An orderly algorithm to enumerate finite (semi)modular lattices BLAST 2013

Peter Jipsen and Nathan Lawless

Chapman University

October 6, 2013

Peter Jipsen and Nathan Lawless An orderly algorithm to enumerate finite (semi)modular lattices

- The original algorithm: Generating all finite lattices
- Generating modular and semimodular lattices
- Lower bound on modular lattices
- Results for other classes of lattices
- Planar modular lattices of size n

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

- **→** → **→**

- A - E - N

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

• An alternative way to view modular lattices is by **Dedekind's Theorem**: *L* is a nonmodular lattice iff N₅ can be embedded into *L*.

• Standard examples of modular lattices are:

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

- Standard examples of modular lattices are:
 - Lattices of subspaces of vector spaces.

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

- Standard examples of modular lattices are:
 - Lattices of subspaces of vector spaces.
 - Lattices of normal subgroups of a group.

 A modular lattice *M* is a lattice that satisfies the modular law for all *x*, *y*, *z* ∈ *M*:

$$x \ge z$$
 implies $x \land (y \lor z) = (x \land y) \lor z$

or equivalently:

$$x \wedge [y \vee (x \wedge z))] = (x \wedge y) \vee (x \wedge z).$$

- Standard examples of modular lattices are:
 - Lattices of subspaces of vector spaces.
 - Lattices of normal subgroups of a group.
 - Lattices of ideals of a ring.

Semimodular Lattices

• A lattice *L* is **semimodular** if for all $x, y \in L$

 $x \wedge y \prec x, y$ implies that $x, y \prec x \lor y$.

• A lattice *L* is **lower semimodular** if for all $x, y \in L$

 $x, y \prec x \lor y$ implies that $x \land y \prec x, y$.

• **Theorem:** A finite lattice *L* is modular if and only if it is semimodular and lower semimodular.

b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.

- b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- an element is an **atom** if it covers the bottom element.

- b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- an element is an **atom** if it covers the bottom element.
- $\uparrow A = \{x \in L \mid a \leq x \text{ for some } a \in A\} = \text{the upper set of } A.$

- b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- an element is an **atom** if it covers the bottom element.
- $\uparrow A = \{x \in L \mid a \leq x \text{ for some } a \in A\} = \text{the upper set of } A.$
- An **antichain** is a subset of *L* in which any two elements in the subset are incomparable.

- b is a cover of a if a < b and there is no element c such that a < c < b, and denote this by a ≺ b.
- an element is an **atom** if it covers the bottom element.
- $\uparrow A = \{x \in L \mid a \leq x \text{ for some } a \in A\} = \text{the upper set of } A.$
- An **antichain** is a subset of *L* in which any two elements in the subset are incomparable.
- The set of all maximal elements in L is called the first level of L ($Lev_1(L)$). The (m+1)-th level of L can be recursively defined by $Lev_{m+1}(L) = Lev_1(L \bigcup_{i=1}^{m} Lev_i(L))$.

4 同 1 4 三 1 4 三 1 4 二

Let A be an antichain of a lattice L. If A satisfies (A1), we call it a **lattice-antichain**.

(A1) For any $a, b \in \uparrow A$, $a \land b \in \uparrow A \cup \{0\}$.

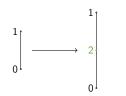
 L^A is the poset constructed from L by adding an atom which is covered by all elements in A.

Lemma: [Heitzig, Reinhold 2000] L^A is a lattice iff A satisfies (A1)

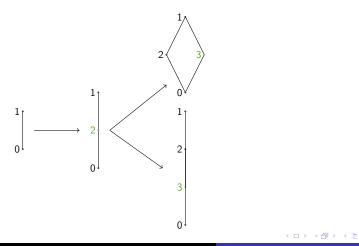
A recursive algorithm that generates for a given natural number $n \ge 2$ exactly all canonical lattices up to n elements starting with the two element lattice:

```
next_lattice(integer m, canonical m-lattice L)
begin
```

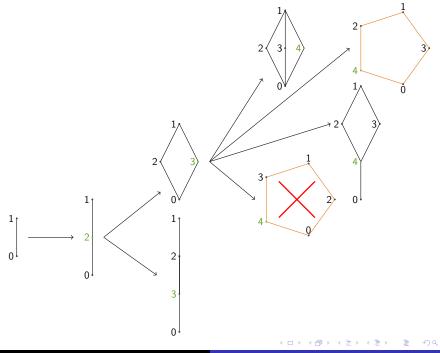
```
if m < n then
for each lattice-antichain A of L do
if L^A is a canonical lattice then
next_lattice (m+1, L^A)
if m = n then output L
end
```

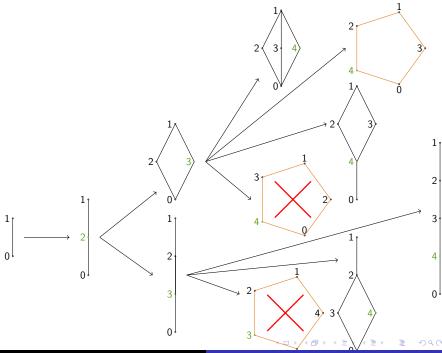
イロン イロン イヨン イヨン



→ < E →</p>



Peter Jipsen and Nathan Lawless An orderly algorithm to enumerate finite (semi)modular lattices



Peter Jipsen and Nathan Lawless An orderly algorithm to enumerate finite (semi)modular lattices

- In order to select one isomorphic copy, a weight is defined for each lattice. If a lattice has the lowest weight among all it's permutations, it is considered canonical.
- However, this is an expensive check since it requires checking all permutations for each lattice (with some restrictions).
- The algorithm runtime can be improved by using a *canonical path extension*, introduced by McKay (1998):
 - Use only one (arbitrary) representative of each orbit in the lattice antichains of *L*.
 - When *L^A* is generated, perform a "canonical deletion". If *L* is automorphic to the generated lattice, then *L^A* is considered canonical.

・ 同 ト ・ ヨ ト ・ ヨ ト

This algorithm can be modified such that when a lattice of size n is generated, the algorithm checks if it is (semi)modular.

Since semimodular and modular lattices are a very small fraction of all lattices, we present some results to reduce the search space of the algorithm. Here, $Lev_k(L)$ and $Lev_{k-1}(L)$ denote the bottom and second bottom levels of L respectively.

• Semimodular Lattices Theorem: When generating semimodular lattices, for a lattice *L*, we only consider antichains *A* which satisfy (A1) and all of the following conditions:

(A2)
$$A \subseteq Lev_{k-1}(L)$$
 or $A \subseteq Lev_k(L)$.

- (A3) If $A \subseteq Lev_k(L)$, there are no atoms in $Lev_{k-1}(L)$.
- (A4) For all $x, y \in A$, x and y have a common cover.

Counting Finite Lattices: Modular Lattices

• Modular Lattices Theorem: When generating modular lattices, for a lattice *L*, we only consider antichains *A* which satisfy (A1-4) and

(A5) If $A \subseteq Lev_k(L)$, $Lev_{k-1}(L)$ satisfies lower semimodularity

(ie: for all $x, y \in Lev_{k-1}(L), x, y \prec x \lor y$ implies $x \land y \prec x, y$)

- Calculation of modular lattices of size n takes approximately 5.5 times the time used to generate all modular lattices of size n-1.
- In order to reach higher numbers, the algorithm was parallelized using the Message Passing Interface (MPI).
- Approximately **50 hours** were required to calculate all modular lattices of size 22 running the algorithm in parallel on 64 CPUs. It is estimated it would have taken **1 month** with the serial version.

n	# Lattices	# Semimod. Latt.	# Mod. Latt.
1	1	1	1
2	1	1	1
3	1	1	1
4	2	2	2
5	5	4	4
6	15	8	8
7	53	17	16
8	222	38	34
9	1,078	88	72
10	5,994	212	157
11	37,622	530	343
12	262,776	1,376	766

n	# Lattices	# Semimod. Latt.	# Mod. Latt.
1	1	1	1
2	1	1	1
3	1	1	1
4	2	2	2
5	5	4	4
6	15	8	8
7	53	17	16
8	222	38	34
9	1,078	88	72
10	5,994	212	157
11	37,622	530	343
12	262,776	1,376	766
13	2,018,305	3,693	1,718
14	16,873,364	10,232	3,899
15	152,233,518	29,231	8,898
16	1,471,613,387	85,906	20,475
17	15,150,569,446	259,291	47,321
18	165,269,824,761	802,308	110,024

・ロト ・日・・日・・日・・ つくの

n	# Lattices	# Semimod. Latt.	# Mod. Latt.
1	1	1	1
2	1	1	1
3	1	1	1
4	2	2	2
5	5	4	4
6	15	8	8
7	53	17	16
8	222	38	34
9	1,078	88	72
10	5,994	212	157
11	37,622	530	343
12	262,776	1,376	766
13	2,018,305	3,693	1,718
14	16,873,364	10,232	3,899
15	152,233,518	29,231	8,898
16	1,471,613,387	85,906	20,475
17	15,150,569,446	259,291	47,321
18	165,269,824,761	802,308	110,024
19	1,901,910,625,578	2,540,635	256,791

・ロト ・日・・日・・日・・ つくの

n	# Lattices	# Semimod. Latt.	# Mod. Latt.
1	1	1	1
2	1	1	1
3	1	1	1
4	2	2	2
5	5	4	4
6	15	8	8
7	53	17	16
8	222	38	34
9	1,078	88	72
10	5,994	212	157
11	37,622	530	343
12	262,776	1,376	766
13	2,018,305	3,693	1,718
14	16,873,364	10,232	3,899
15	152,233,518	29,231	8,898
16	1,471,613,387	85,906	20,475
17	15,150,569,446	259,291	47,321
18	165,269,824,761	802,308	110,024
19	1,901,910,625,578	2,540,635	256,791
20	-	8,220,218	601,991
21	-	27,134,483	1,415,768
22	-	91,258,141	3,340,847

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

э.

n	# Lattices	# Semimod. Latt.	# Mod. Latt.
1	1	1	1
2	1	1	1
3	1	1	1
4	2	2	2
5	5	4	4
6	15	8	8
7	53	17	16
8	222	38	34
9	1,078	88	72
10	5,994	212	157
11	37,622	530	343
12	262,776	1,376	766
13	2,018,305	3,693	1,718
14	16,873,364	10,232	3,899
15	152,233,518	29,231	8,898
16	1,471,613,387	85,906	20,475
17	15,150,569,446	259,291	47,321
18	165,269,824,761	802,308	110,024
19	1,901,910,625,578	2,540,635	256,791
20	-	8,220,218	601,991
21	-	27,134,483	1,415,768
22	-	91,258,141	3,340,847
23	-	-	7,904,700
24	-	-	18,752,942

Lower Bound on Modular Lattices

- **Theorem:** The number of unique modular lattices of size n up to isomorphism is greater or equal to 2^{n-3} .
- Outline of proof: Let L₃ be the three element lattice with 0 and 1 as bottom and top respectively, and let n − 1 the last element added. Consider the following two extensions of an *n*-lattice L:

$$\begin{array}{ll} L_{\alpha} = L^{A} & \text{where} & A = \{x \in L \mid a \prec 0\} \\ L_{\beta} = & \\ \begin{cases} L^{1} & \text{if } L = L_{3} \\ L^{\{a\}} & \text{for an arbitrary } a \text{ such that } a \succ n-1 & \text{otherwise} \end{cases}$$

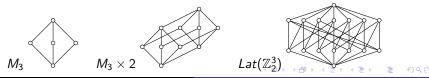
Idea: Each modular lattice L will generate two unique modular lattices L_{α} and L_{β} .

Current upper bound is the upper bound for the number of all lattices up to isomorphism, which is approximately

 $6.112^{[(n-2)^{3/2}+o((n-2)^{3/2})]}$ (Kleitman, 1980)

Alternative approach

- Finite distributive lattices have been counted up to size 49 (Erné, Heitzig, Reinhold 2002) using the duality with finite posets.
- It is possible to generate modular lattices in a similar way.
- Faigle and Herrmann [1981] define partially ordered geometries that are dual to finite length modular lattices.
- These are posets with a collection of subsets called *lines*, but it is not clear how efficiently nonisomorphic collections can be enumerated.
- Another approach is to use Herrmann's [1973] S-glued sums to build all modular lattices from products of projective subspace lattices.



Peter Jipsen and Nathan Lawless

An orderly algorithm to enumerate finite (semi)modular lattices

- The algorithm for generating all lattices along with the implementation of the canonical path construction provides a tool to generate any type of lattice up to size 19, such as:
 - Semidistributive lattices
 - Weakly distributive lattices
 - Imost distributive lattices
 - 2-distributive lattices
 - Self-dual lattices

Modular, semidistributive, weakly distributive, 2-distributive and self-dual lattices compared to all lattices

s.i.	= su	bdirectl	y irred	ucibles
------	------	----------	---------	---------

n	Lattices	s.i.	Mod	s.i.	SD∧	s.i.	WD∧	s.i.	2-distr	sdual
5	5	2	4	1	4	1	4	1	5	3
6	15	4	8	1	9	0	10	1	15	7
7	53	16	16	1	23	1	29	5	53	13
8	222	69	34	2	65	3	96	12	222	36
9	1078	360	72	3	197	7	347	42	1075	76
10	5994	2103	157	4	636	11	1359	149	5952	232
11	37622	13867	343	7	2171	31	5679	551	37086	562
12	262776	100853	766	15	7756	89	25003	2160	256203	

Enumerating (finite) planar modular lattices

Quackenbush [1973] gave a characterization of planar lattices. In the modular case this is just a sublattice of $C_m \times C_n$ with doubly irreducible elements added in any of the "squares" For a vertically indecomposable planar modular lattice of size n:

- Choose the number k < n of squares; let $[k] = \{1, 2, \dots, k\}$
- $\textbf{O} \hspace{0.1in} \text{Choose} \hspace{0.1in} u \in [k]^d \hspace{0.1in} \text{for} \hspace{0.1in} 0 < d \leq \lfloor (k+1)/2 \rfloor \hspace{0.1in} \text{such that} \hspace{0.1in} \sum u_i = k$

3 Choose a vector
$$v \in \prod_{i=2}^{|u_i|} [\min(u_{i-1}, u_i) - 1]$$

1....

• Let
$$m = n - 2k - 2 + \sum v_i$$
.

§ If $m \ge 0$ then choose $w \in \{0, \ldots, m\}^k$ s.t. $\sum w_i = m$

Theorem: For $m \ge 0$ the above data determines a unique planar modular lattice of size n with k squares arranged in |u| (diagonal) columns of height $|u_i|$, shifted v_i and with w_j doubly irreducibles added to the j-th square.

This construction of planar modular lattices is very efficient

Probably can obtain a formula for the number of planar modular lattices of size n

All modular: 1,1,1,2,4,8,16,34,72,157,343,766,1718,3899,8898 Planar modular: 1,1,1,2,4,8,16,33,70,151,329,725,1613,3619,8176 s.i. planar mod: 1,1,0,0,1,1, 1, 2, 3, 4, 7, 15, 27, 49, 96

So about 92% of all modular lattices of size 15 are planar

What is the limit of (planar modular)/(all modular) as $n \to \infty$?

Grätzer and Quackenbush [2010] characterize the subdirectly irreducibles in the variety generated by all planar modular lattices

What is the limit of (s.i. planar modular)/(all planar modular) as $n \to \infty$?

References

- R. Belohlavek and V. Vychodil, Residuated Lattices of Size 12, Order 27 (2010), 147–161.
- R. Dedekind, Über die von drei Moduln erzeugte Dualgruppe, Math. Ann. 53 (1900), 371–403.
- M. Erné, J. Heitzig and J. Reinhold, On the number of distributive lattices, Electron. J. Combin. 9 (2002), 23 pp.
- J. Heitzig and J. Reinhold, *Counting Finite Lattices*, Algebra Univers. 48 (2002) 43–53.
- D. J. Kleitman and K. J. Winston, Combinatorial mathematics, optimal designs and their applications, Ann. Discrete Math. 6 (1980), 243249.
- B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998) 306–324.

Preprint available on arXiv (search "jipsen lawless")