x)\vee h(y)$, $h(1)=1$, $h(x\wedge
y)=h(x)\wedge h(y)$, $h(0)=0$, $h(x\cdot y)=h(x)\wedge h(y)$, $h(0)=0$, $h(x\cdot
-y)=h(x)\cdot h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$+y)=h(x)\cdot h(y)$, $h(x\to y)=h(x)\to h(y)$
====Examples==== ====Examples====
Line 70: Line 70:
f(3)= &2\\ f(3)= &2\\
f(4)= &5\\ f(4)= &5\\
 +f(5)= &10\\
 +f(6)= &23\\
 +f(7)= &49\\
 +f(8)= &111\\
\end{array}$ \end{array}$
The number of subdirectly irreducible BL-algebras of size $n$ is $2^{n-2}$. The number of subdirectly irreducible BL-algebras of size $n$ is $2^{n-2}$.
-\hyperbaseurl{http://math.chapman.edu/structures/files/}+
====Subclasses==== ====Subclasses====
[[MV-algebras]] [[MV-algebras]]
Line 89: Line 93:
====References==== ====References====
-[(Ln19xx> +
-)]+