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The main points of this talk:

Proof theory offers useful tools for ordered algebraic structures

• Formulas are terms

• Sequents are atomic formulas

• Gentzen rules are quasiequations

Universal algebra provides semantics for many Gentzen systems

This helps with using tools from automated theorem proving



Let’s recall some standard definitions from first-order logic .

A signature (or language) L is the disjoint union of a set Lf of

function symbols and Lr of relation symbols , each with a fixed

non-negative arity.

Function symbols of arity 0 are called constant symbols .

The set of L-terms over variables from X is denoted by TL(X).

The set AL(X) of atomic L-formulas over X consists of all

equations t1 = t2 and all R(t1, . . . , tn), where

t1, . . . , tn ∈ TL(X) and R ∈ Lr has arity n.

An L-structure A = (A, (lA)l∈L) is a set A with a sequence of

operations and relations defined on A, where lA has arity of l.

An assignment into A is a function h : X → A.



h extends uniquely to a homomorphism h : TL(X) → A.

The notion of satisfaction is standard:

• A |= s = t if h(s) = h(t) for all assignments h into A

• A |= R(t1, . . . , tn) if (h(t1), . . . , h(tn)) ∈ RA ′′

For a class K of L-structures, K |= φ if A |= φ for all A ∈ K

The equational theory of K is

The(K) = {φ ∈ AL(X) : K |= φ}

For E ⊆ AL(X), let Mod(E) = {A : A |= φ for all φ ∈ E}

The(Mod(E)) is the smallest equational theory containing E.

A substitution is an assignment into the term algebra TL(X).

Birkhoff [1935] provided a deductive system for equational theories:



The(Mod(E)) is the smallest set E′ such that E ⊂ E′, and for

all r, s, t, t1, . . . , tn ∈ TL(X) we have

refl (t = t) ∈ E′

symm (s = t) ∈ E′ implies (t = s) ∈ E′

tran (r = s), (s = t) ∈ E′ implies (r = t) ∈ E′

congf
(s1 = t1), . . . , (sn = tn) ∈ E′ and f ∈ Lf

implies (f(s1, . . . , sn) = f(t1, . . . , tn)) ∈ E′

subs
(s = t) ∈ E′ implies (h(s) = h(t)) ∈ E′

for any substitution h

congr
(s1 = t1), . . . , (sn = tn), R(s1, . . . , sn) ∈ E′

and R ∈ Lr implies R(t1, . . . , tn) ∈ E′



The substitution rule makes equational logic a challenge.

Together with the congruence rule, it justifies rewriting a term by

replacing any subterm that matches h(s) by h(t) if s = t is in E.

This makes goal-oriented proof search difficult since terms can grow

and shrink arbitrarily many times.

This is the problem with equational term-rewriting. Depending on E,

it can be undecidable, although for many important theories (groups,

rings, monoids, loops,...) it provides very efficient normal form

algorithms.



An ordered algebraic structure is an L-structure A where

• ≤ is a relational symbol in L

• (A,≤) is a partially ordered set

• each basic operation on A is either order-preserving or

order-reversing in each argument.

Often ≤ is definable by some equation, but we do not assume this.

Following Gorbunov’s “Algebraic Theory of Quasivarieties” [1998] a

quasi-identity is a formula α0 & · · ·& αn−1 =⇒ αn where the

αi are atomic formulas.



Sequent Calculi : A,B,A1, . . . denote propositional formulas

Γ,∆,Σ denote finite (possibly empty) sequences of formulas

A sequent is an expression of the form Γ ` ∆

Informal meaning: a sequent is valid if from the assumptions in Γ

follows at least one of the formulas in ∆

A (propositional) Gentzen system is specified by a set of axioms

(sequents that are valid by definition) and rules of the form

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

Informal meaning: if all premises Γi ` ∆i are valid sequents, then

Γ ` ∆ is also valid.



An axiom : A ` A (Identity)

Some structural rules :
Γ, B,A,Σ ` ∆

Γ, A,B,Σ ` ∆
(Exchange `)

Γ,Σ ` ∆

Γ, A,Σ ` ∆
(Weakening `)

Γ ` A Σ, A,∆ ` B

Σ,Γ,∆ ` B
(Cut)

Some logical rules :

Γ, A,Σ ` C

Γ, A ∧ B,Σ ` C
(∧ `)

Γ ` A Γ ` B

Γ ` A ∧ B
(` ∧)

A simple Gentzen proof :
B ` B

A ∧ B ` B
(∧ `)

A ` A

A ∧ B ` A
(∧ `)

A ∧ B ` B ∧ A

Arbitrary substitutions on subterms are not part of Gentzen proofs.



Some Gentzen systems satisfy the intuitionistic restriction:

Sequences on the right of ` have length ≤ 1.

The heavy syntax allows making fine distinctions in rules

but complicates using general purpose theorem provers

At a conference on algebraic logic this begs the question

What is the algebraic version of Gentzen systems?



Use the language of ordered algebraic structures

` becomes ≤

formulas become terms

A1, A2, . . . , An becomes s1 · s2 · . . . · sn (on left)

· is an associative operation symbol usually called fusion

B1, B2, . . . , Bn becomes t1 + t2 + . . . + tn (on right)

+ is an associative operation symbol usually called fission

A sequent Γ ` ∆ becomes an atomic formula s ≤ t

A Gentzen rule becomes a quasi-identity

s1 ≤ t1 & . . . & sn ≤ tn =⇒ s ≤ t

The cut rule is now
r ≤ s s ≤ t

r ≤ t
, i.e. transitivity of ≤



An algebraic Gentzen system G is a set of atomic formulas

(axioms) and quasi-identities (rules).

A proof-tree of G is a finite rooted tree in which each element is an

atomic formula, and if s1 ≤ t1, . . . , sn ≤ tn are all the covers of

the elements of s ≤ t in the tree, then the quasi-identity

s1 ≤ t1 & . . . & sn ≤ tn =⇒ s ≤ t

is a substitution instance of a member of G.

In particular, leaves must be instances of axioms

A Gentzen proof of s ≤ t is a proof-tree with s ≤ t as root

If s ≤ t is Gentzen provable from G we write G `g s ≤ t



E.g. semilattices (A,∧) are algebras where ∧ is an associative,

commutative, idempotent (x ∧ x = x) operation

An algebraic Gentzen system GS for semilattices: x ≤ x

x ≤ z =⇒ x ∧ y ≤ z, y ≤ z =⇒ x ∧ y ≤ z

z ≤ x & z ≤ y =⇒ z ≤ x ∧ y

i.e. x ∧ y is a lower bound and exceeds any lower bound of x, y

Easy exercises: GS `g ∧ is orderpreserving

GS + (antisymmetry of ≤) `g ∧ is associative, commutative,

idempotent, (transitivity of ≤) and (x ≤ y ⇐⇒ x ∧ y = x)

In fact all atomic formulas true in semilattices are Gentzen provable



For Gc
S = GS+ transitivity (cut) this is easy to see since then each

of the Birkhoff rules for equational logic can be simulated

Write Gc
S `g s ≡ t if Gc

S `g s ≤ t and Gc
S `g t ≤ s

Then ≡ is reflexive, symmetric and transitive (uses cut)

(congf ) follows from ∧ being orderpreserving:

r ≡ s implies r ≤ s and s ≤ r, so r ∧ t ≤ s ∧ t and

s ∧ t ≤ r ∧ t, hence r ∧ t ≡ s ∧ t

Again for 2nd arg: t ≡ u =⇒ s ∧ t ≡ s ∧ u, use transitivity of ≡

(congr) follows from transitivity of ≤:

r ≡ s, t ≡ u and r ≤ t implies s ≤ r and t ≤ u, so s ≤ u.

(subs) holds since given a Gentzen proof of s ≤ t and substitution

h, apply h to all formulas to get a Gentzen proof of h(s) ≤ h(t)



The same argument works for any algebraic Gentzen system with

cut if one can prove that all function symbols are orderpreserving or

orderreversing in each argument

However even without cut the result holds

Cut-elimination : The(Mod(GS)) = The(Semilattices)

This can be proved by syntactic or algebraic means

If transitivity is used in a proof-tree, rearrange it locally to move the

application of this rule closer to a leaf

Or construct an algebra in which s ≤ t is true if and only if s ≤ t is

Gentzen provable without using transitivity



Cut-elimination is useful since the cut rule is problematic in

goal-directed proof search (there are infinitely many intermediate

“cut-terms” s that could lead to a proof of r ≤ t)

An algebraic Gentzen system G has the subterm property if for

any rule in G the variables in the premises are a subset of the

variables in the conclusion.

This property ensures that if the conclusion matches an atomic

formula, then the premises are uniquely determined

A rule that fails to have the subterm property (e.g. cut) makes proof

search infinitely branching nondeterministic

If all the premises of the rules in G are also structurally simpler than

the conclusion, proof search is finite



Hence there is a decision procedure for G `g s ≤ t

Together with antisymmetry this gives an equational descision

procedure for the quasivariety determined by G

Of course the equational theory of semilattices is easily decidable

by a simple rewrite system (order all variables, delete duplicates)

But Gentzen system techniques cover many logics and their

algebraic counterparts .

For lattices , add the rules for ∨ (dual to ∧) x ≤ x



x ≤ z

x ∧ y ≤ z

y ≤ z

x ∧ y ≤ z

z ≤ x z ≤ y

z ≤ x ∧ y

z ≤ x

z ≤ x ∨ y

z ≤ y

z ≤ x ∨ y

x ≤ z y ≤ z

x ∨ y ≤ z

This is the standard definition of lattices in terms of greatest lower

bound and least upper bound

Although the first rule is equivalent to x ∧ y ≤ x, it is written as a

rule to avoid using the cut rule in proofs

The Gentzen system essentially simulates Whitman’s [1941]

solution to the word problem for free lattices

Freese, Jezek and Nation [1993] proved that there is no confluent

terminating rewrite system for lattices



For distributive lattices Font and Verdu [1991] give a Gentzen

system that has the following algebraic form:

x ∧ y ≤ y x ∧ y = y ∧ x

x ≤ z

x ∧ y ≤ z

x ≤ y x ∧ y ≤ z

x ≤ z

x ∧ y ≤ w x ∧ z ≤ w

x ∧ (y ∨ z) ≤ w

z ≤ x

z ≤ x ∨ y

z ≤ y

z ≤ x ∨ y

x ≤ z y ≤ z

x ∨ y ≤ z

In the third rule we see ∧ used instead of “,”

They also show that the corresponding distributive logic is not

protoalgebraic in the sense of Blok-Pigozzi



Font and Verdu (see also Font, Jansana, Pigozzi [2003]) define

matrix models for Gentzen systems as (A, R), where A is an

algebra and R is a relation between finite sequences of A and

elements of A such that if

Γ1 ` φ1 . . . Γn ` φn

Γ ` φ

is a Gentzen rule and if h is any assignment into A with

(h(Γi), h(φi)) ∈ R then (h(Γ), h(φ)) ∈ R

In the present setting, R is simply the binary relation ≤

The original Gentzen systems LJ for intuitionistic logic can also be

written algebraically for Heyting algebras



x ≤ x 0 ≤ x x ≤ 1 (x ∧ y) ∧ z = x ∧ (y ∧ z)

x ∧ y = y ∧ x x ∧ x = x

x ≤ y

x ∧ 1 ≤ y

x ∧ y ≤ z

y ≤ x → z

u ≤ x y ∧ w ≤ z

x → y ∧ u ∧ w ≤ z

x ∧ w ≤ z

x ∧ y ∧ w ≤ z

y ∧ w ≤ z

x ∧ y ∧ w ≤ z

z ≤ x z ≤ y

z ≤ x ∧ y

z ≤ x

z ≤ x ∨ y

z ≤ y

z ≤ x ∨ y

x ∧ w ≤ z y ∧ w ≤ z

(x ∨ y) ∧ w ≤ z

The equational axioms correspond to the structural rules

They can be used as rewrite rules on subterms

So the Gentzen rules are acting on equivalence classes of terms

The intuitionistic restriction is not so visible, but it is still there:

terms on the right of ≤ contain at most one function symbol



A residuated lattice (A,∨,∧, ·, 1, \, /) is a lattice-ordered

monoid such that xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

A cut-free Gentzen system is given by Ono and Komori [1985],

gives the decidability of the equational theory of residuated lattices

and FL-algebras

The semantic approach to cut elimination is due to Okada and

Terui [1999] using phase structures

J. and Tsinakis [2002] give an algebraic Gentzen system for

residuated lattices and a purely algebraic proof of cut-elimination

Bellardinelli, J. and Ono [2004] define Gentzen structures the same

way as matrix models of Font et al and use them to show that

cut-elimination follows from a Dedekind-MacNeille style completion



A. Wille [2004] gives an elegant cut-free algebraic Gentzen

system for involutive residuated lattices , short decidability proof

Main point: Proof theory is providing equational decidability

results for important algebraic classes

These decision procedures can be expressed in a purely algebraic

language

But why translate Gentzen systems to universal algebra?

• Algebraic Gentzen systems have standard algebras as

semantics

— well-known, easy to work with for semantic cut elimination proofs



• Quasiequational logic is a nice fragment of first-order logic

• Easy to prototype Gentzen systems in a standard theorem prover

— no need for tedious programming and optimization

— Gentzen rules improve performance of theorem provers

compared with standard axiomatizations

— theorem provers are under active development , using SAT

solvers, BDDs, interactive guidance,...

• Can enter nonequational queries , may learn something...

Let’s look at two examples: Kleene algebras and generalized

BL-algebras



A Kleene algebra (A,∨, 0, ·, 1,∗ ) is an idempotent semiring

with 0, 1 and a Kleene ∗-operation . Specifically this means:

(A, ·, 1) is a monoid ,

(A,∨, 0) is a join-semilattice with bottom ,

multiplication distributes over all finite joins , i.e. x0 = 0 = 0x,

x(y ∨ z) = xy ∨ xz, (y ∨ z)x = yx ∨ zx, and

∗ is a unary operation that satisfies 1 ∨ x ∨ x∗x∗ = x∗

(∗) xy ≤ y =⇒ x∗y = y yx ≤ y =⇒ yx∗ = y

The quasivariety of Kleene algebras is denoted by KA. It is not a

variety: e.g. there is a 4-element algebra that fails (∗) but is a

homomorphic image of the Kleene algebra defined on the powerset

of a 1-generated free monoid (Conway’s leap).



An algebraic Gentzen system for Kleene algebras: fusion is

associative x1 = x 1x = x

x ≤ x x0y ≤ z
u ≤ x v ≤ y

uv ≤ xy

u ≤ x

u ≤ x ∨ y

u ≤ y

u ≤ x ∨ y

uxv ≤ w uyv ≤ w

u(x ∨ y)v ≤ w

u ≤ e

u ≤ x∗

u ≤ x

u ≤ x∗

u ≤ x∗ v ≤ x∗

uv ≤ x∗

u ≤ y xy ≤ y

x∗u ≤ y

u ≤ y yx ≤ y

ux∗ ≤ y

x ≤ u u ≤ y

x ≤ y



These rules (excluding cut) have been implemented on a webpage

at www.chapman.edu/˜jipsen/kleene

Problem: is there a cut-free Gentzen system for KA?

KA is known to be decidable, Kozen [1994] (PSPACE complete)

Here is the input for an automated theorem prover (Otter 3.3)

op(400, xfy, ;).

op(500, xfy, +).

op(600, xfy, !<). %’not less or equal’ symbol

set(auto). % Pick a strategy automatically

set(output_sequent).

formula_list(usable).

all x (x = x).

all x (-(x !< x)).



all x (x;e = x).

all x (e;x = x).

all x y z ((x;y);z = x; (y;z)).

all x y z (-(x;f;y !< z)).

all u v x y (u;v !< x;y -> u !< x | v !< y).

all u x y (u !< x+y -> u !< x).

all u x y (u !< x+y -> u !< y).

all u v w x y (u; (x+y);v !< w -> u;x;v !< w | u;y;v

all u x (u !< s(x) -> u !< e).

all u x (u !< s(x) -> u !< x).

all u v x (u;v !< s(x) -> u !< s(x) | v !< s(x)).

all u x y (s(x);u !< y -> u !< y | x;y !< y).

all u x y (u;s(x) !< y -> u !< y | y;x !< y).

end_of_list.



A residuated Kleene algebra (A,∨, 0, ·, 1, \, /,∗ ) is a Kleene

algebra expanded with

residuals \, / of the multiplication, i.e. for all x, y, z ∈ A

(\) xy ≤ z ⇐⇒ y ≤ x\z and

(/) xy ≤ z ⇐⇒ x ≤ z/y.

Although we have added more quasiequations to KA, the class

RKA of all residuated Kleene algebras is a variety :

(\) is equivalent to y ≤ x\(xy ∨ z) and x(x\z) ≤ z

(/) is equivalent to the mirror images of these, and the implications

(∗) are equivalent to x∗ ≤ (x ∨ y)∗ and (y/y)∗ ≤ y/y.

Residuated Kleene algebras are also called action algebras by

Pratt [1990] and Kozen [1994].



Kleene algebras have a long history in Computer Science, with

applications in formal foundations of automata theory, regular

grammars, semantics of programming languages and other areas.

Elements in a Kleene algebra can be considered as specifications

or programs , with · as sequential composition, ∨ as

nondeterministic choice, and ∗ as iteration.

Residuals also have a natural interpretation: If we implement an

initial part p of a specification s, then px ≤ s implies x ≤ p\s, so

p\s is the specification for implementing the remaining part .



A non-commutative version of a result of Raftery and van Alten

[2004] gives another reason for adding residuals:

RKA is congruence distributive .

Since residuated lattices are residuated join-semilattices, we can

adapt Jipsen and Tsinakis [2002] Thm 6.3 as follows:

Theorem 1. There are uncountably many minimal nontrivial

varieties of residuated join-semilattices and of residuated Kleene

algebras.

It is simple to extend the Gentzen system for Kleene algebras to

residuated Kleene algebras, but again it is not known if this system

is cut-free.

Problem: Is the equational theory of RKA decidable?



Hajek’s Basic Logic generalizes multi-valued and fuzzy logic.

Basic Logic algebras (BL-algebras) are the algebraic semantics.

A generalized BL-algebra is a residuated lattice that satisfies

divisibility : x ≤ y implies x = uy = yv for some u, v.

This condition is equivalent to the implication

x ≤ y =⇒ x = (x/y)y = y(y\x),

which is equivalent to x ∧ y = ((x ∧ y)/y)y = y(y\(x ∧ y)).

Hence generalized BL-algebras, or GBL-algebra, form a variety .

The subvariety of integral GBL-algebras is defined by the simpler

equations x ∧ y = (x/y)y = y(y\x).



The variety of lattice-ordered groups (or `-groups) is

term-equivalent to the subvariety of residuated lattices determined

by the equation x(1/x) = 1.

A BL-algebra is an integral GBL-algebra with a constant 0 denoting

the least element, and satisfying commutativity : xy = yx and

prelinearity : 1 ≤ (x/y ∨ y/x) ∧ (x\y ∨ y\x).

The name “prelinearity” is justified by the result that subdirectly

irreducible commutative prelinear residuated lattices are linearly

ordered

The variety of GBL-algebras includes the variety of `-groups and the

variety of Brouwerian algebras (0-free subreducts of Heyting

algebras)



Yet GBL-algebras are quite special compared to residuated lattices

E.g., as for `-groups, they have distributive lattice reducts and N.

Galatos recently showed that fusion distributes over meet.

Furthermore, Galatos and Tsinakis [2004] prove that any

GBL-algebra is a direct product of an `-group and an integral

GBL-algebra.

Hence the structure of GBL-algebras can by understood by

analysing the structure of `-groups and integral GBL-algebras.

In particular, any finite GBL-algebra is integral.

Problem: Is the equational theory of GBL-algebras decidable? Do

they have a cut-free Gentzen system?



For a start: Take the Gentzen system for residuated lattices and add

u ≤ x x ≤ y y ≤ z

u ≤ z(y\x)

u ≤ x x ≤ y y ≤ z

u ≤ (x/y)z

x ∧ z ≤ w y ∧ z ≤ w

(x ∨ y) ∧ z ≤ w
x ∧ y = y ∧ x

With cut this is a Gentzen system for GBL-algebras, but without cut

this is unlikely

What types of Gentzen systems admit cut elimination?

K. Terui has some recent algebraic criteria about structural rules

that can be added to the Gentzen system of residuated lattices

while preserving cut elimination.

Develop general methods to modify Gentzen systems so they

become cut-free



For commutative distributive involutive residuated lattices , R.

Brady [1990] gives a cut-free Gentzen system and proves

decidability.

The system uses two levels of syntax, “;” for fusion and “,” for ∧

An algebraic version can use the standard signature of residuated

lattices

Hypersequent calculi and display logic are generalizations of

Gentzen systems

Do algebraic versions also simplify the syntax and allow

implementation in first-order theorem provers?



All finite GBL-algebras are commmutative

At the conference in Patras, I proved that all representable

GBL-algebras are commutative

The results in this section are joint work with Franco Montagna

Lemma 2. If a is an idempotent in an integral GBL-algebra A, then

ax = a ∧ x for all x ∈ A. Hence every idempotent is central, i.e.

commutes with every element.

Proof. Suppose aa = a.

Then ax ≤ a ∧ x = a(a\x)

= aa(a\x)

= a(a ∧ x) ≤ ax.



In an `-group only the identity is an idempotent, hence idempotents

are central in all GBL-algebras.

The next lemma implies that in a finite GBL-algebra the elements

above a maximal non-unit idempotent form a chain.

Lemma 3. Let a be a coatom in an integral GBL-algebra. Then

{ak : k = 0, 1, 2, . . .} is upward closed.

In a finite residuated lattice, the central idempotent elements form a

sublattice that is dually isomorphic to the congruence lattice.

Hence a subdirectly irreducible finite residuated lattice has a unique

largest central idempotent c < 1.



A Wajsberg hoop is an integral commutative residuated lattice that

satisfies the identity x ∨ y = (x\y)\y.

These algebras are term equivalent to 0-free reducts of MV-algebras

It is wellknown that for each positive integer n there is a unique

subdirectly irreducible Wajsberg hoop with n elements:

1 > a > a2 > · · · > an−1 = 0



For posets A, B the ordinal sum A ⊕ B is defined on A ∪ B by

extending the union of the two partial orders so that all elements of

A \ B are less than all elements of B.

If A and B are GBL-algebras that are either disjoint or

A ∩ B = {1A} and 1A is the least element of B,

then the ordinal sum is again a GBL-algebra where for

a ∈ A and b ∈ B one defines a · b = b · a = a.

The next result shows that any finite subdirectly irreducible

GBL-algebra decomposes as the ordinal sum of a Wajsberg hoop

on top of a smaller GBL-algebra.



Lemma 4. Let A be a finite subdirectly irreducible GBL-algebra,

and let c be its unique largest idempotent below 1. Then A is the

ordinal sum of ↓c and ↑c, where c is the identity of ↓c, and the

residuals in the lower component are defined by x\↓y = x\y ∧ c

and x/↓y = x/y ∧ c. Furthermore ↑c is a Wajsberg hoop.

Since all Wajsberg hoops are commutative, the main result follows

by induction on the size of the algebra.

Theorem 5. Every finite GBL-algebra is commutative.

More precisely, given a finite subdirectly irreducible GBL-algebra A,

we decompose it into the ordinal sum of a smaller GBL-algebra and

a Wajsberg hoop.



The smaller GBL-algebra is a subdirect product of subdirectly

irreducible homomorphic images, each smaller than A, hence by

the inductive hypothesis, they are commutative.

Since ordinal sums preserve commutativity, the result follows.

Note that the theorem also holds if we expand the signature with a

constant 0 to the denote the least element of the algebra.

Corollary 6. The varieties of all GBL-algebras and of all

pseudo-BL-algebras do not have the finite model property,

i.e. they are not generated by their finite members.



The subalgebra of idempotent elements

Since ax = a ∧ x for an idempotent a, it is easy to see that the set

of idempotents in a GBL-algebra is a sublattice that is closed under

multiplication.

We now show that it is also closed under the residuals. It follows

from our noncommutative examples below that the set of all central

elements in a GBL-algebra is, in general, not a subalgebra.



Theorem 7. The idempotents in a GBL-algebra form a subalgebra.

Proof. By the decomposition result of Galatos and Tsinakis [2002],

it suffices to prove the result for integral GBL-algebras.

In any residuated lattice x\(y\z) = (yx)\z

(since w ≤ x\(y\z) ⇐⇒ xw ≤ y\z

⇐⇒ yxw ≤ z ⇐⇒ w ≤ (yx)\z )

Let aa = a and bb = b be two idempotents.



a\b ≤ (a ∨ a\b)\(a\b) ≤ a\(a\b) = aa\b = a\b, and

a(a\b) = a ∧ b = (a ∧ b)2 = (a(a\b))2.

By divisibility, we have

a\b = (a ∨ a\b)((a ∨ a\b)\(a\b))

= (a ∨ a\b)(a\b)

= a(a\b) ∨ (a\b)2

= (a(a\b))2 ∨ (a\b)2 = (a\b)2.

The last equality holds in integral algebras because a(a\b) ≤ a\b.

By symmetry, it follows that (a/b) = (a/b)2, hence the residuals

of any two idempotents are again idempotents.



A Brouwerian algebra is a residuated lattice that satisfies

xy = x ∧ y.

The previous result shows that any GBL-algebra contains a largest

Brouwerian subalgebra, given by the subalgebra of idempotents.

In fact any finite GBL-algebra is completely determined by the poset

of join-irreducibles in this subalgebra of idempotents, together with

the size of the chain between a join-irreducible and its unique

idempotent lower cover.



A generalized ordinal sum construction for integral residuated

lattices is defined as follows

Let P be a poset, and let Ai (i ∈ P ) be a family of integral

residuated lattices, each with a least element denoted by 0. The

poset sum is defined as
⊕

i∈P Ai = {a ∈
∏

i∈P : i < j =⇒ ai = 1 or aj = 0}.

This subset of the product contains the constant function 1, and is

closed under ∧, ∨ and ·.



We define an auxillary operations on the poset sum:

(a↓)i =







0 if aj < 1 for some j < i

ai otherwise

Then \⊕, /⊕ can be defined on the poset sum as follows:

a\⊕b = (a\b)↓

a/⊕b = (a/b)↓

Theorem 8. The variety of integral GBL-algebras is closed under

poset sums.



In fact, for a GBL-algebras, this construction describes all the finite

members.

Theorem 9. All finite GBL-algebras are commutative, and can be

constructed by poset sums of finite Wajsberg chains.

Moreover, there is a 1-1 correspondence between finite

GBL-algebras and finite posets labelled with natural numbers.

If the poset is a forest, the GBL-algebra is prelinear.

This result is useful for constructing and counting finite

GBL-algebras.



A non-commutative sum-indecomposable GBL-algebras

Examples of noncommutative GBL-algebras:

• any noncommutative `-group G

• the negative cone G− of G

• any “large enough” principal lattice filter ↑u of G−

However all these examples satisfy the identities

x ∨ y = x/((x ∨ y)\x) = (x/(x ∨ y))\x

that define generalized MV-algebras (GMV-algebras for short; see

Jipsen and Tsinakis [2002], and Dvurecenski [2002] for pseudo

MV-algebras, i.e. GMV-algebras with 0).

We now describe some examples to show that GBL-algebras in



general are not ordinal sums of GMV-algebras.

Readers with a background in `-groups may recognize these

examples as certain modified intervals in the Scrimger 2-group.

Let B be a residuated lattice with top element >, and denote by

B∂ the dual poset of the lattice reduct of B.

Let B† be the ordinal sum of B∂ and B × B, i.e., every element of

B∂ is below every element of B × B.

Note that B† is a lattice under this partial order, with bottom

element >.

To avoid confusion, we denote this element by ⊥†.



B∂

B B

〈>,>〉

⊥† = >

B† =



We define a binary operation · on B† as follows:

〈a, b〉 · 〈c, d〉 = 〈ac, bd〉

〈a, b〉 · u = u/a

u · 〈a, b〉 = b\u

u · v = > = ⊥†

To avoid some ambiguity, we use juxtaposition for the monoid

operation of B, but will continue to write · for the operation in B†,

and \†, /† for the residuals.

Note that even if B is a commutative residuated lattice, · is in

general noncommutative.



The next result shows · is associative and residuated (uses the RL

identities x/(yz) = (x/z)/y and (x\y)/z = x\(y/z) ).

Lemma 10. For any residuated lattice B with top element, the

algebra B† defined above is a bounded residuated lattice. If B is

nontrivial, then B† is not a GMV-algebra, and if B is subdirectly

irreducible, so is B†.

Proof. Since · is defined pointwise on B × B, it is clearly

associative there. The remaining cases (omitting mirror images) are



checked as follows:

(〈a, b〉·〈c, d〉)·u = 〈ac, bd〉·u = u/(ac) = (u/c)/a

= 〈a, b〉·(u/c) = 〈a, b〉·(〈c, d〉·u)

(〈a, b〉·u)·〈c, d〉 = (u/a)·〈c, d〉 = c\(u/a) = (c\u)/a

= 〈a, b〉·(c\u) = 〈a, b〉·(u·〈c, d〉)

(〈a, b〉·u)·v = (u/a)·v = ⊥† = 〈a, b〉·⊥† = 〈a, b〉·(u·v)

(u·〈a, b〉)·v = (b\u)·v = ⊥† = u·(v/a) = u·(〈a, b〉·v)

(u·v)·w = ⊥†·w = ⊥† = u·⊥† = u·(v·w)



The residuals are defined as follows:

〈a, b〉\†〈c, d〉 = 〈a\c, b\d〉

〈a, b〉\†u = ua

u\†〈a, b〉 = 〈>,>〉

u\†v = 〈>, u/v〉

〈a, b〉/†〈c, d〉 = 〈a/c, b/d〉

〈a, b〉/†u = 〈>,>〉

u/†〈a, b〉 = bu

u/†v = 〈u\v,>〉

The GMV identity x ∨ y = x/((x ∨ y)\x) fails if we take

x = 1 ∈ B∂ and y = 〈>, b〉 ∈ B2 for some b 6= >, since

x ∨ y = y but the right hand side evaluates to 〈>,>〉.

It takes some work to see that the construction preserves subdirect

irreducibility. In fact the congruence lattice of B† is isomorphic to

the congruence lattice of B with a new top element added.



Thus far we have obtained an interesting construction of

noncommutative nonlinear subdirectly irreducible residuated lattices

But many such examples (even finite ones) were known.

The strength of this construction comes from the next observation.

Lemma 11. Let B be a residuated lattice with top element. Then

B† is a GBL-algebra if and only if B is a cancellative GBL-algebra.

Note that if a residuated lattice has a top element and is either

cancellative or a GBL-algebra, then it is in fact integral.

By a result of Bahls, Cole, Galatos, J. and Tsinakis [2003],

cancellative integral GBL-algebras are precisely the negative cones

of `-groups, so there are many choices for B.

An easy example is obtained if one takes B = Z
−.



Corollary 12. There exists a GBL-algebra that is noncommutative,

subdirectly irreducible, ordinal sum indecomposable, and is not a

GMV-algebra.

This is in contrast with the situation for BL-algebras and basic

hoops, where every subdirectly irreducible member is an ordinal

sum of MV-algebras or Wajsberg hoops (see Agliano, Ferreirim,

Montagna [2003]).

Thus the examples indicate that a structure theorem for

GBL-algebras will be more complicated than for BL-algebras.

The next (and final) result shows that varieties generated by these

examples already occur very low in the lattice of subvarieties

Theorem 13. If A = (Z−)† then Var(A) is a variety that covers

the variety of Boolean algebras.



Conclusion:

• Proof theory has much to offer

• Presenting it algebraically may help make it more accessible

• Makes it easier to experiment with theorem provers

• Finite GBL-algebras and pseudo BL-algebras are commutative

• Easy structure theory for finite but not for infinite GBL-algebras

Thank you


