Algebraic Models for Concurrent Programs and Bunched Implication Algebras

Peter Jipsen and M. Andrew Moshier

School of Computational Sciences and Center of Excellence in Computation, Algebra and Topology (CECAT) Chapman University, Orange, California

Jan 6, 2015

Outline

- Introduction
- Series-parallel bimonoids and N-free pomsets
- Deterministic flowcharts and concurrent flowcharts
- Trace semantics for concurrent programs
- Generalized bunched implication algebras

Most computers today contain 4 or more processors

Most software is still written to run on only one of them

All supercomputers have many thousands of processors

What is a good approach to designing concurrent programs?

For sequential programs there are good abstract models

E.g. flowcharts, automata, coalgebras, trace models

But what does it mean to run programs in parallel: P||Q?

When is this allowed? What happens when they halt?

Bimonoids

A series-parallel bimonoid is an algebra $(A, \cdot, ||, \varepsilon)$ such that

 \cdot and || are associative binary operations that have

the same identity element ε

and || is commutative

Let Σ be a set (of generators)

 $(\Sigma^*,\cdot,arepsilon)$ is the free monoid over Σ

E.g. $\{p,q\}^* = \{\varepsilon, p, q, pp, pq, qp, qq, ppp, ppq, pqp, \ldots\}$

Free series-parallel bimonoids

Σ^{sp} is the free series-parallel bimonoid

- The elements of Σ^{sp} are represented by finite N-free **po-multisets**
- = finite posets labelled by elements of Σ such that there is

no induced subposet isomorphic to the 4-element poset \bigcirc

E.g. $\{p,q\}^{sp} =$

 $\{\varepsilon, p, q, p || p, p || q, q || q, pp, pq, qp, qq, p || pp, p || pq, \dots, p || p || p, \dots\}$

Note that p||q = q||p, and \cdot has priority over ||

Partially ordered multisets (pomsets)

Pomsets were introduced by Vaughn Pratt [1986]

to model concurrency

They give a normal form for sp-strings:

Two sp-strings are **equal** in Σ^{sp} iff they produce **isomorphic** pomsets

$$pp = \left[\begin{array}{c} \mathbb{P} \\ \mathbb{P} \end{array} \right] p||pq = \left[\begin{array}{c} \mathbb{P} \\ \mathbb{Q} \end{array} \right] (p||p)q = \left[\begin{array}{c} \mathbb{P} \\ \mathbb{Q} \end{array} \right]$$

|| is disjoint union (position pomsets next to each other)

 \cdot is ordinal sum (position first pomset above the second)

Strings and series-parallel strings

```
The elements of \Sigma^* are strings
```

Thought of as traces of actions (or states or both)

Model the execution path of a sequential program

Concatenation is sequential composition

The elements of Σ^{sp} are series-parallel strings

Thought of as (possibly) concurrent actions/states

Model the execution path of a concurrent program

Horizontal union is parallel composition

To make this concrete, consider a simple flowchart language

Flowcharts are defined over a standard first-order signature

Function symbols f, g, \ldots and predicate symbols P, Q, \ldots , each with a fixed arity

Terms are built from variables $\{x_i, y_i, z_i : i = 1, 2, ...\}$ and function symbols

An expression $t(\bar{x}, \bar{y})$ indicates that the term t uses (some) variables from the sequences $\bar{x} = x_1, \ldots, x_m$ and $\bar{y} = y_1, \ldots, y_n$

Flowcharts

A *deterministic flowchart* is a finite directed graph with nodes labeled by statements

A start statement with one outgoing edge

assignment statements $\bar{y} := \bar{t}(\bar{x}, \bar{y})$ with one outgoing edge

test statements $P(\bar{t}(\bar{y}))$ with two outgoing edges labeled T and F

halt statements with no outgoing edges

A start statement has **no** incoming edges

All others have a finite non-zero number of incoming edges

 $y_1, \ldots, y_n := t_1, \ldots, t_n$ means the terms t_i on the right are first all evaluated and then assigned to their corresponding variable on the left

Flowchart schemes

start statement

initialization statement

assignment statement

test statement

finalization statement

halt statement

Figure 1: A flowchart scheme showing the different types of statements

Flowcharts

- A deterministic flowchart computes a (partial) function that maps values of the input variables $\bar{x} = x_1, \dots, x_m$ to values of the output variables $\bar{z} = z_1, \dots, z_n$ but the algorithm may not halt
- Other variables like y_1, y_2, y_3, \ldots are called work variables

Concurrent flowcharts

A concurrent deterministic flowchart is defined with two more statement types: fork and join

Each **fork statement** has k > 1 outgoing edges followed directly by initialization statements $\overline{y_i} := \overline{r_i}(\bar{x}, \bar{y})$ for i = 1, ..., k

Here $\overline{y_i} = y_{i1}, \ldots, y_{in_i}$ is a sequence of work variables distinct from all other variables

When a fork is processed, the current process is suspended

the initialization statements of the k new processes are evaluated

and then these processes continue concurrently

The work variables of the suspended process can be accessed by the new processes

but this can lead to **race conditions** where two concurrent processes modify/read the same variable, resulting in potential nondeterminism

A simple concurrent algorithm

Figure 2: A concurrent scheme for calculating $x_1 \oplus x_2 \oplus \cdots \oplus x_8$

Implementing a parallel for-loop

Figure 3: Implementing forpar using binary fork and join

Simple algorithm redone using forpar

Figure 4: Using forpar to calculate $x_1 \oplus x_2 \oplus \cdots \oplus x_{2^k}$

From flowcharts to guarded automata

Figure 5: Correspondence between flowcharts and automata

From guarded automata to algebra

Now we define an algebra that provides **trace semantics** for **concurrent** flowcharts

Let $N = \{x_i, y_i, z_i : i = 1, 2, 3, ...\}$ be a set of variables

Let V be a set of values (e. g. $V = \mathbb{Z}$)

The set of states is $X = \bigcup \{ V^D : D \subseteq N \text{ and } D \text{ is finite } \}$

A state $s \in X$ specifies the values for a finite set D = dom(s) of variables

States r, s are separated if $dom(r) \cap dom(s) = \emptyset$, denoted $r \perp s$

 X^{sp} is the set of all sp-strings over the set X

Series-parallel traces

An sp-string is called an *sp-trace* if

- 1. its underlying poset has a **largest and a smallest element**, and these two elements have the **same domain**,
- 2. any two incomparable states are separated,
- 3. if s_1, s_2, \ldots, s_k are all the **covers** or all the **lower covers** of state r then dom $(r) = dom(s_1) \cup \cdots \cup dom(s_k)$, and
- if r is the only cover of s, and s is the only lower cover of r then dom(r) = dom(s)

It follows from 1. that the poset of an sp-trace is a planar lattice

A sequence (s_1, \ldots, s_n) of terms is also written simply as $s_1 s_2 \ldots s_n$

So an sp-trace is of the form s or svs' where $s,s' \in X$ and $v \in X^{sp}$

Trace semantics

Let p be a (concurrent) flowchart

The *trace semantics* of p is the set [p] of all **sp-traces** that are finite execution traces of the flowchart

[p] can be **calculated** in the following way:

For an **assignment** such as $y := t(x_1, \ldots, x_n)$, the semantics are

$$[y := t(\bar{x})] = \{(s, s') \in X^2 : \bar{x} \in dom(s) = dom(s') \text{ and} \ s' = s[y \mapsto t(s(x_1), \dots, s(x_n))]\}$$

For a test $P(y_1, ..., y_n)$, the semantics are a set of length-one sequences

$$[P(\bar{y})] = \{(s) \in X^1 : y_1, \dots, y_n \in \mathsf{dom}(s) \text{ and } P(s(y_1), \dots, s(y_n))\}$$

Sequential and concurrent composition of sp-traces

Sequential composition of sp-traces uses the coalesced product \diamond

$$rur' \diamond svs' = \begin{cases} rusvs' & \text{if } r' = s \\ undefined & \text{otherwise} \end{cases}$$

The concurrent composition is based on a *separated* product:

$$rur' \mid svs' = \begin{cases} (r \cup s)(u \mid v)(r' \cup s') & \text{if } r \perp s \\ \text{undefined} & \text{otherwise} \end{cases}$$

Note that here || is the parallel composition of sp-strings

$$r \diamond s = r$$
 if $r = s$, else undefined

$$rr' \mid svs' = (r \cup s)v(r' \cup s')$$
 if $r \perp s$

 $r \mid svs' = rr \mid svs'$ and $r \mid s = r \cup s$ if $r \perp s$

The associativity and commutativity of the operation | is easily checked.

Extending to sets of sp-traces

Let X^{spt} be the set of all sp-traces

The semantics of a program (flowchart) p is a set of sp-traces

So extend the above two operations to subsets by

Mapping from sp-traces to input/output pairs

Theorem: The algebra $\mathbf{A}_{N,V} = (\mathcal{P}(X^{spt}), +, \cdot, ||, 0, 1, *, \bar{})$ is a concurrent Kleene algebra with tests (CKAT)

Each subset R of X^{spt} determines a binary relation

$$R' = \{(s,s') \in X^2 : svs' \in R \text{ for some } v \in X^{sp} \text{ or } s = s' \in R\}$$

The map $R \mapsto R'$ is a homomorphism from a CKAT to an algebra of input/output relations

Start with a sequential program and modify it to run concurrently on a multicore processor or a distributed system

This homomorphism is useful for checking that the **concurrent** version and the sequential version still satisfy the same input/output relation.

A subalgebra of concurrent composition

The algebra $\mathbf{B}_{N,V} = (\mathcal{P}(X), +, \cdot, ||, 0, 1, \bar{})$ is a Boolean subalgebra of $\mathbf{A}_{N,V}$ with a commutative associative operator

So it is an associative *r*-algebra in the terminology of Jónsson-Tsinakis [1993]

A generalized effect algebra is a partial commutative cancellative monoid (M, |, e) such that x|y = e implies x = y = e

 $(X, |, \emptyset)$ is a generalized effect algebra (since $s | t = s \cup t$ if $s \perp t$)

 $B_{N,V}$ is the complex algebra of (X, |)

Problem: axiomatize the variety generated by $\{B_{N,V} : N, V \text{ are sets}\}$

Generalized bunched implication algebras

A generalized bunched implication algebra (GBI-algebra) is of the form $(A, \lor, \land, \rightarrow, \top, \bot, \cdot, \backslash, /, 1)$ where

 $(A, \lor, \land, \rightarrow, \top, \bot)$ is a **Heyting algebra** (i.e. a bounded distributive lattice with $x \land y \le z$ iff $y \le x \rightarrow z$) and

 $(A, \lor, \land, \cdot, \backslash, /, 1)$ is a **residuated lattice** (i.e. a monoid with $x \cdot y \leq z$ iff $y \leq x \setminus z$ iff $x \leq z/y$)

If \cdot is commutative we get BI-algebras

If $(x \to \bot) \to \bot = x$ we get classical GBI-algebras

 $\label{eq:GBI-algebras} \mbox{CGBI-algebras} = \mbox{residuated Boolean monoids} = \mbox{rm-algebras of Jónsson-Tsinakis}$

BI-algebras come from **Separation Logic**, a **Hoare programming logic** for reasoning about pointers and concurrent resources A bunched implication algebra of relations

Relation algebras are CGBI-algebras

What are natural examples of GBI-algebras?

Let (X, \sqsubseteq) be a poset (or preorder) and define

 $Rel(X, \sqsubseteq) = \{R \subseteq X^2 : \sqsubseteq \circ R \circ \sqsubseteq = R\}$

R is called a weakening relation if $\sqsubseteq \circ R \circ \sqsubseteq = R$

 $Rel(X, \sqsubseteq)$ is a complete \bigcup, \bigcap -sublattice of $\mathcal{P}(X^2)$ closed under \circ

 $\sqsubseteq, \emptyset, X^2 \in Rel(X, \sqsubseteq)$ and \sqsubseteq is an identity for \circ

By completeness, \cap and \circ are residuated

Hence $Rel(X, \sqsubseteq)$ is a **GBI-algebra**

Computing with weakening relations

Lemma: $\sqsubseteq \circ R \circ \sqsubseteq = R$ iff $\sqsupseteq \circ \neg R \circ \sqsupseteq = \neg R$

Proof. Assume $\sqsubseteq \circ R \circ \sqsubseteq = R$ and $(x, y) \in \sqsupseteq \circ \neg R \circ \sqsupseteq$

There exist u, v such that $x \sqsupseteq u$, $(u, v) \notin R$ and $v \sqsupseteq y$

If $(x, y) \in R$ then $u \sqsubseteq x$ and $y \sqsubseteq v$ imply $(u, v) \in R$, contradiction

Hence $(x, y) \in R$ and therefore $\exists \circ \neg R \circ \exists = \neg R$. \Box

With this result it is easy to prove the following formulas

$$R o S = \neg (\sqsupseteq \circ (R \cap \neg S) \circ \sqsupseteq),$$

 $R \setminus S = \neg (\sqsupseteq \circ (R^{\sim} \circ \neg S) \circ \sqsupseteq) \text{ and } R/S = \neg (\sqsupseteq \circ (\neg R \circ S^{\sim}) \circ \sqsupseteq)$

Kripke frame for $Rel(X, \sqsubseteq)$

Theorem: Let $X^{\partial} = (X, \sqsupseteq)$. Then the Kripke frame for $Rel(X, \sqsubseteq)$ is $X^{\partial} \times X$ with ternary accessibility relation

 $\circ((u, v), (x, y), (z, w))$ iff y = z, u = x, and v = y.

Hence $Rel(X, \sqsubseteq) = Up(X^{\partial} \times X)$

In contrast to abstract relation algebras we have:

Theorem [Galatos - **J.]**: The equational theory of GBI-algebras is decidable

The proof uses **distributive residuated frames** and shows that there is a **cut-free Gentzen system** for GBI

Representable GBI-algebras are not finitely based

Let $\sim x = x \setminus 0$, where 0 is a constant.

A GBI-algebra is cyclic involutive if $\sim x = 0/x$ and $\sim \sim x = x$

Lemma: $Rel(X, \sqsubseteq)$ is cyclic involutive if we define $0 = \neg \sqsupseteq$

Proof. $\sim R = R \setminus 0 = \neg (\sqsupseteq \circ (R^{\smile} \circ \sqsupseteq) \circ \sqsupseteq) = \neg (\sqsubseteq \circ R \circ \sqsubseteq)^{\smile} = \neg R^{\smile}$

Hence $\sim \sim R = R$ and $0/R = \sim R$

Representable GBI-algs = $Var{Rel(X, \sqsubseteq) : (X, \sqsubseteq) \text{ is a poset}}$

Theorem: The variety of representable GBI-algebras is not finitely based.

Proof. Adding the axiom $(x \to \bot) \to \bot = x$ defines the nonfinitely based variety of representable relation algebras.

Thank you