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Classical propositional logics

Classical propositional logic combines propositions (or
variables) x1, x2, ... using and: ∧, or: ∨, and not: ¬

The set of all formulas constructed this way is an absolutely free
algebra Fm

Semantics are given by truth tables, i.e. mappings from x1, x2, ... to
the 2-element Boolean algebra 2

Any such map extends to a unique homomorphism h : Fm→ 2

A formula ϕ is satis�able ⇐⇒ h(ϕ) = 1 for some h

A formula ϕ is a tautology ⇐⇒ h(ϕ) = 1 for all h

⇐⇒ the equation ϕ = 1 holds in all Boolean algebras

Classical propositional logic corresponds to Boolean algebras



Nonclassical propositional logics

For many applications, classical logic is unneccessarily strong

Intuitionistic propositional logic does not derive ϕ ∨ ¬ϕ

Good for algorithmic reasoning and type theory

Intuitionistic logic corresponds to Heyting algebras

Relevance logic does not derive ψ → (ϕ→ ψ)

Considers ϕ→ ψ true only if ϕ is used in the derivation of ψ

Substructural logic generalizes many such weaker logics

It uses a (possibly) noncommutative dynamic conjunction
(fusion) which is associative but lacks some of the structural laws,
e.g., contraction ϕ·ϕ⇒ψ

ϕ⇒ψ or weakening ϕ⇒ψ
ϕ,θ⇒ψ



Substructural logics � Residuated lattices
Substructural logics correspond to residuated lattices

A residuated lattice (A,∨,∧, ·, 1, \, /) is an algebra where
(A,∨,∧) is a lattice, (A, ·, 1) is a monoid and for all x , y , z ∈ A

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y

FL = Full Lambek calculus = the starting point for substructural
logics

An FL-algebra is a residuated lattices with a new constant 0

Extensions of substructural logic correspond to subvarieties of
FL-algebras

Residuated lattices and FL-algebras generalize many algebras
related to logic, e. g. Boolean algebras, Heyting algebras,
MV-algebras, Gödel algebras, Product algebras, Hajek's basic
logic algebras, linear logic algebras, lattice-ordered groups, . . .



Hiroakira Ono

(California, September 2006)

[1985] Logics without the contraction rule

(with Y. Komori)

Provides a framework for studying many substructural

logics, relating sequent calculi with semantics

The name substructural logics was suggested

by K. Dozen, October 1990

[2007] Residuated Lattices: An algebraic glimpse

at substructural logics (with Galatos, J., Kowalski)



Logic Algebra Axioms w/o 0

Full Lambek Calculus FL-algebras Lattice+Monoid+\, /, 0 RL

Intuition. Linear Logic FLe-algebras FL + xy=yx CRL

FL+weak.+exchange FLew -algebras FLe + 0∧x=0, 1∨x=1 CIRL

Monoidal t-norm logic MTL-algebras FLew + x/y ∨ y/x=1 CIRLL

Hajek's Basic Logic BL-algebras MTL + x∧y=(x/y)y BH

�ukasiewicz Logic MV-algebras BL + ¬¬x=x WH

Intuitionistic Logic Heyting algebra FLew + x∧y=xy GHA

Classical Logic Boolean algebra HA + ¬¬x=x GBA



Some propositional logics extending FL



Recent members to the substructural family
Spinks and Verho� [2008] Constructive logic with strong
negation is a substructural logic, I, II

Busaniche and Cignoli [2009] Residuated lattices as an algebraic
semantics for paraconsistent Nelson logic

De�ne a paraconsistent residuated lattice to be a commutative
distributive residuated lattice with involution ∼x = x\1 such
that ∼∼x = x

(x ∧ 1) · (y ∧ 1) = (x · y) ∧ 1 and (x ∧ 1) · (x ∧ 1) = x ∧ 1

Nelson paraconsistent RLs are a further subvariety given by

((x ∧ 1)→ y) ∧ ((∼y ∧ 1)→ ∼x) = x → y

⇒ results about residuated lattices are also true for these algebras



Reducts of Residuated Lattices

The signature of RL is {∨,∧, ·, 1, \, /}

Consider all 16 subsets of {∨,∧, ·, 1} and add \, /

Set

tSet Sgrp Set1

Pos tSgrp tSet1 Mon

JSLat MSlat poSgrp Pos1 tMon

Lat JSgrp MSgrp JSLat1 MSlat1 poMon

LSgrp Lat1 JMon MMon

LMon
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Subreducts of Residuated Lattices
The classes on the previous slide are usually bigger than the actual
reduct classes (except for Set, Set1 and RL)

Which lattices/monoids are reducts of residuated lattices?
(open)

Every lattice with an atom can be a residuated lattice

=⇒ All lattices are {∨,∧}-subreducts of RL

Which members of Lat1 can be residuated lattices?

[Ward and Dilworth 1939]: Let X be a subset of a residuated
lattice and assume the elements in X pairwise join to 1. Then X

generates a distributive sublattice.

So

1

and

1

cannot be subreducts of a
residuated lattice



A further restriction on subreducts

1
a b

0 [J. 2014]: In any lattice-ordered monoid with 0, if
a ∨ b = 1 and a ∧ b = 0 (bottom) for incomparable a, b then all
elements above 1 are join-reducible.

Proof: From a, b ≤ 1, it follows that 0 ≤ ab = ba ≤ a ∧ b = 0.

Assume x ≥ 1 and, to the contrary, that x is join-irreducible.

Then x = x1 = x(a ∨ b) = xa ∨ xb, so x = xa or x = xb.

If x = xa then b = 1b ≤ xb = (xa)b = x(ab) = x0 = 0 ≤ a,

contradicting the incomparability of a, b.

The case x = xb is the same with a, b interchanged. �



Reduct example: Residuated join semilattices

Consider the variety of residuated join-semilattices with 0

In computer science they are residuated idempotent semirings

Often they are expanded with a Kleene-* (abstract re�exive
transitive closure)

=⇒ Residuated Kleene algebras, also called action algebras
by Vaughn Pratt

Unlike Kleene algebras, action algebras are a variety

Applications to semantics of programs and speci�cations

Model: Binary relations on a set closed under ∪, ; , id , \, /, ∅,∗



Expansions of Residuated Lattices

Can add an unlimited number of operations

In practice: 0,⊥,>, !, ?,∗ ,♦,�,+,→

Adding 0 is most common, producing FL-algebras

=⇒ linear negations: ∼x = 0\x and −x = x/0

Involutive FL-algebras are de�ned by ∼−x = x = −∼x

Cyclic FL-algebras are de�ned by ∼x = −x

To handle general expansions consider the following



Algebraic logic

Alfred Tarski

(May 1967, visiting at U. of Michigan)

According to the MacTutor Archive,
Tarski is recognised as one of the
four greatest logicians of all time, the
other three being Aristotle, Frege, and
Gödel

Of these Tarski was the most proli�c as
a logician

His collected works, excluding the 20
books, runs to 2500 pages



Algebraic logic

Bjarni Jónsson

(AMS-MAA meeting in Madison, WI 1968)

Boolean Algebras with operators, Part I and

Part II [1951/52] with Alfred Tarski

One of the cornerstones of algebraic logic

Constructs canonical extensions and pro-
vides semantics for multi-modal logics

Gives representation for abstract relation
algebras by atom structures



Boolean algebras with operators
Let τ = {fi : i ∈ I} be a set of operation symbols, each with a �xed
�nite arity

BAOτ is the class of algebras (A,∨,∧,¬,⊥,>, fi (i ∈ I )) such that
(A,∨,∧,¬,⊥,>) is a Boolean algebra and the fi are operators
on A

i.e., fi (. . . , x ∨ y , . . .) = fi (. . . , x , . . .) ∨ fi (. . . , y , . . .)

and fi (. . . ,⊥, . . .) = ⊥ for all i ∈ I (so the fi are strict)

BAOs are the algebraic semantics of classical multimodal logics

Main result: every BAO A can be embedded in its canonical
extension Aσ, a complete and atomic Boolean algebra with
operators

The set of atoms of this Boolean algebra is the Kripke frame of
the multimodal logic



Example: Residuated Boolean monoids

A residuated Boolean monoid is an algebra
(A,∨,∧,¬,⊥,>, ·, 1, ., /) such that (A,∨,∧,¬,⊥,>) is a
Boolean algebra, (A, ·, 1) is a monoid and for all x , y , z ∈ A

(x · y) ∧ z = ⊥ ⇐⇒ (x . z) ∧ y = ⊥ ⇐⇒ (z / y) ∧ x = ⊥

Rewrite this as

x · y ≤ z ⇐⇒ y ≤ ¬(x . ¬z) ⇐⇒ x ≤ ¬(¬z / y)

De�ne x\z = ¬(x . ¬z) and z/y = ¬(¬z / y),

and forget ¬,⊥,> to get a (Boolean) residuated lattice

Jónsson and Tsinakis [1992]: Relation algebras are a subvariety
of residuated Boolean monoids

=⇒ Relation algebras are expansions of RL



Distributive lattices with operators

Goldblatt [1989], Gehrke and Jónsson [1994] extended BAOs to
bounded distributive lattices with operators

Operators are now de�ned to be join-preserving and strict
or meet-preserving and dually strict in each argument

Examples: Heyting algebras, MV-algebras, BL-algebras,
algebras of relevance logics, distributive residuated lattices,...

N. Martinez and H. Priestley [1998] develop a general duality for
implicative lattices (bounded distributive lattices with an
implication) that applies to Gödel algebras, MV-algebras,
lattice-ordered groups, . . .



Lattices with operators

Gehrke and Harding [2001] develop canonical extensions for
lattices with operators

Gehrke [2006] de�nes generalized Kripke frames using
(maximally disjoint) �lter�ideal pairs

For the lattice reducts, this is based on G. Birkho�'s polarities,
A. Urquhart's lattice spaces and the notion of contexts from
R. Wille's Formal Concept Analysis

Expansions of residuated lattices by operators �t into this theory

However, integrating the proof theory of residuated lattices and
their reducts/expansions requires further ideas



A glimpse of algebraic proof theory

Gentzen [1936] de�ned sequent calculi, including LK (for classical
logic) and LJ (for intuistionistic logic)

For proof search and proof normalization, he proved that the
cut rule can be omitted without a�ecting provability

Example: A simple residuated unary sequent calculus

Let Lat♦eq be the equational theory of lattices with a
residuated unary operator

(A,∨,∧,♦,�) is a Lat♦eq-algebra if (A,∨,∧) is a lattice and

♦x ≤ y ⇐⇒ x ≤ �y for all x , y ∈ A

Let T = F∨,∧,♦,�(x1, x2, . . .), W = F♦̂(T ), W ′ = U × T

U = {u ∈ F♦̂(T ∪ {x0}) : u contains exactly one x0}



The Gentzen system Lat♦

A Horn formula ϕ1& · · ·&ϕn → ψ is written ϕ1 ··· ϕn
ψ

Let a, b, c ∈ T , t ∈W and u ∈ U

Lat♦: a⇒a
t⇒a

t⇒a∨b
t⇒b

t⇒a∨b
u(a)⇒c u(b)⇒c

u(a∨b)⇒c

t⇒a a⇒b
t⇒b

(cut) u(a)⇒c
u(a∧b)⇒c

u(b)⇒c
u(a∧b)⇒c

t⇒a t⇒b
t⇒a∧b

u(♦̂a)⇒c
u(♦a)⇒c

t⇒a

♦̂t⇒♦a
♦̂t⇒a
t⇒�a

u(a)⇒b

u(♦̂�a)⇒b

Example of a cut-free Lat♦ proof

x⇒x

♦̂�x⇒x

♦̂(�x∧�y)⇒x

y⇒y

♦̂�y⇒y

♦̂(�x∧�y)⇒y

♦̂(�x∧�y)⇒x∧y

�x∧�y⇒�(x∧y)



Semantics of sequent calculi: Residuated frames

Let Lat♦cf be the sequent calculus Lat♦ without the cut rule

De�ne a binary relation N ⊆W ×W ′ by

wN(u, a) ⇐⇒ u(w)⇒ a is provable in Lat♦cf

De�ne the accessibility relation R ⊆W 2 by

v R w ⇐⇒ v = ♦̂w

Then (W ,W ′,N,R) is a residuated (modal) frame

(A general residuated frame is (W ,W ′,N,Ri (i ∈ I )))



Algebraic cut-admissibility

Theorem [Galatos, J. 2013]. The following are equivalent:

1. t ⇒ a is provable in Lat♦

2. t ≤ a holds in Lat♦eq

3. t ⇒ a is provable in Lat♦cf

Proof (outline): (3⇒1) is obvious. (1⇒2) Assume t ⇒ a is
provable with cut. Show that all sequent rules hold as
quasiequations in Lat♦eq (where ⇒, ♦̂ are replaced by ≤,♦)

(2⇒3) Assume t ≤ a holds in Lat♦eq and de�ne an algebra
W+ = (C [P(W )],∪,∩,♦,�) using the closed sets of the
polarity (W ,W ′,N) and

♦X = C ({v : vRw for some w ∈ X})

�X = {x ∈W : ♦{w} ⊆ X}.



Proof outline (continued)

Then W+ is a Lat♦eq-algebra, hence satis�es t ≤ a

Let f : T →W+ be a homomorphism

Extend to f̄ : W →W+, so t ≤ a implies f̄ (t) ⊆ f̄ (a)

De�ne {b}/ = {w ∈W : wN(x0, b)}

Prove by induction that b ∈ f̄ (b) ⊆ {b}/ for all b ∈ T

Then t ∈ f̄ (t) ⊆ f̄ (a) ⊆ {a}/, hence tN(x0, a)

Therefore t ⇒ a holds in Lat♦cf �



Other Expansions: Heyting algebras with operators

This is an interesting expansion of residuated lattices

Close to BAO but better behaved; more expressive than DLO

Sequent calculi and residuated frames work

Example 1: Bunched implication logic

The algebraic models are (A,∨,∧,→,⊥, ∗, 1,−∗) where
(A,∨,∧,→,⊥) is a Heyting algebra, (A, ∗, 1) is a commutative
monoid and

x ∗ y ≤ z ⇐⇒ y ≤ x −∗ z

Equational theory is decidable (false if ¬¬x = x)

Applications in computer science; basis of separation logic



Example 2: Heyting relation algebras
A Heyting relation algebra has the form
(A,∨,∧,→,⊥, ; , 1, \, /,∼) where (A,∨,∧,→,⊥) is a Heyting
algebra and (A,∨,∧,→,⊥, ; , 1, \, /,∼) is a cyclic involutive
residuated lattice

Hence (A,∨,∧,→,⊥,∼) is a symmetric Heyting algebra in the
sense of A. Monteiro

Connection to relation algebras: Let (P,v) be a preorder

R ⊆ P2 is a weakening relation if v;R;v = R

The set W (P) of all weaking relations is closed under
⋃
,
⋂
, ;

v is the identity element w.r.t. composition

\, / and → exist since ; and ∩ distribute over
⋃

Currently developing the proof theory for these algebras



The Amalgamation Property
Let K be a class of mathematical structures (e. g. sets, groups,
residuated lattices, ...) with homomorphisms as maps

K has the amalgamation property (AP) if

for all A,B,C ∈ K and all injective f : A ↪→ B , g : A ↪→ C

there exists D ∈ K and injective h : B ↪→ D, k : C ↪→ D such that

A

B

C

Dh ◦ f = k ◦ g

f

g

h

k

K has the strong amalgamation property (SAP) if,

in addition, h[f [A]] = h[B] ∩ k[C ]



Connections with logic
Bill Craig

(Berkeley, CA 1977)

Craig interpolation theorem [1957]

If φ =⇒ ψ is true in �rst order logic

then there exists θ containing only

the relation symbols in both φ, ψ

such that φ =⇒ θ and θ =⇒ ψ

Also true for many other logics, including classical propositional
logic and intuistionistic propositional logic

Let K be a class of algebras of an algebraizable logic L

Then K has the (strong/super) amalgamation property i� L
satis�es the Craig interpolation property



A sample of what is known
These categories have the strong amalgamation property:

Sets
Groups [Schreier 1927]
Sets with any binary operation [Jónsson 1956]
Variety of all algebras of a �xed signature
Partially ordered sets [Jónsson 1956]
Lattices [Jónsson 1956]

These categories only have the amalgamation property:

Distributive lattices [Pierce 1968]
Abelian lattice-ordered groups [Pierce 1972]

These categories fail to have the amalgamation property:

Semigroups [Kimura 1957]
Lattice-ordered groups [Pierce 1972]



Why AP fails for semigroups

Originally due to Kimura [1957], example by M. Sapir:

Let A = {0, a1, a2}, B = {0, a1, a2, b} and C = {0, a1, a2, c},

·B 0 a1 a2 b

0 0 0 0 0
a1 0 0 0 a2
a2 0 0 0 0
b 0 0 0 0

and

·C 0 a1 a2 c

0 0 0 0 0
a1 0 0 0 0
a2 0 0 0 0
c 0 0 a1 0

Note that A is a subalgebra of the semigroups B and C

Suppose D is an algebra s.t. B,C are subalgebras of D

Then (c · a1) · b = 0 · b = 0 whereas c · (a1 · b) = c · a2 = a1

Hence D cannot be a semigroup �



Kiss, Márki, Pröhle and Tholen [1983] Categorical algebraic
properties. A compendium on amalgamation, congruence
extension, epimorphisms, residual smallness and injectivity

They summarize some general techniques for establishing these
properties

They give a table with known results for 100 categories

For recent surveys on amalgamation for some varieties of
residuated lattices:

Busaniche and Montagna [2011]: Amalgamation, interpolation

and Beth's property in BL (Section 6 in Handbook of
Mathematical Fuzzy Logic)

Metcalfe, Montagna and Tsinakis [2014]: Amalgamation and

interpolation in ordered algebras, Journal of Algebra



How to prove/disprove the AP

Look at three examples:

1. Why does SAP hold for class of all Boolean algebras?

2. Why does AP hold for distributive lattices?

3. Why does AP fail for distributive residuated lattices?

1. Boolean algebras (BA) can be embedded in complete and
atomic Boolean algebras (caBA)

A

B

C

Aσ

Bσ

Cσ

D

f

g

f σ

gσ

h

k

caBA is dually equivalent to Set



1. Amalgamation for BA

So we need to �ll in the following dual diagram in Set

P

Uf (B)

Uf (C )

Uf (A)

Uf (f )

Uf (g)

h

k

Can take P to be the pullback, so
P = {(b, c) ∈ Uf (B)× Uf (C ) : Uf (f )(b) = Uf (g)(c)}

Then h = π1|P and k = π2|P

h is surjective since for all b ∈ Uf (B), there exists c ∈ Uf (C ) s.t.
Uf (f )(b) = Uf (g)(c) because Uf (g) is surjective

Similarly k is surjective



2. Amalgamation for distributive lattices

An algebra is strictly simple if it has no nontrivial congruences or
subalgebras

Theorem [J. and Rose 1989]: Let V be a congruence
distributive variety whose members have one-element
subalgebras, and assume that V is generated by a �nite strictly
simple algebra. Then V has the amalgamation property.

The variety of distributive lattices is generated by the
two-element lattice, which is strictly simple, hence AP holds.

Corollary: The Amalgamation Property holds for all varieties of
residuated lattices that are generated by a �nite strictly simple
algebra, e. g., the variety of Sugihara algebras
= V ({−1, 0, 1},∨,∧,⊕, 0,¬) and in�nitely many other varieties



3. AP fails for distributive residuated lattices

To disprove AP or SAP, we essentially want to search for 3 small
models A,B,C in K such that A is a submodel of both B and C

We use the Mace4 model �nder from Bill McCune [2009] to
enumerate nonisomorphic models A1,A2, . . . in a �nitely
axiomatized �rst-order theory Σ

For each Ai we construct the diagram ∆i and use Mace4 again to
�nd all nonisomorphic models B1,B2, . . . of
∆i ∪ Σ ∪ {¬(ca = cb) : a 6= b ∈ Ai} with 1,2,... more elements
than Ai

Note that by construction, each Bj has Ai as a subalgebra



Checking failure of AP

Iterate over distinct pairs of models Bj ,Bk and construct the
theory Γ that extends Σ with the diagrams of these two models,
using only one set of constants for the overlapping submodel Ai

Add formulas to Γ that ensure all constants of Bj are distinct, and
the same for Bk

Use Mace4 to check for a limited time whether Γ is satis�able in
some small model

If not, use the Prover9 automated theorem prover (McCune
[2009]) to search for a proof that Γ is inconsistent. If yes, then a
failure of AP has been found

To check SAP, add formulas that ensure constants of each pair of
models cannot be identi�ed, and also iterate over pairs Bj ,Bj



How to compute �nite residuated lattices

First compute all lattices with n elements (up to isomorphism)

[J. and Lawless 2013]: For n = 19 there are 1 901 910 625 578

Then compute all lattice-ordered monoids with zero (⊥) over
each lattice

The residuals are determined by the monoid

There are 295292 residuated lattices of size n = 8

[Belohlavek and Vychodil 2010]: For commutative integral
residuated lattices there are 30 653 419 of size n = 12



Amalgamation for residuated lattices

Open problem: Does AP hold for all residuated lattices?

Commutative residuated lattices satisfy x · y = y · x

Kowalski, Takamura ['04] AP holds for commutative resid. lattices

SAP fails for totally ordered (commutative integral) monoids

Distributive residuated lattices satisfy x∧(y∧z) = (x∧y)∨(x∧z)

Theorem [J. 2014]: AP fails for any variety of distributive
residuated lattices that includes two speci�c 6-element
commutative distributive integral residuated lattices

In particular, AP fails for the varieties DRL, CDRL, IDRL, CDIRL
and any varieties between these



Picture proof

1

a

a′

a′′

0

1

a

a′

a′′

0

b

1

a

a′

a′′

0

c =⇒ b = c

x · y = y · x =


y if x = 1

a′′ if x∈{a,b,c}
y∈{a,a′}

0 otherwise

b · b = 0 c · c = a′′



Conclusion

Substructural logics and residuated lattices are an excellent
framework for investigating and comparing propositional logics

By considering reducts and expansions (almost) all propositional
logics are covered

Algebraic, semantic and proof theoretic techniques can often be
adapted to the reducts and expansions

Interpolation for logics can be investigated algebraically via the
amalgamation property

Using computational tools, many minimal failures of AP and
SAP can be found automatically
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