## Monoidal t-norm logic algebras

Abbreviation: **MTLA**

### Definition

A ** monoidal t-norm logic algebra** is a FLew-algebra $\mathbf{A}=\langle A, \vee, \wedge, \cdot, 1, \to, 0\rangle$ such that

$\cdot$ is ** prelinear**: $(x\to y)\vee (y\to x)=1$

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be monoidal t-norm logic algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \vee y)=h(x) \vee h(y)$, $h(x \wedge y)=h(x) \wedge h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, $h(x \to y)=h(x) \to h(y)$, $h(0)=0$

### Definition

An ** …** is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle
...\rangle$ such that

$...$ is …: $axiom$

$...$ is …: $axiom$

### Examples

Example 1:

### Basic results

### Properties

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

### Subclasses

[[Basic logic algebras]]

### Superclasses

[[Representable FL$_w$ algebras]]

[[Representable FL$_e$ algebras]]

[[Distributive FL$_{ew]]$ algebras}

[[Representable commutative integral residuated lattices]] reduced type

### References

Trace: » monoidal_t-norm_logic_algebras