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Sage (sagemath.org) is a free open-source computer algebra system

It combines many research tools with a convenient browser interface

E.g. includes GAP (for Groups, Algorithms and Programs)

Maxima for symbolic algebra

Networkx for graph theory

R for statistics, etc ...

Python is used to interact with and program in Sage
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But Sage does not have direct support for Universal Algebra

The UA Calculator (uacalc.org) by E. Kiss, R. Freese and M. Valeriote
contains highly optimized algorithms for computations in a finite algebra

Can calculate Con(A), Sub(A), An, FV (A)(n), ...

Has a Java graphical interface for displaying (congruence) lattices
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But algebras have to be entered or loaded one at a time

Computed results are not easy to export

Difficult to program additional algorithms or extend interface

Instead wrote some small Java routines that allow Sage to access the UA
Calculator

Sage can handle lists of algebras, e.g. compute Con(A) for each of them
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Implemented Heitzig and Reinhold’s method for enumerating finite lattices
in Python

Computed all lattices with up to 12 elements

Filtered the list to get only subdirectly irreducible lattices

Task: compute (the bottom of) the poset of join-irreducible subvarieties
V (A) of ΛLat

Since ΛLat is distributive, the downsets of this poset form ΛLat (f.g. part)
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For finite s.i. lattices A,B we have V (A) ⊆ V (B) iff A ∈ HS(B)

So how does one compute HS(B)?

Use the UA Calculator to find Sub(B)

Eliminate isomorphic copies to get S(B)

For each C ∈ S(B) test if A ∈ H(C ), but how?

Checking all maps from C to A is not feasible
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Instead use a Constraint Satisfaction solver, e.g. Minion
(minion.sourceforge.net)

A constraint satisfaction problem (CSP) is traditionally given as a triple
(X ,D, C) where

X = {x0, . . . , xn−1} is a set of variables

D is a finite set, the domain for the variables

C = {(v0,R0), . . . , (vn−1,Rn−1)} is a set of constraints, i.e. vi ∈ X ki

and Ri ⊆ Dki for some ki > 0

A solution of the CSP (X ,D, C) is a function h : X → D such that
h̄(vi ) ∈ Ri , where h̄(x0, . . . , xk−1) = (h(x0), . . . , h(xk−1))
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The generalized CSP is a pair (U,V) of finite relational structures of the
same type with finitely many relation symbols

A solution of the generalized CSP is a homomorphism h : U→ V

Lemma

The CSP and the generalized CSP are equivalent

Given (X ,D, C), let U = (X , {v0}, . . . , {vm−1}) and
V = (D,R0, . . . ,Rm−1)

Conversely, given a pair (U,V), both of type R0, . . . ,Rt−1

let X = U, D = V and C = {(v ,RV
i )|v ∈ RU

i , i = 0, . . . , t − 1}
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CSP solvers have been developed for the past 30 years

Minion is a recent open-source CSP solver

Input syntax is similar to the traditional (X ,D, C) version

Wrote short Sage/Python routines that convert a pair of finite algebras
into a Minion file, call Minion and read the output file back into Sage

Implemented commands: Hom(A,B), End(A),

Emb(A,B), Aut(A), Pol1(A)

is hom imgage(A,B), is subalgebra(A,B), is isomorphic(A,B)
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The number of subdirectly irreducible lattices of size n:

n All SI
1 1 0
2 1 1
3 1 0
4 2 0
5 5 2
6 15 4
7 53 16
8 222 69
9 1078 360

10 5994 2103
11 37622 13867
12 262776 100853

Heitzig and Reinhold [2002] enumerated all lattices up to n = 18
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There are 2555 subdirectly irreducible lattices of size ≤ 10

The poset of subvarieties that they generate has height 7

The bottom (level 0) is the variety of distributive lattices

Level 1 has two varieties generated by M3 and N5 found by Dedekind, 1900

Level 2 has 25 varieties:

2 modular M4 and M3,3, found by Grätzer 1966, Jónsson 1968

15 nonmodular L1, . . . , L15 covering N5, found by McKenzie 1972

8 covering both M3 and N5, found by Ruckelshausen 1978, 1983
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Level 3 has not yet been fully investigated

H Rose [84], JG Lee [85], JB Nation [85,86,90], CY Wong [89] found all
join-irreducible covers of L1, . . . , L15

But there are many join-reducible covers with join-irreducibles above them

E.g. there is a join-irreducible variety above L1, L2, L4, L5 that is generated
by the 6-element fence plus top and bottom
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Other computational results

Using Birkhoff’s duality between complete perfect complemented lattices
and separated graphs

enumerated finite complemented lattices with up to 8 join-irreducibles
(includes the BA with 256 elements)

Computed levels of subvarieties of bi-semilattices (non-congruence
distributive) using the A ∈ Var(B) implementation of the UA Calculator
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Prover9/Mace4 (prover9.org) is a first-order theorem prover and
countermodel finder

Waldmeister is an equational theorem prover

Both were used to investigate `-pregroups, i.e. lattice-ordered monoids
with two unary operations x l , x r that satisfy x lx ≤ 1 ≤ xx l and
xx r ≤ 1 ≤ x rx

An `-pregroup is periodic if it satisfies the identity x l
n

= x r
n

for some
positive integer n

Theorem (N. Galatos, P. J. 2010)

Periodic `-pregroups have distributive lattice reducts

Parts of the proof were found with the equational theorem prover
Waldmeister (273 lemmas, > 140 pages pdf)

Fortunately it was possible to condense the proof down to 3 pages
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