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Definition

ℓ-groupoids, unital ℓ-groupoids, ℓ-monoids and ℓ-groups are defined as
groupoids, unital groupoids (ex = x = xe), monoids and groups that are
expanded with lattice operations and satisfy the identities

x(y ∨ z) = xy ∨ xz and (x ∨ y)z = xz ∨ yz .

They are bounded if there are constants 0, 1 denoting the bottom and top
element of the lattice reduct.

Mostly we consider integral bounded unital ℓ-groupoids (or ibuℓ-groupoids
for short), i.e. they have the top element 1 as the unit.

A residuated ℓ-groupoid (or rℓ-groupoid) is an ℓ-groupoid for which the
residuals \, / exist relative to the groupoid operation, i.e.,

x · y ≤ z iff x ≤ z/y iff y ≤ x\z
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A FLw -algebra is a residuated integral bounded ℓ-monoid.

An element c in an ibuℓ-groupoid A is complemented if there exists
c ′ ∈ A such that c ∧ c ′ = 0 and c ∨ c ′ = 1.

The Boolean center of A is the set B(A) of all complemented elements.

The next results generalize similar results for MV-algebras [Cignoli,
D’Ottaviano and Mundici 2000] and BL-algebras [Di Nola, Georgescu and
Leustan 2000]. With the help of Prover9 [McCune 2008] it was shown
that associativity is not needed for some of these results. The first part of
the following lemma is essentially from [Birkhoff 1967].
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Lemma

Let A be an ibuℓ-groupoid and let c ∈ B(A). Then

i x ∧ c = xc = cx for all x ∈ A, hence the Boolean center is a Boolean

sublattice of central idempotent elements.

ii If A is a residuated ibuℓ-groupoid then B(A) is also closed under the

residuals, the complement of c is −c = 0/c = c\0 and

c\x = x/c = −c ∨ x for all c ∈ B(A) and x ∈ A.
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Proof.

(i) Suppose A is an ibuℓ-groupoid and c ∧ d = 0, c ∨ d = 1. By integrality

xc ≤ x ∧ c = (x ∧ c)(c ∨ d) = (x ∧ c)c ∨ (x ∧ c)d ≤ xc ∨ 0 = xc ,

and similarly cx ≤ c ∧ x ≤ cx .
Suppose we also have a ∧ b = 0, a ∨ b = 1. To see that B(A) is a
sublattice of A, it suffices to show that a ∨ c and b ∧ d are complements:
(a ∨ c) ∧ (b ∧ d) = (a ∨ c)bd = abd ∨ cbd = 0 and
(a∨c)∨(b∧d) = a∨c∨bd = a∨c∨bc∨bd = a∨c∨b(c∨d) = a∨c∨b = 1.
Now B(A) is complemented by definition, and it is a distributive lattice
since · distributes over ∨, hence it is a Boolean lattice.
(ii) For complements c , d and any x ∈ A we have
c\x = (c ∨ d)(c\x) = c(c\x) ∨ d(c\x) ≤ x ∨ d .
On the other hand c(x ∨ d) = cx ∨ cd ≤ x implies x ∨ d ≤ c\x .
Hence c\x = d ∨ x , and for x = 0 we obtain −c = c\0 = d . Therefore
c\x = −c ∨ x for all x ∈ A.
The results for / follow similarly.
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For an ib(r)uℓ-groupoid A and an element c ∈ B(A), define

the relativized subalgebra Ac = ↓c with unit 1Ac = c , operations ∧,∨, ·
restricted from A,

and a\b = (a\Ab) ∧ c , a/b = (a/Ab) ∧ c for all a, b ∈ ↓c .

Lemma

For any ib(r)uℓ-groupoid A and any c ∈ B(A), the relativized subalgebra

Ac is an ib(r)uℓ-groupoid.

If A is an FLw -algebra then the map f : A → Ac given by f (a) = ac is a

homomorphism,

hence Ac satisfies all identities that hold in A.
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Proof.

By (i) of the preceding lemma, Ac has c as a unit and is closed under
∧,∨, ·, hence it is an ibuℓ-groupoid.
If A has residuals then for all a, b, x ∈ Ac we have

ax ≤ b iff x ≤A a\Ab and x ≤A c ,

whence a\b = (a\Ab) ∧ c , and similarly a/b = (a/Ab) ∧ c .
Now f (1) = 1c = 1Ac , (a ∧ b)c = a ∧ b ∧ c = ac ∧ bc and
(a ∨ b)c = ac ∨ bc hence f preserves ∧,∨.
If · is associative then (ab)c = abcc = (ac)(bc). In any residuated lattice
x\y ≤ xz\yz , hence f (a\Ab) ≤ f (a)\f (b).
For the opposite inequality, we have ac(ac\bc) ≤ bc ≤ b and therefore
c(ac\bc) ≤ a\b.

Theorem

If A is an FLw -algebra and if c, d ∈ B(A) are complements then

A ∼= Ac × Ad.
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Proof.

Consider the map h : A → Ac × Ad defined by h(a) = (a ∧ c , a ∧ d).
The preceding two lemmas show that h is a homomorphism, and h has an
inverse
given by (x , y) 7→ x ∨ y since ac ∨ ad = a(c ∨ d) = a and
for x ≤ c , y ≤ d we have
((x ∨ y)c , (x ∨ y)d) = (xc ∨ yc , xd ∨ yd) = (x , y).

Conversely, any direct decomposition of an ib(r)uℓ-groupoid is obtained in
this way, since the elements (0, 1), (1, 0) are complements.

Corollary

An FLw -algebra is directly indecomposable iff its Boolean center contains

only the elements {0, 1}.
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