## Brouwerian semilattices

Abbreviation: BrSlat

### Definition

A Brouwerian semilattice is a structure $\mathbf{A}=\langle A, \wedge, 1, \rightarrow\rangle$ such that

$\langle A, \wedge, 1\rangle$ is a semilattice with identity

$\rightarrow$ gives the residual of $\wedge$: $x\wedge y\leq z\Longleftrightarrow y\leq x\rightarrow z$

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be Brouwerian semilattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\wedge y)=h(x)\wedge h(y)$, $h(1)=1$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$

### Definition

A Brouwerian semilattice is a hoop $\mathbf{A}=\langle A, \cdot, 1, \rightarrow\rangle$ such that

$\cdot$ is idempotent: $x\cdot x=x$

Example 1:

### Properties

Classtype variety decidable yes unbounded yes yes yes, $n=2$ yes, $e=1$

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &3\\ f(6)= &5\\ f(7)= &8\\ f(8)= &15\\ f(9)= &26\\ f(10)= &47\\ f(11)= &82\\ f(12)= &151\\ f(13)= &269\\ f(14)= &494\\ f(15)= &891\\ f(16)= &1639\\ f(17)= &2978\\ f(18)= &5483\\ f(19)= &10006\\ f(20)= &18428\\ \end{array}$

Values known up to size 49 1)

### References

1) M. Ern\'e, J. Heitzig, J. Reinhold, On the number of distributive lattices, Electronic J. Combinatorics 9 (2002), no. 1, Research Paper 24, 23 pp.