# Differences

This shows you the differences between two versions of the page.

involutive_residuated_lattices [2012/07/18 23:23]
jipsen
involutive_residuated_lattices [2012/07/18 23:24] (current)
jipsen
Line 4: Line 4:
====Definition==== ====Definition====
-An \emph{involutive residuated lattice} is a structure $\mathbf{A}=\langle A, \vee, \wedge, \cdot, 1, \tilde, -\rangle$ of type $\langle 2, 2, 2, 0, 1, 1\rangle$ such that+An \emph{involutive residuated lattice} is a structure $\mathbf{A}=\langle A, \vee, \wedge, \cdot, 1, \sim, -\rangle$ of type $\langle 2, 2, 2, 0, 1, 1\rangle$ such that
$\langle A, \vee, \wedge, \neg\rangle$ is an [[involutive lattice]] $\langle A, \vee, \wedge, \neg\rangle$ is an [[involutive lattice]]
Line 14: Line 14:
==Morphisms== ==Morphisms==
Let $\mathbf{A}$ and $\mathbf{B}$ be involutive residuated lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: Let $\mathbf{A}$ and $\mathbf{B}$ be involutive residuated lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
-$h(x \vee y)=h(x) \vee h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, $h({\tilde}x)={\tilde}h(x)$ and $h(1)=1$. +$h(x \vee y)=h(x) \vee h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, $h({\sim}x)={\sim}h(x)$ and $h(1)=1$.
====Definition==== ====Definition====