Table of Contents
Right quasigroups
Abbreviation: RQgrp
Definition
A right quasigroup is a structure $\mathbf{A}=\langle A,\cdot,/\rangle$ of type $\langle 2,2\rangle $ such that
$(y/x)x = y$
$(xy)/y = x$
Remark:
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be right quasigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(xy)=h(x)h(y)$, $h(x/y)=h(x)/h(y)$.
Examples
Example 1:
Basic results
Properties
Finite members
$\begin{array}{lr} f(1)= &1\\ f(2)= &3\\ f(3)= &44\\ f(4)= &14022\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$
Subclasses
Superclasses
References
Trace: » right_quasigroups