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Lattices

A research project with Nathan Lawless.

A lattice is a set L with two binary operations ∧,∨ that are

associative (x ∧ y) ∧ z = x ∧ (y ∧ z) (x ∨ y) ∨ z = x ∨ (y ∨ z)
commutative x ∧ y = y ∧ x x ∨ y = y ∨ x
absorptive (x ∧ y) ∨ x = x (x ∨ y) ∧ x = x

Elements in a lattice are partially ordered by x ≤ y ⇐⇒ x ∧ y = x .
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Lattices versus modular lattices
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Modular Lattices

A modular lattice M is a lattice that satisfies the modular law for all
x , y , z ∈ M:

x ≥ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ z
or equivalently:

x ∧ [y ∨ (x ∧ z))] = (x ∧ y) ∨ (x ∧ z).

An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded into L.

N5
Examples of modular lattices are:

Lattices of subspaces of vector spaces.
Lattices of ideals of a ring.
Lattices of normal subgroups of a group.
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Our Objective

We wanted to come up with an algorithm to efficiently generate all finite
modular lattices of a given size n up to isomorphism.

Why is this important?

1 Providing a tool for generation of modular lattices and related
structures.

2 The generated modular lattices can provide evidence for conjectures
and/or counterexamples.

3 Discovering new structural properties of modular lattices.
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Generating Finite Lattices
Heitzig and Reinhold [2000] developed an orderly algorithm to enumerate
all finite lattices and used it to count the number of lattices up to size 18.
To explain their algorithm, we give some definitions related to posets and
lattices:

We say that b is a cover of a if a < b and there is no element c such
that a < c < b, and denote this by a ≺ b.
We say an element is an atom if it covers the bottom element.
We call ↑A = {x ∈ L | a ≤ x for some a ∈ A} the upper set of A.
An antichain is a subset of L in which any two elements in the subset
are incomparable.
The set of all maximal elements in L is called the first level of L
(Lev1(L)). The (m+1)-th level of L can be recursively defined by
levm+1(L) = Lev1(L −

m∪
i=1

Levi(L)).
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Counting Finite Lattices (continued)
Let A be an antichain of a lattice L. If A satisfies A1, we call it a
lattice-antichain.

(A1) For any a, b ∈ ↑A, a ∧ b ∈ ↑A ∪ {0}.
LA is constructed from L by adding an atom which is covered by all

elements in A. If A satisfies A1, then LA is a lattice. (Heitzig, 2000).

A recursive algorithm can be formulated that generates for a given natural
number n ≥ 2 exactly all canonical lattices up to n elements starting with

the two element lattice:
next_lattice(integer m, canonical m-lattice L)
begin

if m < n then
for each lattice-antichain A of L do

if LA is a canonical lattice then
next_lattice (m + 1, LA)

if m = n then output L
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Dealing with Isomorphisms

In order to select one isomorphic copy, a weight is defined for each
lattice. If a lattice has the lowest weight among all it’s permutations,
it is considered canonical.
However, this is an expensive check since it requires checking all
permutations for each lattice (with some restrictions).
The algorithm runtime can be improved by introducing a canonical
path extension, introduced by McKay (1998):

We only use one arbitrary representative of each orbit in the lattice
antichains of L.
When LA is generated, we perform a “canonical deletion”. If L is
automorphic to the generated lattice, we consider LA canonical.
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Counting Finite Lattices: Semimodular Lattices

This algorithm can be modified such that when a lattice of size n is
generated, the algorithm checks if it is (semi)modular.

Since semimodular and modular lattices are a very small fraction of all
lattices, we present some results to reduce the search space of the
algorithm. Here, Levk(L) and Levk−1(L) denote the bottom and second
bottom levels of L respectively.

Semimodular Lattices Theorem: When generating semimodular
lattices, for a lattice L, we only consider antichains A which satisfy
A1 and all of the following conditions:
(A2) A ⊆ Levk−1(L) or A ⊆ Levk(L).
(A3) If A ⊆ Levk(L), there are no atoms in Levk−1(L).
(A4) For all x , y ∈ A, x and y have a common cover.
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Counting Finite Lattices: Modular Lattices

Modular Lattices Theorem: When generating modular lattices, for
a lattice L, we only consider antichains A which satisfy A1-4 and
(A5) If A ⊆ Levk(L), Levk−1(L) satisfies lower semimodularity

(ie: for all x , y ∈ Levk−1(L), x , y ≺ x ∨ y implies x ∧ y ≺ x , y)
x ∨ y

x y
x ∨ y

x y
x ∧ y
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Runtime Analysis

Calculation of modular lattices of size n takes approximatelly 5.5
times the time used to generate all modular lattices of size n − 1.
In order to reach higher numbers, the algorithm was parallelized using
Message Passing Interface (MPI).
Approximately 2 weeks were required to calculate all modular lattices
of size 24 running the algorithm in parallel on 64 CPUs. It is
estimated it would have taken 6 month with the serial version.
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Results
n # Lattices # Semimod. Latt. # Mod. Latt.
3 1 1 1
4 2 2 2
5 5 4 4
6 15 8 8
7 53 17 16
8 222 38 34
9 1 078 88 72

10 5 994 212 157
11 37 622 530 343
12 262 776 1376 766

13 2 018 305 3 693 1 718
14 16 873 364 10 232 3 899
15 152 233 518 29 231 8 898
16 1 471 613 387 85 906 20 475
17 15 150 569 446 259 291 47 321
18 165 269 824 761 802 308 110 024
19 1 901 910 625 578 2 540 635 256 791
20 – 8 220 218 601 991
21 – 27 134 483 1 415 768
22 – 91 258 141 3 340 847
23 – – 7 904 700
24 – – 18 752 942
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Modular lattice of subspaces of F3
3
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Semilattices and Boolean Algebras
A research project with Eyad Kurd-Misto and James Wimberley.

A semilattice ⟨S, ·⟩ is a set S with an operation · that satisfies

(x · y) · z = x · (y · z) x · y = y · x x · x = x ,

known as associativity, commutativity and idempotence.

A Boolean algebra ⟨B,∧,∨,¬, 0, 1⟩ is a lattice with a complement
operation ¬, a bottom element 0, and a top element 1, such that

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ ¬x = 1 x ∧ ¬x = 0

0

1
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Groupoids and Boolean Groupoids

A groupoid ⟨G , ·⟩ is a set with a binary operation ·

A Boolean groupoid is an algebra of the form ⟨B,∧,∨,¬, ·, 0, 1⟩ such
that ⟨B,∧,∨,¬, 0, 1⟩ is a Boolean algebra and · is a binary operation
satisfying:

x · 0 = 0 · x = 0
x · (y ∨ z) = (x · y) ∨ (x · z)
(x ∨ y) · z = (x · z) ∨ (y · z)

It is integral if x · y = 0 =⇒ x = 0 or y = 0.

For a groupoid G = ⟨G , ·⟩, define the complex algebra
G+ = ⟨P(G),∩,∪,¬, ·, ∅,G⟩. Then G+ is an integral Boolean groupoid.
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Idempotent Boolean Groupoids

Theorem 1. Every integral square-increasing Boolean groupoid B is
isomorphic to a subalgebra of a complex algebra of an idempotent
groupoid G. If B is finite G will be finite and if B is commutative we can
choose G to be commutative.

Example.
· a b
a a∨b a∨b
b a∨b b

↪→

· a0 a1 a2 b0 b1 b2
a0 a0 b0 b2 a0 b0 b2
a1 b0 a1 b1 b0 a1 b1
a2 b2 b1 a2 b2 b1 a2
b0 a0 b0 b2 b0 b0 b2
b1 b0 a1 b1 b0 b1 b1
b2 b2 b1 a2 b2 b1 b2

B G

Figure 1: An integral comm. square-increasing Boolean groupoid B and the
corresponding commutative idempotent groupoid G.
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Boolean Semilattices

A Boolean semilattice is a Boolean groupoid satisfying the additional
axioms:

(x · y) · z = x · (y · z) x · y = y · x x ≤ x · x

A Boolean semilattice B is representable if there exists a semilattice S
such that B is isomorphic to a subalgebra of S+.
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Representations
Lemma 2. Let A be a finite representable Boolean semilattice.

Then every semilattice representing A is infinite if and only if there exist
disjoint x , y ∈ A such that x ∨ y ≤ x · y. (a = , b = ).

· a b
a a a
b a b

A1

· a b
a a a
b a 1

A2

· a b
a a 1
b 1 b

A3

··
·

· a b
a a 1
b 1 1

A4

··
·

··
·

· a b
a 1 1
b 1 1

A5

··
·

··
·

··
·

··
·
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Representations (continued)

Representable Boolean semilattices satisfy the following axioms:

1 x ∧ y ·1 ≤ x ·y
2 x(x ·y ∧ ¬x) ≤ x2 ∨ (x ·y ∧ ¬x)2

3 u ≤ y ·z =⇒ x ·u ≤ (x ·z ∧ v)·y ∨ (x ·z ∧ ¬v)·u
4 x ·y ≤ x ∨ y =⇒ x2 ∧ y2 ≤ x ·y
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Representations (continued)

Theorem 3. There are 79 Boolean semilattices with 8 elements that
satisfy axioms 1-4. Of these, 72 are known to be representable.

It is an open problem whether the remaining 7 are representable. Here we
only show a few representations.

· a b c
a a b c
b b b∨c
c b∨c

B1

···

· a b c
a a b∨c b∨c
b b b∨c
c b∨c

B13

···
···

· a b c
a a 1 1
b b 1
c c

B40

···

· ··
···

· ··
···

···
·········
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Results
Assume A,B are complete and atomic Boolean semilattices with sets of
atoms {ai : i ∈ I} and {bj : j ∈ J} respectively, and that A is representable
by a semilattice SA, and B is representable by a semilattice SB.

Theorem 4. (Tensor product of A,B). Let A ⊗ B be the algebra that has
atoms {(ai , bj) : i ∈ I, j ∈ J} and define

(a, b) · (c, d) = ∨{(u, v) : 0 ≺ u ≤ a ·A c, 0 ≺ v ≤ b ·B d}
Then SA × SB is a representation of A ⊗ B.

Theorem 5. (Ordinal sum of A,B). Let C = A ⊕ B be the algebra with
atoms {ai : i ∈ I} ∪ {bj : j ∈ J} and define

ai ·C aj = ai ·A aj bi ·C bj = bi ·B bj

ai ·C bj = bj ·C ai = ai

for all i ∈ I and j ∈ J. Then the ordinal sum SA ⊕ SB is a representation
of A ⊕ B.

Theorem 6. (Countable ordinal sum of A). Let A⊕ be the algebra with
the same atoms as A and define

ai ·A
⊕ aj =

{
ai · aj if i = j
ai · aj ∨ ai ∨ aj if i ̸= j .

Then the countable ordinal sum ⊕k∈ωSA is a semilattice representation of
A⊕.
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Summary of second project

We solved an open problem of Cliff Bergman (2015).

In particular we showed that every (finite) integral square-increasing
Boolean groupoid is representable by a (finite) idempotent groupoid.

Using a computer program, we showed that there are 79 Boolean
semilattices with 8 elements that satisfy the currently known axioms of
representable Boolean semilattices.

We found semilattice representations for 72 of them.

The research produced three theorems about constructions that preserve
representability.
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What is a Partial Algebra?

A research project with Sarah Alexander and Nadia Upegui.

A partial operation g of arity n on a set A is a function from a
subset D(g) of An to A.
A partial algebra is a pair A = (A,FA) where A is a set and FA is a
set of operations on A containing at least one partial operation.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 -
2 2 3 - -
3 3 - - -
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Separation Algebras

A separation algebra (or SA) A = (A,+, 0) is a partial algebra such that
for all x , y , z ∈ A

(canc) x + y defined and x + y = x + z =⇒ y = z
(comm) x + y defined =⇒ x + y = y + x

(asso) (x + y) + z defined =⇒ (x + y) + z = x + (y + z)
(iden) x + 0 = x

In short, it is a cancellative commutative partial monoid.

Separation algebras are naturally pre-ordered by

x ≤ y ⇐⇒ ∃w x + w = y

Any abelian group is a (total) separation algebra (≤ relates all elements).
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Generalized Effect Algebras

(N,+, 0) is another (total) separation algebra.

A generalized effect algebra (or GEA) A = (A,+, 0) is a separation
algebra such that for all x , y ∈ A we have

(positivity) x + y = 0 =⇒ x = 0 = y

GEAs are natually partially ordered by

x ≤ y ⇐⇒ ∃w x + w = y
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Examples of GE-Algebras

An effect algebra of size 3

1
a

0

+ 0 a 1
0 0 a 1
a a 1 −
1 1 − −

A GEA of size 4
cba

0

+ 0 a b c
0 0 a b c
a a − − −
b b − − −
c c − − −
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Why Study Effect Algebras?

Effect algebras have applications in the foundations of quantum
mechanics and in probability theory.

D. J. Foulis and M. K. Bennett [1994]:

If a quantum-mechanical system S is represented in the usual way by a
Hilbert space H, then a self-adjoint operator A on H such that 0 ≤ A ≤ 1
corresponds to an effect for S. Effects are of significance in representing
unsharp measurements or observations on the system S, and effect valued
measures play an important role in stochastic quantum mechanics.
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Why Study Separation Algebras?

Let A be a separation algebra and for X ,Y ⊆ A define
X ∗ Y = {x + y | x ∈ X , y ∈ Y }, the complex lifting of +.

The complex algebra (P(A),∪,∩,¬, ∅,A, ∗,−∗, {0}) is a complete and
atomic Boolean algebra with a separating conjunction ∗ and a residual
X −∗Y = {z ∈ A | X ∗ {z} ⊆ Y }.

This is a Boolean bunched implication algebra.

In logical form, Boolean bunched implication logic is used in separation
logic to reason about pointer structures and concurrency of programs.

Concrete examples of separation algebras arise from modeling a memory
heap as partial functions f from N (addresses) to V (values).

f ∗ g is defined and = f ∪ g ⇐⇒ D(f ) ∩ D(g) = ∅.
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Subclasses and Expansions of GPE-algebras
Adding combinations of three independent axioms creates subclasses:

(com) x + y = y + x (commutative)
(orth) x + y = 1 ⇐⇒ y = x∼ ⇐⇒ x = y− (orthocomplement)
(cons) x + x defined =⇒ x = 0 (consistent)

orth

com

cons

GSA

SA GPEA

PEAGPOA

POA

GEA

EAGOA

OA
G = Generalized, S = Separation, P = Pseudo, E = Effect, O = Ortho
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From Separation Algebras to Effect Algebras

An element v is invertible if there exists w such that vw = e = wv

A∗ denotes the set of invertible elements of a GS-algebra A.

The inverse of v , if it exists, is unique and is denoted by v−1.

Lemma

Let A be a generalized separation algebra. Then
1 A∗ is the bottom equivalence class [e] of the poset

A/≡ = ({[x ] : x ∈ A},≤),
2 A∗ = (A∗, ·, e,−1 ) is a (total) group and is a closed subalgebra of A,
3 x ≡ y holds if and only if x ∈ yA∗, and
4 ≡ is the identity relation if and only if e is the only invertible element.
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From Separation Algebras to Effect Algebras

Every separation algebra can be collapsed in a unique way to a largest
generalized effect algebra.

Hence a substantial part of the structure theory of separation algebras is
covered by results about generalized effect algebras.

Theorem

For a GS-algebra A,
1 the relation ≡ is a closed congruence,
2 A/≡ is a GPE-algebra,
3 the congruence classes of ≡ all have the same cardinality, and
4 if h : A → B is a homomorphism and B is a GPE-algebra then there

exists a unique homomorphism g : A/≡ → B such that g ◦ γ = h
(where γ : A → A/≡ is the canonical homomorphism γ(x) = [x ]).
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From abelian groups and effect algebras to separation
algebras

Theorem

Let G be an abelian group and B a GE-algebra.
Then A = G × B is a separation algebra with A∗ = G × {e}.

Similarly the product of a group and a GPE-algebra is a GS-algebra.

Proof.
The product of separation algebras is again a separation algebra since this
class of algebras is defined by quasi-identities.
The element (g , e) ∈ A has inverse (g−1, e).
Now let b ∈ B. If (g , b) has an inverse (h, c) then bc = e, hence by
positivity of B we have b = e.
Therefore A∗ = G × {e}.
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Counting Effect algebras and Separation algebras

n OA POA GOA EA PEA GPOA GEA SA GPEA GSA
2 1 1 1 1 1 1 1 2 1 2
3 0 0 1 1 1 1 2 3 2 3
4 1 1 2 3 3 2 5 8 5 8
5 0 1 2 4 5 3 12 13 13 14
6 1 2 4 10 12 7 35 39 42 48
7 0 2 8 14 19 19 119 120 171 172
8 2 5 18 40 52 68 496 507 1020 1037
9 0 4 42 60 84 466 2699 2703 11742 11749

10 2 10 156 172 240 8740 21888 21905 322918
11 0 9 834 282 418 292496 292497

Table: Number of partial algebras in each class

O = Ortho, P = Pseudo, G = Generalized, E = Effect, S = Separation
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Some observations

There are open research problems in abstract algebra accessible to
undergraduates.
In classical areas (groups, rings, fields) it is difficult to find open
problems where there is chance of success.
Weaken the axioms slightly and consider problems about finite
structures.
Ordered structures allow for nice diagrams where one can discover
ideas.
Computational methods can be very useful.
Automated theorem provers like Prover9/Mace4 are helpful (no
programming needed).
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