
Algebraic Models for Concurrent Programs and
Bunched Implication Algebras

Peter Jipsen and M. Andrew Moshier

School of Computational Sciences and
Center of Excellence in Computation, Algebra and Topology (CECAT)

Chapman University, Orange, California

Jan 6, 2015

Outline

I Introduction
I Series-parallel bimonoids and N-free pomsets
I Deterministic flowcharts and concurrent flowcharts
I Trace semantics for concurrent programs
I Generalized bunched implication algebras

Introduction

Most computers today contain 4 or more processors

Most software is still written to run on only one of them

All supercomputers have many thousands of processors

What is a good approach to designing concurrent programs?

For sequential programs there are good abstract models

E.g. flowcharts, automata, coalgebras, trace models

But what does it mean to run programs in parallel: P||Q?

When is this allowed? What happens when they halt?

Bimonoids

A series-parallel bimonoid is an algebra (A, ·, ||, ε) such that

· and || are associative binary operations that have

the same identity element ε

and || is commutative

Let Σ be a set (of generators)

(Σ∗, ·, ε) is the free monoid over Σ

E.g. {p, q}∗ = {ε, p, q, pp, pq, qp, qq, ppp, ppq, pqp, . . .}

Free series-parallel bimonoids

Σsp is the free series-parallel bimonoid

The elements of Σsp are represented by finite N-free po-multisets

= finite posets labelled by elements of Σ such that there is

no induced subposet isomorphic to the 4-element poset

E.g. {p, q}sp =

{ε, p, q, p||p, p||q, q||q, pp, pq, qp, qq, p||pp, p||pq, . . . , p||p||p, . . . }

Note that p||q = q||p, and · has priority over ||

Partially ordered multisets (pomsets)

Pomsets were introduced by Vaughn Pratt [1986]

to model concurrency

They give a normal form for sp-strings:

Two sp-strings are equal in Σsp iff they produce isomorphic
pomsets

p
pp =

p
p||pq = p

q

p
(p||p)q =

p

q

p

|| is disjoint union (position pomsets next to each other)

· is ordinal sum (position first pomset above the second)

Strings and series-parallel strings

The elements of Σ∗ are strings

Thought of as traces of actions (or states or both)

Model the execution path of a sequential program

Concatenation is sequential composition

The elements of Σsp are series-parallel strings

Thought of as (possibly) concurrent actions/states

Model the execution path of a concurrent program

Horizontal union is parallel composition

Flowcharts

To make this concrete, consider a simple flowchart language

Flowcharts are defined over a standard first-order signature

Function symbols f , g , . . . and predicate symbols P,Q, . . ., each
with a fixed arity

Terms are built from variables {xi , yi , zi : i = 1, 2, . . .} and function
symbols

An expression t(x̄ , ȳ) indicates that the term t uses (some)
variables from the sequences x̄ = x1, . . . , xm and ȳ = y1, . . . , yn

Flowcharts
A deterministic flowchart is a finite directed graph with nodes
labeled by statements

A start statement with one outgoing edge

assignment statements ȳ := t̄(x̄ , ȳ) with one outgoing edge

test statements P(t̄(ȳ)) with two outgoing edges labeled T and F

halt statements with no outgoing edges

A start statement has no incoming edges

All others have a finite non-zero number of incoming edges

y1, . . . , yn := t1, . . . , tn means the terms ti on the right are first all
evaluated and then assigned to their corresponding variable on the
left

Flowchart schemes

Flowcharts

A deterministic flowchart computes a (partial) function that maps

values of the input variables x̄ = x1, . . . , xm to

values of the output variables z̄ = z1, . . . , zn

but the algorithm may not halt

Other variables like y1, y2, y3, . . . are called work variables

Concurrent flowcharts
A concurrent deterministic flowchart is defined with two more
statement types: fork and join

Each fork statement has k > 1 outgoing edges followed directly
by initialization statements yi := ri (x̄ , ȳ) for i = 1, . . . , k

Here yi = yi1, . . . , yini is a sequence of work variables distinct
from all other variables

When a fork is processed, the current process is suspended

the initialization statements of the k new processes are evaluated

and then these processes continue concurrently

The work variables of the suspended process can be accessed by the
new processes

but this can lead to race conditions where two concurrent
processes modify/read the same variable, resulting in potential
nondeterminism

A simple concurrent algorithm

Implementing a parallel for-loop

Simple algorithm redone using forpar

From flowcharts to guarded automata

From guarded automata to algebra

Now we define an algebra that provides trace semantics for
concurrent flowcharts

Let N = {xi , yi , zi : i = 1, 2, 3, . . .} be a set of variables

Let V be a set of values (e. g. V = Z)

The set of states is X =
⋃
{VD : D ⊆ N and D is finite }

A state s ∈ X specifies the values for a finite set D = dom(s) of
variables

States r , s are separated if dom(r) ∩ dom(s) = ∅, denoted r ⊥ s

X sp is the set of all sp-strings over the set X

Series-parallel traces

An sp-string is called an sp-trace if

1. its underlying poset has a largest and a smallest element,
and these two elements have the same domain,

2. any two incomparable states are separated,
3. if s1, s2, . . . , sk are all the covers or all the lower covers of

state r then dom(r) = dom(s1) ∪ · · · ∪ dom(sk), and
4. if r is the only cover of s, and s is the only lower cover of r

then dom(r) = dom(s)

It follows from 1. that the poset of an sp-trace is a planar lattice

A sequence (s1, . . . , sn) of terms is also written simply as s1s2 . . . sn

So an sp-trace is of the form s or svs ′ where s, s ′ ∈ X and v ∈ X sp

Trace semantics

Let p be a (concurrent) flowchart

The trace semantics of p is the set [p] of all sp-traces that are
finite execution traces of the flowchart

[p] can be calculated in the following way:

For an assignment such as y := t(x1, . . . , xn), the semantics are

[y := t(x̄)] = {(s, s ′) ∈ X 2 :x̄ ∈ dom(s) = dom(s ′) and
s ′ = s[y 7→ t(s(x1), . . . , s(xn))]}

For a test P(y1, . . . , yn), the semantics are a set of length-one
sequences

[P(ȳ)] = {(s) ∈ X 1 : y1, . . . , yn ∈ dom(s) and P(s(y1), . . . , s(yn))}

Sequential and concurrent composition of sp-traces
Sequential composition of sp-traces uses the coalesced product �

rur ′ � svs ′ =

{
rusvs ′ if r ′ = s

undefined otherwise

The concurrent composition is based on a separated product:

rur ′ | svs ′ =

{
(r ∪ s)(u||v)(r ′ ∪ s ′) if r ⊥ s

undefined otherwise

Note that here || is the parallel composition of sp-strings

r � s = r if r = s, else undefined

rr ′ | svs ′ = (r ∪ s)v(r ′ ∪ s ′) if r ⊥ s

r | svs ′ = rr | svs ′ and r |s = r ∪ s if r⊥s

The associativity and commutativity of the operation | is easily
checked.

Extending to sets of sp-traces

Let X spt be the set of all sp-traces

The semantics of a program (flowchart) p is a set of sp-traces

So extend the above two operations to subsets by

I R · S = {v � w : v ∈ R,w ∈ S and v � w is defined}
I R||S = {v | w : v ∈ R,w ∈ S and v | w is defined}
I R + S = R ∪ S

I 0 = ∅, 1 = X 1, B = X 1 \ B and
I R∗ =

⋃
n<ω Rn

Mapping from sp-traces to input/output pairs

Theorem: The algebra AN,V = (P(X spt),+, ·, ||, 0, 1,∗ ,̄) is a
concurrent Kleene algebra with tests (CKAT)

Each subset R of X spt determines a binary relation

R ′ = {(s, s ′) ∈ X 2 : svs ′ ∈ R for some v ∈ X sp or s = s ′ ∈ R}

The map R 7→ R ′ is a homomorphism from a CKAT to an algebra
of input/output relations

Start with a sequential program and modify it to run
concurrently on a multicore processor or a distributed system

This homomorphism is useful for checking that the concurrent
version and the sequential version still satisfy the same
input/output relation.

A subalgebra of concurrent composition

The algebra BN,V = (P(X),+, ·, ||, 0, 1,̄) is a Boolean subalgebra
of AN,V with a commutative associative operator

So it is an associative r -algebra in the terminology of
Jónsson-Tsinakis [1993]

A generalized effect algebra is a partial commutative cancellative
monoid (M, |, e) such that x |y = e implies x = y = e

(X , |, ∅) is a generalized effect algebra (since s|t = s ∪ t if s⊥t)

BN,V is the complex algebra of (X , |)

Problem: axiomatize the variety generated by {BN,V : N,V are
sets}

Generalized bunched implication algebras
A generalized bunched implication algebra (GBI-algebra) is of
the form (A,∨,∧,→,>,⊥, ·, \, /, 1) where

(A,∨,∧,→,>,⊥) is a Heyting algebra (i.e. a bounded
distributive lattice with x ∧ y ≤ z iff y ≤ x → z) and

(A,∨,∧, ·, \, /, 1) is a residuated lattice (i.e. a monoid with
x · y ≤ z iff y ≤ x\z iff x ≤ z/y)

If · is commutative we get BI-algebras

If (x → ⊥)→ ⊥ = x we get classical GBI-algebras

CGBI-algebras = residuated Boolean monoids = rm-algebras of
Jónsson-Tsinakis

BI-algebras come from Separation Logic, a Hoare programming
logic for reasoning about pointers and concurrent resources

A bunched implication algebra of relations

Relation algebras are CGBI-algebras

What are natural examples of GBI-algebras?

Let (X ,v) be a poset (or preorder) and define

Rel(X ,v) = {R ⊆ X 2 : v ◦ R ◦ v = R}

R is called a weakening relation if v ◦ R ◦ v = R

Rel(X ,v) is a complete
⋃
,
⋂
-sublattice of P(X 2) closed under ◦

v, ∅,X 2 ∈ Rel(X ,v) and v is an identity for ◦

By completeness, ∩ and ◦ are residuated

Hence Rel(X ,v) is a GBI-algebra

Computing with weakening relations

Lemma: v ◦ R ◦ v = R iff w ◦ ¬R ◦ w = ¬R

Proof. Assume v ◦ R ◦ v = R and (x , y) ∈ w ◦ ¬R ◦ w

There exist u, v such that x w u, (u, v) /∈ R and v w y

If (x , y) ∈ R then u v x and y v v imply (u, v) ∈ R , contradiction

Hence (x , y) ∈ R and therefore w ◦ ¬R ◦ w = ¬R . �

With this result it is easy to prove the following formulas

R → S = ¬(w ◦ (R ∩ ¬S) ◦ w),

R\S = ¬(w ◦ (R` ◦ ¬S) ◦ w) and R/S = ¬(w ◦ (¬R ◦ S`) ◦ w)

Kripke frame for Rel(X ,v)

Theorem: Let X ∂ = (X ,w). Then the Kripke frame for Rel(X ,v)
is X ∂ × X with ternary accessibility relation

◦((u, v), (x , y), (z ,w)) iff y = z , u = x , and v = y .

Hence Rel(X ,v) = Up(X ∂ × X)

In contrast to abstract relation algebras we have:

Theorem [Galatos - J.]: The equational theory of GBI-algebras is
decidable

The proof uses distributive residuated frames and shows that
there is a cut-free Gentzen system for GBI

Representable GBI-algebras are not finitely based

Let ∼x = x\0, where 0 is a constant.

A GBI-algebra is cyclic involutive if ∼ x = 0/x and ∼∼x = x

Lemma: Rel(X ,v) is cyclic involutive if we define 0 = ¬w

Proof. ∼R = R\0 = ¬(w◦ (R` ◦w)◦w) = ¬(v◦R ◦v)` = ¬R`

Hence ∼∼R = R and 0/R = ∼R

Representable GBI-algs = Var{Rel(X ,v) : (X ,v) is a poset}

Theorem: The variety of representable GBI-algebras is not finitely
based.

Proof. Adding the axiom (x → ⊥)→ ⊥ = x defines the
nonfinitely based variety of representable relation algebras.

Thank you

