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Modular Lattices

A modular lattice M is a lattice that satisfies the modular
law for all x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z

or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

N5

Standard examples of modular lattices are:

Lattices of subspaces of vector spaces.
Lattices of normal subgroups of a group.
Lattices of ideals of a ring.
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Semimodular Lattices

A lattice L is semimodular if for all x , y ∈ L

x ∧ y ≺ x , y implies that x , y ≺ x ∨ y .

x ∧ y

x y
x ∧ y

x y

x ∨ y

A lattice L is lower semimodular if for all x , y ∈ L

x , y ≺ x ∨ y implies that x ∧ y ≺ x , y .

x ∨ y

x y

x ∨ y

x y
x ∧ y

Theorem: A finite lattice L is modular if and only if it is
semimodular and lower semimodular.
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Generating Finite Lattices

Heitzig and Reinhold [2000] developed an orderly algorithm to
enumerate all finite lattices and used it to count the number of
lattices up to size 18. To explain their algorithm, we recall some
basic definitions:

b is a cover of a if a < b and there is no element c such that
a < c < b, and denote this by a ≺ b.

an element is an atom if it covers the bottom element.

↑A = {x ∈ L | a ≤ x for some a ∈ A} = the upper set of A.

An antichain is a subset of L in which any two elements in
the subset are incomparable.

The set of all maximal elements in L is called the first level of
L (Lev1(L)). The (m+1)-th level of L can be recursively

defined by Levm+1(L) = Lev1(L−
m⋃
i=1

Levi (L)).
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Let A be an antichain of a lattice L. If A satisfies (A1), we call it
a lattice-antichain.

(A1) For any a, b ∈ ↑A, a ∧ b ∈ ↑A ∪ {0}.

LA is the poset constructed from L by adding an atom which is
covered by all elements in A.

Lemma: [Heitzig, Reinhold 2000] LA is a lattice iff A satisfies (A1)

A recursive algorithm that generates for a given natural number
n ≥ 2 exactly all canonical lattices up to n elements starting with
the two element lattice:
next lattice(integer m, canonical m-lattice L)
begin

if m < n then

for each lattice-antichain A of L do

if LA is a canonical lattice then

next lattice (m + 1, LA)

if m = n then output L
end
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Dealing with Isomorphisms

In order to select one isomorphic copy, a weight is defined for
each lattice. If a lattice has the lowest weight among all it’s
permutations, it is considered canonical.

However, this is an expensive check since it requires checking
all permutations for each lattice (with some restrictions).

The algorithm runtime can be improved by using a canonical
path extension, introduced by McKay (1998):

Use only one (arbitrary) representative of each orbit in the
lattice antichains of L.
When LA is generated, perform a “canonical deletion”. If L is
automorphic to the generated lattice, then LA is considered
canonical.
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Counting Finite Lattices: Semimodular Lattices

This algorithm can be modified such that when a lattice of size n
is generated, the algorithm checks if it is (semi)modular.

Since semimodular and modular lattices are a very small fraction of
all lattices, we present some results to reduce the search space of
the algorithm. Here, Levk(L) and Levk−1(L) denote the bottom
and second bottom levels of L respectively.

Semimodular Lattices Theorem: When generating
semimodular lattices, for a lattice L, we only consider
antichains A which satisfy (A1) and all of the following
conditions:
(A2) A ⊆ Levk−1(L) or A ⊆ Levk(L).
(A3) If A ⊆ Levk(L), there are no atoms in Levk−1(L).
(A4) For all x , y ∈ A, x and y have a common cover.
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Counting Finite Lattices: Modular Lattices

Modular Lattices Theorem: When generating modular
lattices, for a lattice L, we only consider antichains A which
satisfy (A1-4) and

(A5) If A ⊆ Levk(L), Levk−1(L) satisfies lower semimodularity

(ie: for all x , y ∈ Levk−1(L), x , y ≺ x ∨y implies x ∧y ≺ x , y)

x ∨ y

x y

x ∨ y

x y
x ∧ y
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Runtime Analysis

Calculation of modular lattices of size n takes approximately
5.5 times the time used to generate all modular lattices of size
n − 1.

In order to reach higher numbers, the algorithm was
parallelized using the Message Passing Interface (MPI).

Approximately 50 hours were required to calculate all
modular lattices of size 22 running the algorithm in parallel on
64 CPUs. It is estimated it would have taken 1 month with
the serial version.
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n # Lattices # Semimod. Latt. # Mod. Latt.

1 1 1 1
2 1 1 1
3 1 1 1
4 2 2 2
5 5 4 4
6 15 8 8
7 53 17 16
8 222 38 34
9 1,078 88 72

10 5,994 212 157
11 37,622 530 343
12 262,776 1,376 766

13 2,018,305 3,693 1,718
14 16,873,364 10,232 3,899
15 152,233,518 29,231 8,898
16 1,471,613,387 85,906 20,475
17 15,150,569,446 259,291 47,321
18 165,269,824,761 802,308 110,024
19 1,901,910,625,578 2,540,635 256,791
20 – 8,220,218 601,991
21 – 27,134,483 1,415,768
22 – 91,258,141 3,340,847
23 – – 7,904,700
24 – – 18,752,942
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Lower Bound on Modular Lattices

Theorem: The number of unique modular lattices of size n
up to isomorphism is greater or equal to 2n−3.

Outline of proof: Let L3 be the three element lattice with 0
and 1 as bottom and top respectively, and let n − 1 the last
element added. Consider the following two extensions of an
n-lattice L:
Lα = LA where A = {x ∈ L | a ≺ 0}
Lβ ={

L1 if L = L3

L{a} for an arbitrary a such that a � n − 1 otherwise

Idea: Each modular lattice L will generate two unique modular
lattices Lα and Lβ.
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Open Question: Upper Bound on Modular Lattices?

Current upper bound is the upper bound for the number of all
lattices up to isomorphism, which is approximately

6.112[(n−2)3/2+o((n−2)3/2)] (Kleitman, 1980)

Peter Jipsen and Nathan Lawless An orderly algorithm to enumerate finite (semi)modular lattices



Alternative approach

Finite distributive lattices have been counted up to size 49
(Erné, Heitzig, Reinhold 2002) using the duality with finite
posets.
It is possible to generate modular lattices in a similar way.
Faigle and Herrmann [1981] define partially ordered
geometries that are dual to finite length modular lattices.
These are posets with a collection of subsets called lines, but
it is not clear how efficiently nonisomorphic collections can be
enumerated.
Another approach is to use Herrmann’s [1973] S-glued sums
to build all modular lattices from products of projective
subspace lattices.

M3 M3 × 2 Lat(Z3
2)
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Generating Other Lattices

The algorithm for generating all lattices along with the
implementation of the canonical path construction provides a
tool to generate any type of lattice up to size 19, such as:

1 Semidistributive lattices
2 Weakly distributive lattices
3 Almost distributive lattices
4 2-distributive lattices
5 Self-dual lattices
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Number of lattices compared

Modular, semidistributive, weakly distributive, 2-distributive and
self-dual lattices compared to all lattices

s.i. = subdirectly irreducibles

n Lattices s.i. Mod s.i. SD∧ s.i. WD∧ s.i. 2-distr sdual
5 5 2 4 1 4 1 4 1 5 3
6 15 4 8 1 9 0 10 1 15 7
7 53 16 16 1 23 1 29 5 53 13
8 222 69 34 2 65 3 96 12 222 36
9 1078 360 72 3 197 7 347 42 1075 76

10 5994 2103 157 4 636 11 1359 149 5952 232
11 37622 13867 343 7 2171 31 5679 551 37086 562
12 262776 100853 766 15 7756 89 25003 2160 256203
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Enumerating (finite) planar modular lattices

Quackenbush [1973] gave a characterization of planar lattices.
In the modular case this is just a sublattice of Cm ×Cn with doubly
irreducible elements added in any of the “squares”
For a vertically indecomposable planar modular lattice of size n:

1 Choose the number k < n of squares; let [k] = {1, 2, . . . , k}
2 Choose u ∈ [k]d for 0 < d ≤ b(k + 1)/2c such that

∑
ui = k

3 Choose a vector v ∈
|u|∏
i=2

[min(ui−1, ui )− 1]

4 Let m = n − 2k − 2 +
∑

vi .

5 If m ≥ 0 then choose w ∈ {0, . . . ,m}k s.t.
∑

wi = m

Theorem: For m ≥ 0 the above data determines a unique planar
modular lattice of size n with k squares arranged in |u| (diagonal)
columns of height |ui |, shifted vi and with wj doubly irreducibles
added to the j-th square.
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This construction of planar modular lattices is very efficient

Probably can obtain a formula for the number of planar modular
lattices of size n

All modular: 1,1,1,2,4,8,16,34,72,157,343,766,1718,3899,8898
Planar modular: 1,1,1,2,4,8,16,33,70,151,329,725,1613,3619,8176
s.i. planar mod: 1,1,0,0,1,1, 1, 2, 3, 4, 7, 15, 27, 49, 96

So about 92% of all modular lattices of size 15 are planar

What is the limit of (planar modular)/(all modular) as n→∞?

Grätzer and Quackenbush [2010] characterize the subdirectly
irreducibles in the variety generated by all planar modular lattices

What is the limit of (s.i. planar modular)/(all planar modular) as
n→∞?
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