Differences

This shows you the differences between two versions of the page.

distributive_lattice_ordered_semigroups [2018/10/14 16:11]
jipsen
distributive_lattice_ordered_semigroups [2018/10/14 16:16] (current)
jipsen
Line 21: Line 21:
Example 1: Any collection $\mathbf A$ of binary relations on a set $X$ such that $\mathbf A$ is closed under union, intersection and composition. Example 1: Any collection $\mathbf A$ of binary relations on a set $X$ such that $\mathbf A$ is closed under union, intersection and composition.
-Andreka 1991 AU proves that these examples generate the variety DLOS.+H. Andreka[(Andreka1991)] proves that these examples generate the variety DLOS.
====Basic results==== ====Basic results====
Line 67: Line 67:
====References==== ====References====
-[(Andreka1991> +[(Andreka1991>Hajnal Andreka, \emph{Representations of distributive lattice-ordered semigroups with binary relations}, Algebra Universalis \textbf{28} (1991), 12--25)]
-Hajnal Andreka, \emph{Representations of distributive lattice-ordered semigroups with binary relations}, Algebra Universalis \textbf{28} (1991), 12--25)]+