Computational mathematics research via the integration of computer algebra systems with theorem provers and model finders

Peter Jipsen

Chapman University

July 25, 2008

- Background
- \bullet Direct decompositions of $\ell\mbox{-}groupoids$
- $\bullet~{\rm CAS}$ and ${\rm TP}/{\rm MC}$
- Sage

Definition

 ℓ -groupoids, unital ℓ -groupoids, ℓ -monoids and ℓ -groups are defined as groupoids, unital groupoids (ex = x = xe), monoids and groups that are expanded with lattice operations and satisfy the identities

$$x(y \lor z) = xy \lor xz$$
 and $(x \lor y)z = xz \lor yz$.

They are *bounded* if there are constants 0, 1 denoting the bottom and top element of the lattice reduct.

Mostly we consider *integral* bounded unital ℓ -groupoids (or *ibu* ℓ -groupoids for short), i.e. they have the top element 1 as the unit.

A *residuated* ℓ -groupoid (or $r\ell$ -groupoid) is an ℓ -groupoid for which the residuals \backslash , / exist relative to the groupoid operation, i.e.,

$$x \cdot y \leq z$$
 iff $x \leq z/y$ iff $y \leq x \setminus z$

A FL_w -algebra is a residuated integral bounded ℓ -monoid.

An element c in an *ibul*-groupoid **A** is *complemented* if there exists $c' \in A$ such that $c \wedge c' = 0$ and $c \vee c' = 1$.

The *Boolean center* of **A** is the set $B(\mathbf{A})$ of all complemented elements.

The next results generalize similar results for MV-algebras [Cignoli, D'Ottaviano and Mundici 2000] and BL-algebras [Di Nola, Georgescu and Leustan 2000]. With the help of Prover9 [McCune 2008] it was shown that associativity is not needed for some of these results. The first part of the following lemma is essentially from [Birkhoff 1967].

Lemma

Let **A** be an ibu ℓ -groupoid and let $c \in B(\mathbf{A})$. Then

- In x ∧ c = xc = cx for all x ∈ A, hence the Boolean center is a Boolean sublattice of central idempotent elements.
- If A is a residuated ibuℓ-groupoid then B(A) is also closed under the residuals, the complement of c is -c = 0/c = c\0 and c\x = x/c = -c ∨ x for all c ∈ B(A) and x ∈ A.

Proof.

(i) Suppose A is an *ibul*-groupoid and $c \wedge d = 0$, $c \vee d = 1$. By integrality

$$xc \leq x \wedge c = (x \wedge c)(c \lor d) = (x \wedge c)c \lor (x \wedge c)d \leq xc \lor 0 = xc,$$

and similarly $cx \leq c \land x \leq cx$.

Suppose we also have $a \wedge b = 0$, $a \vee b = 1$. To see that $B(\mathbf{A})$ is a sublattice of **A**, it suffices to show that $a \lor c$ and $b \land d$ are complements: $(a \lor c) \land (b \land d) = (a \lor c)bd = abd \lor cbd = 0$ and $(a \lor c) \lor (b \land d) = a \lor c \lor bd = a \lor c \lor bc \lor bd = a \lor c \lor b(c \lor d) = a \lor c \lor b = 1.$ Now $B(\mathbf{A})$ is complemented by definition, and it is a distributive lattice since \cdot distributes over \lor , hence it is a Boolean lattice. (ii) For complements c, d and any $x \in A$ we have $c \setminus x = (c \lor d)(c \setminus x) = c(c \setminus x) \lor d(c \setminus x) \le x \lor d.$ On the other hand $c(x \lor d) = cx \lor cd \le x$ implies $x \lor d \le c \setminus x$. Hence $c \setminus x = d \lor x$, and for x = 0 we obtain $-c = c \setminus 0 = d$. Therefore $c \setminus x = -c \lor x$ for all $x \in A$. The results for / follow similarly.

For an $ib(r)u\ell$ -groupoid **A** and an element $c \in B(\mathbf{A})$, define

the *relativized subalgebra* $\mathbf{A}c = \downarrow c$ with unit $1^{\mathbf{A}c} = c$, operations \land, \lor, \cdot restricted from \mathbf{A} ,

and
$$a \setminus b = (a \setminus {}^{\mathsf{A}}b) \land c$$
, $a/b = (a/{}^{\mathsf{A}}b) \land c$ for all $a, b \in \downarrow c$.

Lemma

For any $ib(r)u\ell$ -groupoid **A** and any $c \in B(\mathbf{A})$, the relativized subalgebra **A**c is an $ib(r)u\ell$ -groupoid. If **A** is an FL_w -algebra then the map $f : \mathbf{A} \to \mathbf{A}c$ given by f(a) = ac is a homomorphism,

hence **A**c satisfies all identities that hold in **A**.

Proof.

By (i) of the preceding lemma, $\mathbf{A}c$ has c as a unit and is closed under \land, \lor, \cdot , hence it is an *ibul*-groupoid.

If **A** has residuals then for all $a, b, x \in \mathbf{A}c$ we have

$$\mathsf{a} x \leq b \quad ext{iff} \quad x \leq^{\mathsf{A}} \mathsf{a} ackslash^{\mathsf{A}} \mathsf{b} ext{ and } x \leq^{\mathsf{A}} \mathsf{c},$$

whence $a \setminus b = (a \setminus {}^{\mathbf{A}}b) \wedge c$, and similarly $a/b = (a/{}^{\mathbf{A}}b) \wedge c$. Now $f(1) = 1c = 1 {}^{\mathbf{A}c}$, $(a \wedge b)c = a \wedge b \wedge c = ac \wedge bc$ and $(a \vee b)c = ac \vee bc$ hence f preserves \wedge, \vee . If \cdot is associative then (ab)c = abcc = (ac)(bc). In any residuated lattice $x \setminus y \leq xz \setminus yz$, hence $f(a \setminus {}^{\mathbf{A}}b) \leq f(a) \setminus f(b)$. For the opposite inequality, we have $ac(ac \setminus bc) \leq bc \leq b$ and therefore $c(ac \setminus bc) \leq a \setminus b$.

Theorem

If **A** is an FL_w -algebra and if $c, d \in B(\mathbf{A})$ are complements then $\mathbf{A} \cong \mathbf{A}c \times \mathbf{A}d$.

Proof.

Consider the map $h : \mathbf{A} \to \mathbf{A}c \times \mathbf{A}d$ defined by $h(a) = (a \wedge c, a \wedge d)$. The preceding two lemmas show that h is a homomorphism, and h has an inverse

given by
$$(x, y) \mapsto x \lor y$$
 since $ac \lor ad = a(c \lor d) = a$ and
for $x \le c$, $y \le d$ we have
 $((x \lor y)c, (x \lor y)d) = (xc \lor yc, xd \lor yd) = (x, y).$

Conversely, any direct decomposition of an $ib(r)u\ell$ -groupoid is obtained in this way, since the elements (0, 1), (1, 0) are complements.

Corollary

An FL_w -algebra is directly indecomposable iff its Boolean center contains only the elements $\{0, 1\}$.

References

[Birkhoff 1967], "Lattice Theory", 3rd ed., AMS Colloquium Publications, Vol. 25, 1967.

[S. Burris and H. P. Sankapannavar 1981], "A Course in Universal Algebra", Springer-Verlag, 1981, online at www.math.uwaterloo.ca/~snburris/.

[R. Cignoli, I. D'Ottaviano and D. Mundici], "Algebraic foundations of many-valued reasoning", Kluwer Academic Publishers, Dordrecht, Boston, London 2000.

[Di Nola, Georgescu and Leustan 2000] *Boolean products of BL-algebras*, Journal of Mathematical Analysis and Applications, 251, (2000), 106-131.

[Galatos Jipsen Kowalski Ono 2007] "Residuated Lattices: An algebraic glimpse at substrutural logics", Studies in Logic, vol 151, Elsevier

[P. Jipsen, F. Montagna, 2006] On the structure of generalized BL-algebras, Algebra Universalis

[P. Jipsen, C. Tsinakis, 2002] *A survey on residuated lattices*, in: J. Martinez (Ed.), Ordered Algebraic Structures, Kluwer

[W. W. McCune, 2008] Prover9, automated reasoning software, University of New Mexico, Albuquerque, 2008, www.prover9.org