#### Reducts and expansions of residuated lattices

Peter Jipsen

School of Computational Sciences and Center of Excellence in Computation, Algebra and Topology (CECAT) Chapman University

August 1, 2014 16<sup>th</sup> Latin American Symposium on Mathematical Logic

# Outline

- Nonclassical propositional logics and residuated lattices
- Reducts of residuated lattices
- Expansions of residuated lattices
- Proof theory and residuated frames
- Interpolation and amalgamation
- Checking the amalgamation property automatically

# Classical propositional logics

**Classical propositional logic** combines **propositions** (or variables)  $x_1, x_2, \dots$  using **and**:  $\land$ , **or**:  $\lor$ , and **not**:  $\neg$ 

The set of all formulas constructed this way is an **absolutely free** algebra  $\mathit{Fm}$ 

Semantics are given by truth tables, i.e. mappings from  $x_1, x_2, ...$  to the 2-element Boolean algebra **2** 

Any such map extends to a unique homomorphism  $h:\mathit{Fm}
ightarrow\mathbf{2}$ 

A formula  $\varphi$  is satisfiable  $\iff h(\varphi) = 1$  for some h

A formula  $\varphi$  is a **tautology**  $\iff$   $h(\varphi) = 1$  for all h

 $\iff$  the equation  $\varphi = 1$  holds in all Boolean algebras

Classical propositional logic corresponds to Boolean algebras

# Nonclassical propositional logics

For many applications, classical logic is unneccessarily strong Intuitionistic propositional logic does not derive  $\varphi \lor \neg \varphi$ Good for algorithmic reasoning and type theory Intuitionistic logic corresponds to Heyting algebras

**Relevance logic** does not derive  $\psi \rightarrow (\varphi \rightarrow \psi)$ 

Considers  $\varphi \rightarrow \psi$  true only if  $\varphi$  is used in the derivation of  $\psi$ 

Substructural logic generalizes many such weaker logics

It uses a (possibly) noncommutative dynamic conjunction (fusion) which is associative but lacks some of the structural laws, e.g., contraction  $\frac{\varphi \cdot \varphi \Rightarrow \psi}{\varphi \Rightarrow \psi}$  or weakening  $\frac{\varphi \Rightarrow \psi}{\varphi, \theta \Rightarrow \psi}$ 

#### Substructural logics – Residuated lattices Substructural logics correspond to residuated lattices

A residuated lattice  $(A, \lor, \land, \cdot, 1, \backslash, /)$  is an algebra where  $(A, \lor, \land)$  is a lattice,  $(A, \cdot, 1)$  is a monoid and for all  $x, y, z \in A$ 

$$x \cdot y \leq z \iff y \leq x \setminus z \iff x \leq z/y$$

**FL** = Full Lambek calculus = the starting point for **substructural logics** 

An FL-algebra is a residuated lattices with a new constant 0

**Extensions** of substructural logic correspond to **subvarieties** of FL-algebras

Residuated lattices and FL-algebras generalize many algebras related to logic, e. g. Boolean algebras, Heyting algebras, MV-algebras, Gödel algebras, Product algebras, Hajek's basic logic algebras, linear logic algebras, lattice-ordered groups, ...



Hiroakira Ono

(California, September 2006)

[1985] Logics without the contraction rule

(with Y. Komori)

Provides a framework for studying many substructural

logics, relating sequent calculi with semantics

The name **substructural logics** was suggested

by K. Dozen, October 1990

[2007] Residuated Lattices: An algebraic glimpse

at substructural logics (with Galatos, J., Kowalski)

| Logic                   | Algebra                    | Axioms                           | <b>w/o</b> 0         |
|-------------------------|----------------------------|----------------------------------|----------------------|
| Full Lambek Calculus    | FL-algebras                | Lattice+Monoid+ $\backslash,/,0$ | RL                   |
| Intuition. Linear Logic | FL <sub>e</sub> -algebras  | FL + xy = yx                     | CRL                  |
| FL+weak.+exchange       | FL <sub>ew</sub> -algebras | $FL_e + 0 \land x=0, 1 \lor x=1$ | CIRL                 |
| Monoidal t-norm logic   | MTL-algebras               | $FL_{ew} + x/y \lor y/x = 1$     | $CIRL^{\mathcal{L}}$ |
| Hajek's Basic Logic     | BL-algebras                | $MTL + x \land y = (x/y)y$       | BH                   |
| Łukasiewicz Logic       | MV-algebras                | $BL + \neg \neg x = x$           | WH                   |
| Intuitionistic Logic    | Heyting algebra            | $FL_{ew} + x \wedge y = xy$      | GHA                  |
| Classical Logic         | Boolean algebra            | $HA + \neg \neg x = x$           | GBA                  |

# Some propositional logics extending FL



### Recent members to the substructural family

**Spinks and Verhoff** [2008] Constructive logic with strong negation is a substructural logic, I, II

**Busaniche and Cignoli** [2009] Residuated lattices as an algebraic semantics for paraconsistent Nelson logic

Define a paraconsistent residuated lattice to be a commutative distributive residuated lattice with involution  $\sim x = x \setminus 1$  such that  $\sim \sim x = x$ 

$$(x \wedge 1) \cdot (y \wedge 1) = (x \cdot y) \wedge 1$$
 and  $(x \wedge 1) \cdot (x \wedge 1) = x \wedge 1$ 

Nelson paraconsistent RLs are a further subvariety given by

$$((x \land 1) \rightarrow y) \land ((\sim y \land 1) \rightarrow \sim x) = x \rightarrow y$$

 $\Rightarrow$  results about residuated lattices are also true for these algebras

### Reducts of Residuated Lattices

The signature of RL is  $\{\lor, \land, \cdot, 1, \backslash, /\}$ 

Consider all 16 subsets of  $\{\vee,\wedge,\cdot,1\}$  and add  $\backslash,/$ 



### Reducts of Residuated Lattices

Now add  $\setminus, /$ 



#### Reducts of Residuated Lattices

Now add  $\setminus, /$ 



# Subreducts of Residuated Lattices

The classes on the previous slide are usually bigger than the **actual** reduct classes (except for Set,  $Set_1$  and RL)

Which lattices/monoids are reducts of residuated lattices? (open)

Every lattice with an atom can be a residuated lattice

 $\implies$  All lattices are  $\{\lor, \land\}$ -subreducts of RL

Which members of  $Lat_1$  can be residuated lattices?

[Ward and Dilworth 1939]: Let X be a subset of a residuated lattice and assume the elements in X pairwise join to 1. Then X generates a **distributive** sublattice.



cannot be subreducts of a

residuated lattice

### A further restriction on subreducts

 $a \lor b$   $0 \lor [J. 2014]$ : In any lattice-ordered monoid with 0, if  $a \lor b = 1$  and  $a \land b = 0$  (bottom) for incomparable a, b then all elements above 1 are join-reducible.

**Proof**: From  $a, b \leq 1$ , it follows that  $0 \leq ab = ba \leq a \land b = 0$ .

Assume  $x \ge 1$  and, to the contrary, that x is join-irreducible.

Then  $x = x1 = x(a \lor b) = xa \lor xb$ , so x = xa or x = xb.

If 
$$x=xa$$
 then  $b=1b\leq xb=(xa)b=x(ab)=x0=0\leq a$ ,

contradicting the **incomparability** of *a*, *b*.

The case x = xb is the same with a, b interchanged.

Reduct example: Residuated join semilattices

Consider the variety of residuated join-semilattices with 0

In computer science they are residuated idempotent semirings

Often they are expanded with a Kleene-\* (abstract reflexive transitive closure)

 $\implies$  Residuated Kleene algebras, also called action algebras by Vaughn Pratt

Unlike Kleene algebras, action algebras are a variety

Applications to semantics of programs and specifications

Model: Binary relations on a set closed under  $\cup$ ,;, id,  $\setminus$ , /,  $\emptyset$ ,\*

# Expansions of Residuated Lattices

Can add an unlimited number of operations

In practice: 0,  $\bot, \top, !, ?, ^*, \Diamond, \Box, +, \rightarrow$ 

Adding 0 is most common, producing FL-algebras

 $\implies$  linear negations:  $\sim x = 0 \setminus x$  and -x = x/0

**Involutive** FL-algebras are defined by  $\sim -x = x = - \sim x$ 

**Cyclic** FL-algebras are defined by  $\sim x = -x$ 

To handle general expansions consider the following

# Algebraic logic



#### Alfred Tarski

(May 1967, visiting at U. of Michigan)

According to the MacTutor Archive, **Tarski** is recognised as one of the four greatest logicians of all time, the other three being **Aristotle**, **Frege**, and **Gödel** 

Of these **Tarski** was the most prolific as a logician

His collected works, excluding the 20 books, runs to 2500 pages

# Algebraic logic



#### Bjarni Jónsson

(AMS-MAA meeting in Madison, WI 1968)

Boolean Algebras with operators, Part I and Part II [1951/52] with Alfred Tarski

One of the cornerstones of algebraic logic

Constructs **canonical extensions** and provides **semantics** for multi-modal logics

Gives representation for abstract relation algebras by atom structures

#### Boolean algebras with operators

Let  $\tau = \{f_i : i \in I\}$  be a set of operation symbols, each with a fixed finite arity

**BAO**<sub> $\tau$ </sub> is the class of algebras  $(A, \lor, \land, \neg, \bot, \top, f_i \ (i \in I))$  such that  $(A, \lor, \land, \neg, \bot, \top)$  is a **Boolean algebra** and the  $f_i$  are **operators** on A

i.e., 
$$f_i(\ldots, x \lor y, \ldots) = f_i(\ldots, x, \ldots) \lor f_i(\ldots, y, \ldots)$$

and  $f_i(\ldots, \bot, \ldots) = \bot$  for all  $i \in I$  (so the  $f_i$  are strict)

BAOs are the algebraic semantics of classical multimodal logics

**Main result**: every BAO **A** can be embedded in its **canonical** extension  $\mathbf{A}^{\sigma}$ , a complete and atomic Boolean algebra with operators

The set of atoms of this Boolean algebra is the Kripke frame of the multimodal logic

# Example: Residuated Boolean monoids

A residuated Boolean monoid is an algebra  $(A, \lor, \land, \neg, \bot, \top, \cdot, 1, \triangleright, \triangleleft)$  such that  $(A, \lor, \land, \neg, \bot, \top)$  is a Boolean algebra,  $(A, \cdot, 1)$  is a monoid and for all  $x, y, z \in A$ 

$$(x \cdot y) \wedge z = \bot \iff (x \triangleright z) \wedge y = \bot \iff (z \triangleleft y) \wedge x = \bot$$

Rewrite this as

$$x \cdot y \leq z \iff y \leq \neg (x \triangleright \neg z) \iff x \leq \neg (\neg z \triangleleft y)$$

Define  $x \setminus z = \neg(x \triangleright \neg z)$  and  $z/y = \neg(\neg z \triangleleft y)$ ,

and forget  $\neg, \bot, \top$  to get a (Boolean) residuated lattice

Jónsson and Tsinakis [1992]: Relation algebras are a subvariety of residuated Boolean monoids

$$\implies$$
 Relation algebras are expansions of RL

# Distributive lattices with operators

**Goldblatt** [1989], **Gehrke and Jónsson** [1994] extended BAOs to **bounded distributive lattices** with **operators** 

Operators are now defined to be join-preserving and strict or meet-preserving and dually strict in each argument

Examples: Heyting algebras, MV-algebras, BL-algebras, algebras of relevance logics, distributive residuated lattices,...

N. Martinez and H. Priestley [1998] develop a general duality for implicative lattices (bounded distributive lattices with an implication) that applies to Gödel algebras, MV-algebras, lattice-ordered groups, ...

## Lattices with operators

Gehrke and Harding [2001] develop canonical extensions for lattices with operators

Gehrke [2006] defines generalized Kripke frames using (maximally disjoint) filter-ideal pairs

For the lattice reducts, this is based on G. Birkhoff's **polarities**, A. Urquhart's **lattice spaces** and the notion of **contexts** from R. Wille's **Formal Concept Analysis** 

Expansions of residuated lattices by operators fit into this theory

However, integrating the **proof theory** of residuated lattices and their **reducts/expansions** requires further ideas

# A glimpse of algebraic proof theory

Gentzen [1936] defined **sequent calculi**, including **LK** (for classical logic) and **LJ** (for intuistionistic logic)

For **proof search** and **proof normalization**, he proved that the **cut rule** can be **omitted** without affecting provability

Example: A simple residuated unary sequent calculus

Let  $Lat_{\Diamond eq}$  be the equational theory of lattices with a residuated unary operator

 $(A, \lor, \land, \diamondsuit, \blacksquare)$  is a Lat $_{\Diamond eq}$ -algebra if  $(A, \lor, \land)$  is a lattice and

 $\Diamond x \leq y \iff x \leq \blacksquare y$  for all  $x, y \in A$ 

Let  $T = F_{\vee, \wedge, \Diamond, \blacksquare}(x_1, x_2, \ldots), \quad W = F_{\hat{\Diamond}}(T), \quad W' = U \times T$ 

 $U = \{u \in F_{\hat{\Diamond}}(T \cup \{x_0\}) : u \text{ contains exactly one } x_0\}$ 

### The Gentzen system Lat<sub>◊</sub>

A Horn formula  $\varphi_1 \& \cdots \& \varphi_n \to \psi$  is written  $\frac{\varphi_1 \cdots \varphi_n}{\psi}$ 

Let  $a, b, c \in T$ ,  $t \in W$  and  $u \in U$ 





### Semantics of sequent calculi: Residuated frames

Let  $Lat_{\Diamond cf}$  be the sequent calculus  $Lat_{\Diamond}$  without the cut rule

Define a binary relation  $N \subseteq W \times W'$  by

 $wN(u,a) \iff u(w) \Rightarrow a$  is provable in  $Lat_{\Diamond cf}$ 

Define the **accessibility** relation  $R \subseteq W^2$  by

$$v R w \iff v = \hat{\Diamond} w$$

Then (W, W', N, R) is a residuated (modal) frame

(A general residuated frame is  $(W, W', N, R_i(i \in I)))$ 

# Algebraic cut-admissibility

Theorem [Galatos, J. 2013]. The following are equivalent:

- 1.  $t \Rightarrow a$  is provable in Lat<sub> $\Diamond$ </sub>
- 2.  $t \leq a$  holds in Lat<sub> $\Diamond eq</sub>$ </sub>
- 3.  $t \Rightarrow a$  is provable in Lat<sub> $\Diamond cf</sub>$ </sub>

**Proof** (outline):  $(3\Rightarrow1)$  is obvious.  $(1\Rightarrow2)$  Assume  $t\Rightarrow a$  is provable with cut. Show that all sequent rules hold as quasiequations in Lat $_{\Diamond eq}$  (where  $\Rightarrow$ ,  $\Diamond$  are replaced by  $\leq$ ,  $\Diamond$ )

 $(2\Rightarrow 3)$  Assume  $t \leq a$  holds in Lat $_{\Diamond eq}$  and define an algebra  $\mathbf{W}^+ = (\mathcal{C}[\mathcal{P}(W)], \cup, \cap, \Diamond, \blacksquare)$  using the closed sets of the polarity (W, W', N) and

 $\Diamond X = C(\{v : vRw \text{ for some } w \in X\})$ 

 $\blacksquare X = \{x \in W : \Diamond \{w\} \subseteq X\}.$ 

# Proof outline (continued)

Then  $\mathbf{W}^+$  is a Lat $_{\Diamond eq}$ -algebra, hence satisfies  $t \leq a$ 

Let  $f : T \to W^+$  be a homomorphism

**Extend** to  $\overline{f}: W \to W^+$ , so  $t \leq a$  implies  $\overline{f}(t) \subseteq \overline{f}(a)$ 

Define  $\{b\}^{\triangleleft} = \{w \in W : wN(x_0, b)\}$ 

Prove by induction that  $b \in \overline{f}(b) \subseteq \{b\}^{\triangleleft}$  for all  $b \in T$ 

Then  $t \in \overline{f}(t) \subseteq \overline{f}(a) \subseteq \{a\}^{\triangleleft}$ , hence  $tN(x_0, a)$ 

Therefore  $t \Rightarrow a$  holds in Lat<sub> $\Diamond cf</sub>$ </sub>

Other Expansions: Heyting algebras with operators

This is an interesting expansion of residuated lattices

Close to BAO but better behaved; more expressive than DLO

Sequent calculi and residuated frames work

Example 1: Bunched implication logic

The algebraic models are  $(A, \lor, \land, \rightarrow, \bot, *, 1, -*)$  where  $(A, \lor, \land, \rightarrow, \bot)$  is a Heyting algebra, (A, \*, 1) is a commutative monoid and

$$x * y \le z \iff y \le x - xz$$

Equational theory is **decidable** (false if  $\neg \neg x = x$ )

Applications in computer science; basis of separation logic

# Example 2: Heyting relation algebras

A Heyting relation algebra has the form  $(A, \lor, \land, \rightarrow, \bot, ;, 1, \backslash, /, \sim)$  where  $(A, \lor, \land, \rightarrow, \bot)$  is a Heyting algebra and  $(A, \lor, \land, \rightarrow, \bot, ;, 1, \backslash, /, \sim)$  is a cyclic involutive residuated lattice

Hence  $(A, \lor, \land, \rightarrow, \bot, \sim)$  is a symmetric Heyting algebra in the sense of A. Monteiro

Connection to **relation algebras**: Let  $(P, \sqsubseteq)$  be a preorder

 $R \subseteq P^2$  is a weakening relation if  $\sqsubseteq; R; \sqsubseteq = R$ 

The set W(P) of all weaking relations is closed under  $\bigcup, \bigcap, ;$ 

 $\sqsubseteq$  is the **identity element** w.r.t. composition

 $\setminus,/$  and ightarrow exist since ; and  $\cap$  distribute over  $\bigcup$ 

Currently developing the proof theory for these algebras

# The Amalgamation Property

Let  $\mathcal{K}$  be a class of **mathematical structures** (e. g. sets, groups, residuated lattices, ...) with **homomorphisms** as maps

#### ${\cal K}$ has the amalgamation property (AP) if

for all  $A, B, C \in \mathcal{K}$  and all **injective**  $f : A \hookrightarrow B, g : A \hookrightarrow C$ 

there exists  $D \in \mathcal{K}$  and **injective**  $h : B \hookrightarrow D$ ,  $k : C \hookrightarrow D$  such that



 ${\cal K}$  has the strong amalgamation property (SAP) if,

in addition,  $h[f[A]] = h[B] \cap k[C]$ 

# Connections with logic



Bill Craig (Berkeley, CA 1977) Craig interpolation theorem [1957] If  $\phi \implies \psi$  is true in first order logic then there exists  $\theta$  containing only the relation symbols in both  $\phi, \psi$ such that  $\phi \implies \theta$  and  $\theta \implies \psi$ 

Also true for many other logics, including classical propositional logic and intuistionistic propositional logic

Let  ${\mathcal K}$  be a class of algebras of an algebraizable logic  ${\mathcal L}$ 

Then  $\mathcal{K}$  has the (strong/super) amalgamation property iff  $\mathcal{L}$  satisfies the Craig interpolation property

# A sample of what is known

These categories have the strong amalgamation property:

Sets Groups [Schreier 1927] Sets with any binary operation [Jónsson 1956] Variety of all algebras of a fixed signature Partially ordered sets [Jónsson 1956] Lattices [Jónsson 1956]

These categories only have the amalgamation property:

Distributive lattices [Pierce 1968] Abelian lattice-ordered groups [Pierce 1972]

These categories fail to have the amalgamation property:

Semigroups [Kimura 1957] Lattice-ordered groups [Pierce 1972]

# Why AP fails for semigroups

Originally due to Kimura [1957], example by M. Sapir:

Let  $A = \{0, a_1, a_2\}$ ,  $B = \{0, a_1, a_2, b\}$  and  $C = \{0, a_1, a_2, c\}$ ,

| .В         | 0 | $a_1$ | $a_2$ | b              |     | .С         | 0 | $a_1$ | $a_2$ | С |
|------------|---|-------|-------|----------------|-----|------------|---|-------|-------|---|
| 0          | 0 | 0     | 0     | 0              |     | 0          | 0 | 0     | 0     | 0 |
| $a_1$      | 0 | 0     | 0     | a <sub>2</sub> | and | $a_1$      | 0 | 0     | 0     | 0 |
| <b>a</b> 2 | 0 | 0     | 0     | 0              |     | <b>a</b> 2 | 0 | 0     | 0     | 0 |
| Ь          | 0 | 0     | 0     | 0              |     | с          | 0 | 0     | $a_1$ | 0 |

Note that A is a **subalgebra** of the **semigroups** B and C

Suppose D is an algebra s.t. B, C are subalgebras of D

Then  $(c \cdot a_1) \cdot b = 0 \cdot b = 0$  whereas  $c \cdot (a_1 \cdot b) = c \cdot a_2 = a_1$ 

Hence D cannot be a semigroup

**Kiss, Márki, Pröhle and Tholen** [1983] Categorical algebraic properties. A **compendium on amalgamation**, congruence extension, epimorphisms, residual smallness and injectivity

They summarize some general techniques for establishing these properties

They give a table with known results for 100 categories

For recent surveys on **amalgamation** for some varieties of residuated lattices:

**Busaniche and Montagna** [2011]: *Amalgamation, interpolation and Beth's property in* **BL** (Section 6 in Handbook of Mathematical Fuzzy Logic)

**Metcalfe, Montagna and Tsinakis** [2014]: *Amalgamation and interpolation in ordered algebras*, Journal of Algebra

### How to prove/disprove the AP

Look at three examples:

- 1. Why does SAP hold for class of all Boolean algebras?
- 2. Why does AP hold for distributive lattices?
- 3. Why does AP fail for distributive residuated lattices?
- 1. Boolean algebras (BA) can be embedded in complete and atomic Boolean algebras (caBA)



caBA is dually equivalent to Set

# 1. Amalgamation for BA

So we need to fill in the following dual diagram in Set



Can take P to be the **pullback**, so  $P = \{(b, c) \in Uf(B) \times Uf(C) : Uf(f)(b) = Uf(g)(c)\}$ 

Then  $h = \pi_1|_P$  and  $k = \pi_2|_P$ 

*h* is **surjective** since for all  $b \in Uf(B)$ , there exists  $c \in Uf(C)$  s.t. Uf(f)(b) = Uf(g)(c) because Uf(g) is **surjective** 

Similarly k is surjective

# 2. Amalgamation for distributive lattices

An algebra is **strictly simple** if it has **no nontrivial** congruences or subalgebras

**Theorem** [J. and Rose 1989]: Let  $\mathcal{V}$  be a **congruence distributive** variety whose members have **one-element** subalgebras, and assume that  $\mathcal{V}$  is generated by a **finite strictly simple** algebra. Then  $\mathcal{V}$  has the **amalgamation property**.

The variety of **distributive lattices** is generated by the **two-element lattice**, which is **strictly simple**, hence **AP holds**.

**Corollary**: The **Amalgamation Property holds** for all varieties of residuated lattices that are generated by a **finite strictly simple algebra**, e. g., the variety of **Sugihara algebras** =  $V(\{-1, 0, 1\}, \lor, \land, \oplus, 0, \neg)$  and infinitely many other varieties 3. AP fails for distributive residuated lattices

To **disprove AP** or **SAP**, we essentially want to search for 3 small models A, B, C in  $\mathcal{K}$  such that A is a **submodel** of both B and C

We use the Mace4 model finder from Bill McCune [2009] to enumerate nonisomorphic models  $A_1, A_2, ...$  in a finitely axiomatized first-order theory  $\Sigma$ 

For each  $A_i$  we construct the **diagram**  $\Delta_i$  and use **Mace4** again to find all **nonisomorphic** models  $B_1, B_2, \ldots$  of  $\Delta_i \cup \Sigma \cup \{\neg (c_a = c_b) : a \neq b \in A_i\}$  with 1,2,... more elements than  $A_i$ 

Note that by construction, each  $B_j$  has  $A_j$  as a subalgebra

# Checking failure of AP

**Iterate** over **distinct** pairs of models  $B_j$ ,  $B_k$  and construct the theory  $\Gamma$  that extends  $\Sigma$  with the **diagrams of these two models**, using only **one set of constants** for the overlapping submodel  $A_i$ 

Add formulas to  $\Gamma$  that ensure all constants of  $B_j$  are **distinct**, and the same for  $B_k$ 

Use Mace4 to check for a limited time whether  $\Gamma$  is satisfiable in some small model

If not, use the **Prover9 automated theorem prover** (McCune [2009]) to search for a proof that  $\Gamma$  is **inconsistent**. If **yes**, then a **failure of AP** has been found

To check **SAP**, add formulas that ensure constants of **each pair** of models **cannot** be identified, and **also iterate** over pairs  $B_i$ ,  $B_j$ 

How to compute finite residuated lattices

First compute all lattices with *n* elements (up to isomorphism)

[J. and Lawless 2013]: For n = 19 there are  $1\,901\,910\,625\,578$ 

Then compute all lattice-ordered monoids with zero  $(\bot)$  over each lattice

The residuals are **determined** by the monoid

There are **295292 residuated lattices** of size n = 8

[Belohlavek and Vychodil 2010]: For commutative integral residuated lattices there are  $30\,653\,419$  of size n = 12

# Amalgamation for residuated lattices

**Open problem**: Does **AP** hold for all **residuated lattices**? **Commutative** residuated lattices satisfy  $x \cdot y = y \cdot x$ Kowalski, Takamura ['04] **AP** holds for commutative resid. lattices **SAP** fails for totally ordered (commutative integral) monoids

**Distributive** residuated lattices satisfy  $x \land (y \land z) = (x \land y) \lor (x \land z)$ 

**Theorem** [J. 2014]: **AP fails** for any variety of **distributive residuated lattices** that includes two specific 6-element **commutative** distributive **integral** residuated lattices

In particular, **AP fails** for the varieties DRL, CDRL, IDRL, CDIRL and any varieties between these

# Picture proof



# Conclusion

Substructural logics and residuated lattices are an excellent framework for investigating and comparing propositional logics

By considering **reducts** and **expansions** (almost) all propositional logics are covered

Algebraic, semantic and proof theoretic techniques can often be adapted to the reducts and expansions

**Interpolation for logics** can be investigated algebraically via the **amalgamation property** 

Using **computational tools**, many **minimal** failures of **AP** and **SAP** can be found automatically

# Some References

J. M. Dunn, M. Gehrke and A. Palmigiano, Canonical extensions and relational completeness of some substructural logics, J. Symbolic Logic, 70(3) 2005, 713–740

**N. Galatos and P. Jipsen**, Residuated frames with applications to decidability, Trans. of AMS, 365, 2013, 1219–1249

**N. Galatos and P. Jipsen**, Relation algebras as expanded FL-algebras, Algebra Universalis, 69, 2013, 1–21

M. Gehrke, Generalized Kripke frames, Studia Logica, 84, 2006, 241-275

**M. Gehrke and J. Harding**, Bounded lattice expansions, Journal of Algebra, 238, 2001, 345–371

**P. Jipsen**, Categories of Algebraic Contexts Equivalent to Idempotent Semirings and Domain Semirings, Lecture Notes in Computer Science, 7560, 2012, 195–206

Thank You