
Searching for finite models
(or: some of what I did since ADAM 2006)

Peter Jipsen

Chapman University

June 22, 2007

Peter Jipsen (Chapman University) Searching for finite models June 22, 2007 1 / 43



Outline

Theory Posets

Searching for finite structures

Finite lattices

Relation algebras as expansions of FL-algebras

Subalgebras of complex algebras of Zn

Representations of finite relation algebras

Peter Jipsen (Chapman University) Searching for finite models June 22, 2007 2 / 43



Theory Posets

Theory Posets

Shortest pointed groupoid equation that has no nontrivial finite model

Dudek found this in 1980

Austin [1965] found one with no constant:
(((yy)y)x)(((yy)((yy)y))z) = x

These are now called Austin identities

Kisielewicz 1990 found an Austin identity with 7 variables:
(((yy)y)x)(yz) = x

Kisielewicz 1997 proved this is the shortest one

Open problem: is y(y(y(x(zy)))) = x an Austin identity?
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Searching for finite structures

Advantages and disadvantages of using SAGE

Programming in Python

Good control over input, output

Interpreted, slow

Error prone
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Lattices

Finite lattices

Enumerate them 1, 2, 3, 4,... in increasing size.

How to get good diagrams?

Lat9mp.txt
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Relation algebras

Relation algebras as expansions of FL-algebras
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Subalgebras of complex algebras of Zn

why does CmZnsubalgs2.in get stuck at 11?
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Representations of finite relation algebras

gets stuck on sets of size 13
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Tarski’s variety of relation algebras

RA is the variety of algebras (A, +, 0, ·, 1,− , ; , e,` ) such that

(A, +, 0, ·, 1,− ) is a Boolean algebra

(A, ; , e) is a monoid

converse ` is an involution: x`` = x and (x ;y)` = y`;x`

; and ` distribute over +

x`;(x ;y)− ≤ y−

The last three are equivalent to:

(x ;y) · z = 0 ⇔ (x`;z) · y = 0 ⇔ (z ;y`) · x = 0
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Concrete relation algebras

The variety RRA of representable relation algebras is generated by the
square relation algebras

Re(U) = (P(U2),∪, ∅,∩, U2,− , ◦, idU ,−1 )

where U is any set (closing under SP suffices)

Monk [1964] proved RRA is a nonfinitely axiomatizable subvariety of RA

Jónsson [1991] proved RRA cannot be axiomatized with finitely many
variables

Hirsch and Hodkinson [2001] proved that it is undecidable whether a finite
relation algebra is in RRA

Yet this decision has been made for many specific finite relation algebras

Peter Jipsen (Chapman University) Searching for finite models June 22, 2007 10 / 43



Group relation algebras

If (G , ◦, e,−1 ) is a group, then the complex algebra of G is

CmG = (P(G ),∪, ∅,∩, G ,− , ◦, {e},−1 )

is a group relation algebra with X ◦ Y = {x ◦ y : x ∈ X , y ∈ Y } and
X−1 = {x−1 : x ∈ X}.

This algebra is in RRA since it is embedded in Re(G ) via the Cayley map
g 7→ {(x , xg) : x ∈ G} (extended by distributivity to subsets of G ).

McKenzie [1970] proved that the variety GRA, generated by all complex
algebras of groups, is nonfinitely axiomatizable relative to RRA.

A relation algebra is integral if e is an atom.

Of the 115 integral RAs of size ≤ 16, most representable ones are in GRA.
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Group representations of small RAs

Maddux [2006] lists all integral RAs with ≤ 16 elements

Here are group representations for integral RAs of size ≤ 8

11
∼= CmZ1 12

∼= CmZ2 22
∼= SgCmZ3({0})

13
∼= SgCmQ({r : r > 0}) 23

∼= CmZ3 33
∼= SgCmZ7({1, 2, 4})

17
∼= SgCmZ4({2}) 27

∼= SgCmZ6({2, 4}) 37
∼= SgCmZ6({3})

47
∼= SgCmZ9({3, 6}) 57

∼= SgCmZ5({1, 4}) 67
∼= SgCmZ8({1, 4, 7})

77
∼= SgCmZ2

3({1, 2} × {1, 2})

E.g. 37

◦ e a b

e e a b
a a e b
b b b 1

G = Z6, 1 = e + a + b
e = {0} = e−1

a = {3} = a−1

b = {1, 2, 4, 5} = b−1
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Much information in the table is redundant

Consider triples (x , y , z) of atoms that satisfy x ;y ≥ z .

This condition is equivalent to y`;x` ≥ z`, x`;z ≥ y , z`;x ≥ y`,
y ;z` ≥ x`, z ;y` ≥ x , hence we group these triples into a cycle

A cycle is represented compactly by a triangle of colored arrows (the
converse elements are given by the reverse arrows)

For symmetric atoms a line is used instead of an arrow

13 r r`

r r 1
r` 1 r

37 a b

a e b
b b 1
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An integral relation algebra with identity atom e contains an

identity cycle if and only if x = y .

Hence algebras with the same number of atoms do not differ with respect
to these cycles.

It follows that an algebra with a symmetric atom a (green) and two
nonsymmetric atoms r , r` (red arrow and reverse arrow) is determined by
a subset of the following cycles:

Up to isomorphism there are 37 such integral RAs, numbered 137–3737

Listed by Maddux [2006] and Comer [1986] (different numbering)
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Hypergraphs of relation algebras

Since e behaves the same for all integral relation algebras, this atom is
omitted from the table, cycle list, and hypergraph.

The other atoms of the algebra are given by vertices of a directed
hypergraph.

An arrow points from vertex a to b if a; a` ≥ b

A vertex a is colored black if a; a ≥ a`.

A 3-hyperedge (thin lines) connects 3 vertices a, b, c if a; b` ≥ c .

Two atoms connected by a dotted line represent a converse pair r , r`.

E.g. 2037:

a

r r`
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The first 50 integral relation algebras

11 12 22 13 23 33 17 27 37 47 57 67 77

137 237 337 437 537 637 737 837 937 1037 1137 1237 1337

1437 1537 1637 1737 1837 1937 2037 2137 2237 2337 2437 2537 2637

2737 2837 2937 3037 3137 3237 3337 3437 3537 3637 3737
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The 65 symmetric integral relation algebras of size 16

165 265 365 465 565 665 765 865 965 1065 1165 1265

1365 1465 1565 1665 1765 1865 1965 2065 2165 2265 2365 2465

2565 2665 2765 2865 2965 3065 3165 3265 3365 3465 3565 3665

3765 3865 3965 4065 4165 4265 4365 4465 4565 4665 4765 4865

4965 5065 5165 5265 5365 5465 5565 5665 5765 5865 5965 6065

6165 6265 6365 6465 6565
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Which of these algebras are in RRA or GRA?

The main methods for proving an algebra is representable are

to construct the algebra from two smaller representable algebras by a
2-cycle extension A[B] (Comer [1983]) and

a so-called one-point extension method, where it is shown that a
(possibly infinite) representation can be built by adding one element
at a time.

For integral algebras, the 2-cycle extension A[B] has cycles defined by

taking the union of the cycles in A and B and

for all nonidentity atoms a in A and b in B add the cycle b; b` ≥ a

Graphically: add arrows from all vertices of B to all vertices of A.
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Representations from 2-cycle products

Theorem (Comer (1983))

A,B ∈ RRA (or GRA) if and only if A[B] ∈ RRA (or GRA)

Using the earlier group representations for 11, 12, 22, 13–33, 57–77, and
2-cycle extensions one can construct representations for the algebras
17–47, 137–1237, 165–2065.

A bidirectional 2-cycle extension A ⋆ B has cycles defined by

taking the union of the cycles in A and B and

for all nonidentity atoms x , y ∈ A ∪ B add the cycle x ; x` ≥ y

Graphically: add arrows between all vertices of A and B and make all dots
black.

It is used to show that 1537, 1737, 2465 are representable.
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Representations as edge-colored digraphs

A representation of an integral relation algebra is an embedding into
Re(X ) for some X .

Equivalently, if the algebra has atoms r0, r1, . . ., a representation is a
complete edge-colored digraph (X , R0, R1, . . .) with vertices i , j ∈ X
labeled by rm if (i , j) ∈ Rm such that

excluded cycles do not appear in the graph, and

for all vertices i , j , if the edge (i , j) is labeled by z and x ;y ≥ z
then there exists a vertex k such that (i , k) is labeled x and (k , j) is
labeled y ,
i.e. each cycle must appear on each matching edge in the graph.

E.g. represents 57:
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Representations by one-point extensions

A relation algebra has a flexible atom a if a ≤ x ;y for all x , y /∈ {0, e}

In the hypergraph a (and a`) have all possible edges and hyperedges
entering and leaving.

The one-point extension method applies to all algebras that have a flexible
atom, hence 3137, 3337, 3537, 3637, 3737, 3265, 3365, 3465, 5565, 5765,
5965, 6165, 6365, 6465, 6565 are representable.

It also applies to several algebras that do not have a flexible atom,
including 1337, 2337, 3037, 3065, 3165, 5265.
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Additional finite group representations

1837
∼= CmZ4

1937
∼= SgCmQ8({i , j , k})

2037
∼= SgCmZ12({1, 7, 9})

2237
∼= SgCm(Z16)({1, 3, 5, 6, 7, 14})

2565
∼= CmZ

2
2

2665
∼= SgCmZ6({1, 5})

2765
∼= SgCmZ10({1, 2, 8, 9})

2865
∼= SgCmD12({b, ab, a3b}) where D12 = 〈a, b | a6 = b2 = e, ba = a5b〉

2965
∼= SgCm(Z3×Z3)({(0, 1), (0, 2)}, {(1, 0), (2, 0)})
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Further representations

3965
∼= SgCmZ7({1, 6})

4665
∼= SgCmZ20({5, 6, 14, 15})

5365
∼= SgCmZ4

2({0001, 0010, 0011}, {0101, 0110, 1010, 1011, 1110, 1111})

6265
∼= SgCmZ13({1, 5, 8, 12}, {2, 3, 10, 11})

Additional ad hoc infinite representations

5165 by Comer [1986]

5665 by Lukacs [1991]

These are all 71 representable integral relation algebras of 102 with size 16
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Checking if a finite relation algebra is not representable

Theorem (Lyndon 1950, Maddux 1983)

There is an algorithm that halts if a given finite relation algebra is not
representable

Lyndon gives a recursive axiomatization for RRA

Maddux defines a sequence of varieties RAn such that
RA = RA4 ⊃ RA5 ⊃ . . .RRA =

⋂
n≥4 RAn and it is decidable if a finite

algebra is in RAn

Implemented as a GAP program [Jipsen 1993]
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Relation algebras and logical games

Recall that a representation of an integral RA is a complete edge-coloured
digraph such that each cycle from the algebra appears on each matching
edge

[Hirsch Hodkinson 2002] express the construction of a representation as a
two-player game, and the algebra is representable if the existential player
has a winning strategy.

Given a partial representation, the universal player chooses an edge (i , j)
with label z and two atoms x , y such that x ;y ≥ z in the algebra.

The existential player adds a point k to the graph, labels (i , k) with x ,
(k , j) with y , and now has to find edge-labels for all the remaining edges
(k , m) such that no excluded cycle is forced to appear in the partial
representation.

A “n-pebble” version of this game characterizes membership in RAn
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Example of a nonrepresentation game

E.g. [McKenzie 1970] showed that the 4-atom algebra 1437 is not
representable

1437:

The resulting configuration is said to be forbidden from any
representation, since the existential player cannot label all the edges using
only the cycles in 1437

By construction this particular configuration is also required in any
representation of this algebra, a contradiction. Hence no representation
exists.
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Nonrepresentability results

Similar games on 5 points show that 1637, 2137, 2437–2937, 3437, 2165,
2265, 2365, 3565–3865, 4065–4565, 4765–5065, 5465, 5865 are not in RA5

The last two algebras, 3237 and 6065, were found to be in RA5 \ RA6

Theorem

3237 is not representable.

3237:

We show that there is no complete edge-labeled graph that contains all

the required cycles on each matching edge and omits the green cycle

and the red cycle
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0 1

23

C1(0, 1, 2, 3)

0 1

23

4

Claim 1: C1(0, 1, 2, 3) is forbidden. Else should occur on edge (0, 1).

But then occurs at 2, 3, 4.

0

4

1

3

2

C2(0, 1, 2, 3, 4)

0

4

1

3

5

2

Claim 2: C2(u, v , x , y , z) is forbidden. Else should occur on edge

(0, 1). But then 3 4 causes to occur at 2, 3, 5.
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10

4

3 2

C3(0, 1, 2, 3, 4)

4 3

2

10

C ′
3(0, 1, 2, 3, 4)

Claim 3: C3(0, 1, 2, 3, 4) and C ′
3(0, 1, 2, 3, 4) are forbidden. Suppose

C3(0, 1, 2, 3, 4) occurs. If 2 1 then C2(4, 1, 2, 0, 3) occurs and if 1 2
then C2(4, 2, 1, 3, 0) occurs, both impossible by Claim 2. However 1 2 is

also impossible since

The proof for C ′
3(0, 1, 2, 3, 4) is analogous.
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0

4

3

2

1

C4(0, 1, 2, 3, 4)

0

4

3

2

1

5

Claim 4: C4(0, 1, 2, 3, 4) is forbidden. Else should occur on edge

(0, 1). Then 5 4 and 5 3. Now 2 5 implies on 5, 3, 2, while 5 2
implies C1(5, 1, 2, 0), and finally 2 5 implies C2(5, 1, 2, 0, 3).

Peter Jipsen (Chapman University) Searching for finite models June 22, 2007 30 / 43



0

4

3

2

1

C5(0, 1, 2, 3, 4)

0

4

3

2

1

5

Claim 5: C5(0, 1, 2, 3, 4) is forbidden. Else should occur on edge

(0, 1), hence 2 5. Now 5 4 implies on 5, 4, 2, while 4 5 implies
C1(0, 5, 1, 4), and finally 4 5 implies C3(5, 1, 2, 0, 3).
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0

4

3

2

1

C6(0, 1, 2, 3, 4)

0

4

3

2

1

5

Claim 6: C6(0, 1, 2, 3, 4) is forbidden. Else should occur on edge
(0, 1), hence 5 4 and 5 3. Now 5 2 implies C1(5, 1, 2, 0), while 2 5
implies C ′

3(5, 1, 3, 2, 0), and finally 2 5 implies C5(2, 1, 5, 4, 0).
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0

4

3

2

1
(a)

0

4

3

2

1
(b)

0

4

3

2

1
(c)

Note that (a) is a required configuration. The missing edges must be red
arrows but, depending on how they are oriented, we obtain one of the
forbidden configurations C3, C4 or C6.

This completes the proof that 3237 is nonrepresentable.

A similar but longer argument proves the same for 6065.
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6065 is nonrepresentable

Theorem

6065 is not representable.

6065:

We show that there is no complete edge-labeled graph that contains all

the required cycles on each matching edge and omits the red 1-cycle

and the green-blue 2-cycle

0 1

23

F1(0, 1, 2, 3)

0 1

23

4

0 1

23

F2(0, 1, 2, 3)

0 1

23

4
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0 1

2

3

4

F3(0, 1, 2, 3, 4)

0 1

2

3

4

5

0 1

2

3

4

F4(0, 1, 2, 3, 4)

0 1

2

3

4

4
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Part 2: RAs as expansions of involutive FL-algebras

Joint work with N. Galatos

A FL-algebra is a residuated lattice (A,∧,∨, ·, \, /, 1) expanded with a
constant 0 that can denote any element

The linear negations are defined as ∼x = x\0 and −x = 0/x

A FL-algebra is involutive if ∼−x = x = −∼x and cyclic if ∼x = −x

We repeat the definition of relation algebras in a signature close to
residuated lattices as algebras of the form A = (A,∧,∨, ′,⊥,⊤, ·, 1, `),
such that (A,∧,∨, ′,⊥,⊤) is a Boolean algebra (A, ·, 1) is a monoid and
for all a, b, c ∈ A

1 (a`)` = a, (ab)` = b`a`

2 a(b ∨ c) = ab ∨ ac , (a ∨ b)` = a` ∨ b` and

3 a`(ab)′ ≤ b′
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FL′-algebras

Given a relation algebra A, we define a\b = (a`b′)′, b/a = (b′a`)′ and
0 = 1′.

Then (A,∧,∨, ·, \, /, 1, 0) is a cyclic involutive FL-algebra with
∼x = −x = x ′` = x` ′.

A FL′-algebra is an expansion of a FL-algebra with a unary operation ′

that satisfies the conditions

x ′′ = x

(x ∨ y)′ = x ′ ∧ y ′

∼(x ′) = (∼x)′

−(x ′) = (−x)′
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Lemma

Every involutive FL′-algebra that satisfies (xy)′ = x ′ + y ′ is cyclic.

Proof.

Note that x\y = (∼x + y)′′ = (∼x ′ · y ′)′, so
1′ = 1\1′ = (∼1′ · 1′′)′ = ∼1 = 0. (Similarly x/y = (x ′ · −y ′)′.)
Moreover, for every x , y , we have ∼x ≤ y iff y ′ ≤ ∼x ′ iff x ′y ′ ≤ 1′ = 0 iff
(x + y)′ ≤ 0 iff 1 ≤ x + y iff −x ≤ w . Therefore ∼x = −x , for all x .

We also define two constants ⊥ = 1 ∧ 1′ and ⊤ = 1 ∨ 1′.

An involutive FL′-algebra is called Boolean if the reduct (A,∧,∨, ′,⊥,⊤)
is a Boolean algebra, or equivalently if it is distributive and satisfies
x ∨ x ′ = ⊤.
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Characterizing relation algebras

Lemma

An involutive FL′-algebra is (term equivalent to) a relation algebra iff it is
Boolean and satisfies (xy)′ = x ′ + y ′.

Proof.

It is easy to check that every relation algebra satisfies the above properties.
Conversely, assume that an involutive FL′-algebra satisfies the properties.
By the preceding lemma the algebra is cyclic. Define x∪ = ∼(x ′). We
have (x ∨ y)∪ = ∼(x ∨ y)′ = ∼(x ′ ∧ y ′) = (∼x ′ ∧ ∼y ′) = x∪ ∨ y∪.
Using the commutation of ∼ and ′, and cyclicity, we get
x∪∪ = ∼((∼x)′′) = ∼∼x = ∼−x = x .
(xy)∪ = ∼(xy)′ = ∼(x ′ + y ′) = ∼y ′ · ∼x ′ = y∪x∪.
To verify x∪(xy)′ ≤ y ′ we rewrite it by applying converse on both sides to
get the equivalent equation (xy)′∪x ≤ y ′∪, namely −(xy)x ≤ −y or
(0/(xy))x ≤ 0/y . This is equivalent to 0/(xy) ≤ 0/(xy), hence true.
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Skew relation algebras

A skew relation algebra is defined to be an involutive FL′-algebra that is
Boolean.

Theorem

Skew relation algebras are term equivalent to algebras of the form
A = (A,∧,∨, ′,⊥,⊤, ·, 1, ∪, ⊔), such that (A,∧,∨, ′,⊥,⊤) is a Boolean
algebra, (A, ·, 1) is a monoid and for all a, b, c ∈ A

(a∪)⊔ = a = (a⊔)∪ and

(a · b) ∧ c = ⊥ ⇐⇒ (b · c∪)⊔ ∧ a = ⊥ ⇐⇒ (c⊔ · a)∪ ∧ b = ⊥

The term equivalence is via x∪ = ∼x ′ and x⊔ = −x ′
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Representable π relation algebras

Given a set X and a bijection π on X we define the algebra
Re(X , π) = (P(X 2),∪,∩, ◦, ∪, ⊔, idX ), where

◦ is relational composition,

R∪ = {(y , π(x)) : (x , y) ∈ R} and

R⊔ = {(π−1(y), x) : (x , y) ∈ R}

It is easy to check that Re(X , π) is a skew relation algebra. Moreover, it
satisfies 1∪∪ = 1

For example, we can take X = Z and π(n) = n + 1, or X = Zk and
π(n) = n +k 1.
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Relation algebras with an invertible constant

Given a relation algebra A = (A,∧,∨, ′,⊥,⊤, ·, 1, `) and an element
π ∈ A that satisfies the identities ππ` = 1 = π`π (a bijective element),
we define the algebra Aπ = (A,∧,∨, ′,⊥,⊤, ·, 1, ∪, ⊔), where x∪ = x`π
and x⊔ = πx`.

It is easy to see that Aπ is (term equivalent to) a skew relation algebra.

Problems: Is every skew relation algebra of the form Aπ?

Find all minimal skew RAs (cf. Jónsson [1982], Jipsen & Lukács [1994]).

Is the equational theory of skew relation algebras decidable?

The variety of representable skew relation algebras is generated by the
algebras Re(X , π) for any set X and π any permutation on X .

This variety is not finitely axiomatizable.
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Conclusion
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