Commutative partially ordered monoids

Abbreviation: CPoMon

Definition

A commutative partially ordered monoid is a partially ordered monoid $\mathbf{A}=\langle A,\cdot,1,\le\rangle$ such that

$\cdot$ is commutative: $xy=yx$

Remark: This is a template. If you know something about this class, click on the ``Edit text of this page'' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be commutative partially ordered monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a orderpreserving homomorphism: $h(x \cdot y)=h(x) \cdot h(y)$, $h(1)=1$, and $x\le y\Longrightarrow h(x)\le h(y)$.

Definition

A is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that

$...$ is …: $axiom$

$...$ is …: $axiom$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

Subclasses

[[Abelian partially ordered groups]] expansion

Superclasses

[[Partially ordered monoids]] supervariety
[[Commutative monoids]] subreduct

References