## Near-rings

Abbreviation: **NRng**

### Definition

A ** near-ring** is a structure $\mathbf{N}=\langle N,+,-,0,\cdot
\rangle $ of type $\langle 2,1,0,2\rangle $ such that

$\langle N,+,-,0\rangle $ is a groups

$\langle N,\cdot \rangle $ is a semigroups

$\cdot $ right-distributes over $+$: $(x+y)\cdot z=x\cdot z+y\cdot z$

##### Morphisms

Let $\mathbf{M}$ and $\mathbf{N}$ be near-rings. A morphism from $\mathbf{M}$ to $\mathbf{N}$ is a function $h:M\rightarrow N$ that is a homomorphism:

$h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$

Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$.

### Examples

Example 1: $\langle\mathbb{R}^{\mathbb{R}},+,-,0,\cdot\rangle$, the near-ring of functions on the real numbers with pointwise addition, subtraction, zero, and composition.

### Basic results

$0$ is a zero for $\cdot$: $0\cdot x=0$ and $x\cdot 0=0$.

### Properties

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$

### Subclasses

### Superclasses

### References

Trace: » near-rings