Table of Contents

## Normal bands

Abbreviation: **NBand**

### Definition

A ** normal band** is a bands $\mathbf{B}=\langle B,\cdot
\rangle $ such that

$\cdot $ is normal: $x\cdot y\cdot z\cdot x=x\cdot z\cdot y\cdot x$.

##### Morphisms

Let $\mathbf{B}$ and $\mathbf{C}$ be normal bands. A morphism from $\mathbf{B}$ to $\mathbf{C}$ is a function $h:B\rightarrow C$ that is a homomorphism:

$h(xy)=h(x)h(y)$

### Examples

### Basic results

### Properties

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$

### Subclasses

### Superclasses

### References

Trace: » normal_bands