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Ortholattices

An ortholattice (A,+, ·,′ , 0, 1) is a lattice (A,+, ·) with a unary
orthocomplement ′ that satisfies

x ′′ = x , (x + y)′ = x ′ · y ′, x · x ′ = 0 and x + x ′ = 1.

Examples: Boolean algebras, MOn =

1

a′nan· · ·a′1a1

0

Benzene hexagon H =

1

a′b

b′a

0

Not an OL: N5
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Varieties of ortholattices

A variety of ortholattices is a class of all ortholattices that satisfy
a given set E of ortholattice identities.

In this case E is an equational basis for the variety it defines.

Example: T = {x = y} is a basis for all one-element ortholattices

D = {x(x ′ + y) + y = y} is an OL basis for all Boolean algebras

M = {(xz + y)z = xz + yz} is a basis for all modular ortholattices

O = {x+x ′(x+y) = x+y} is a basis for all orthomodular lattices
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Generating varieties of ortholattices

Any intersection of varieties is again a variety.

For a class K of ortholattices, let V(K) be the smallest variety
containing K.

By Birkhoff’s HSP theorem, V(K) = HSP(K), where
P = all products, S = all subalgebras,
H = all homomorphic images of members of K.

Examples: MOn = V(MOn)

H = V(H) the variety generated by the hexagon benzene ring.

The set of all ortholattice varieties is a complete lattice ordered
by inclusion. V ∧W = V ∩W and V ∨W = V(V ∪W)
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The lattice ΛOL of varieties of ortholattices

OL

OML

MOL

MO2∨H ? ?

H

MOω

MO5

MO4

MO3 (5)23(3)2322+23

MO2

BA

T A partial diagram of ΛOL|ΛOL| = 2ℵ0
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Equational bases for some varieties

Baker [1972] proved that any congruence distributive variety
that is generated by a finite algebra has a finite equational basis.

For bounded lattices L,M the (glued) horizontal sum L +h M is
the disjoint union with the bounds identified. If L,M are
ortholattices, so is L +h M, and the orthomodular identity is
preserved.

Bruns and Kalmbach [1971] found equational bases for all varieties
of orthomodular lattices that are generated by finite horizontal
sums of finite Boolean algebras.

In particular, MO2 has a 3-variable equational basis
c(x , y) + c(x , z) + c(y , z) = 1, where c(x , y) = xy+x ′y+xy ′+x ′y ′.

Peter Jipsen Chapman University, California, USA
On equational bases for the benzene ortholattice and P lonka sums of generalized Boolean algebras 7



Lattice equational bases for Mn, MOn

M3 = Mn = an· · ·a1 Mω = · · ·

Jónsson [1968] Mω has basis E = {w(x+yz)(y+z) ≤ x+wy+wz}

MOω has the same lattice basis relative to OL.

Mn has basis En = E ∪ {w ·
∏

1≤i<j≤n
(xi + xj) ≤ wx1 + wx2 + · · ·+ wxn}

E.g. M3 has basis w(x1 + x2)(x1 + x3)(x2 + x3) ≤ wx1 +wx2 +wx3

M4 has a 5-variable basis, and MO2 has the same lattice basis.

MOn has a 2n+1-variable lattice basis E2n.
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An equational basis for the hexagon variety H?

In Sept 2020 John Harding sent me an email about finding an
equational basis for H.

Kirby Baker’s finite basis theorem is in principle constructive, but
in practice not feasible even for very small algebras.

Roberto Giuntini proposed a 3-variable basis
B = {(x + y)(x + z)(x ′ + yz) = (x + yz)(x ′ + yz),

(x + y)(x ′ + y) + xy ′ = x + y}
McKenzie [1972] found a 4-variable basis for the lattice variety N5

M = {w(x + y)(x + z) ≤ w(x + yz) + wy + wz ,
w(x + y(w + z)) = w(x + wy) + w(wx + yz)}

We also investigated whether this is a basis for H, but (at that
time) no progress after a few weeks.
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When is an OL variety defined by lattice equations?

Joint work with J.B. Nation and Ralph Freese (Jan 2022).

RdK denotes the lattice reduct of an ortholattice K .

Let ΛL be the lattice of varieties of lattices and define
ρ : ΛOL → ΛL by ρ(V) = V({RdK | K ∈ V}).

(i) Describe the range of ρ.

(ii) When is a variety V of ortholattices determined by an
equational basis of ρ(V)?

Note: Varieties in the range of ρ are self-dual.

If k is odd then V(Mk) is not in the range of ρ.
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An embedding h : L ↪→
∏

Li is subdirect if (πi ◦ h)[L] = Li for all i ∈ I

L is subdirectly irreducible if L
sd
↪→

∏
Li implies L ∼= Li for some i ∈ I

Theorem

Let L be a finite s.i. lattice. Then L is a lattice-subdirect factor of
an ortholattice if and only if there exists an ortholattice S such

that RdS
sd
↪→ L× Ld , where Ld is the dual of L.

Proof (outline).

Let K ∈ OL and θ a lattice congruence with (RdK )/θ ∼= L.
On K define θ′ by xθ′y ⇐⇒ x ′θy ′.
Then θ′ is a lattice congruence (by De Morgan’s law),
(RdK )/θ′ ∼= Ld and θ∩θ′ is an ortholattice congruence
(since xθ∩θ′y ⇐⇒ x ′θ′∩θy ′). So take S = K/θ∩θ′, then

RdS
sd
↪→ RdK/θ × RdK/θ′ ∼= L× Ld .
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Deciding if V(L× Ld) is in the range of ρ

For a finite s.i. lattice L, check if there exists a subdirectly
embedded sublattice S of L× Ld that supports an orthocomplement.

Example: V(N5 × Nd
5 ) = V(N5) = ρ(V(H)) since H

sd
↪→ N5 × Nd

5 .

×
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Any lattice basis for V(N5) is a basis for V(H)

Let K be an ortholattice such that RdK ∈ V(N5).

Then RdK has a subdirect embedding into a product of copies of
N5 and 2.

As in the proof of the preceding theorem, every N5-congruence
θ ∈ Con(RdK ) is paired with θ′ = {(x , y) | x ′θy ′}, and θ̄ := θ ∩ θ′
is an ortholattice congruence.

Thus we get an embedding of K into a product of K/θ̄ and copies
of 2, where θ ranges over all N5-congruences.

Since K/θ̄ is an orthocomplemented sublattice of N5 × N5, it
suffices to check that all subdirect sublattices of N5 × N5 that
admit an orthocomplement are isomorphic to H.
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Any lattice basis for V(N(L)) is a basis for V(L + Ld)

This was first checked with a computer calculation for N5 × N5.

Later generalized by hand to cover all lattices N(L) = L + {c}
where L is a finite subdirectly irreducible lattice.

(For lattices L, M the (loose) parallel sum L + M is the disjoint
union of L and M with a new 0, 1 added.)

Note: L + Ld is orthocomplemented by the map x ↔ xd , 0↔ 1.

Theorem

For any finite subdirectly irreducible lattice L, the ortholattice
variety V(L + Ld) is determined by lattice identities.

H is covered by the case when L = 2.
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Lattices with several (nonisomorphic) orthocomplements

1

d ′e′f ′

fed

a′b′c ′

cba

0
23 +h 23

1

a′b′c ′

fed

d ′e′f ′

cba

0
K

These two ortholattices cannot be distinguished by lattice
identities.

However 23 +h 23 is orthomodular, whereas H is a subalgebra of K .
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Recall: ΛOL lattice of ortholattice varieties

OL

OML

MOL

MO2∨H ? ?

H

MOω

MO5

MO4

MO3 (5)23(3)2322+23

MO2

BA

T A partial diagram of ΛOL|ΛOL| = 2ℵ0
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T = C1

D = C2

N5M3

M4 M32 M3 ∨ N5 L1 L2 L3 L4 L5 L6 L10 L11 L12L13L14L15

M5 M33A1A2A3F7 V1 V8L16 L25L
d
16 Ld

25P1 P10K1 K6K
d
1 Kd

6 L1
6 L1

10L
1
11G

1
dL

1
12G

1L1
13L

1
14L

1
15

· · · · · · · · · · · · · · · · · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

M6 M34 L2
6 L2

10L
2
11G

2
dL

2
12G

2L2
13L

2
14L

2
15

Mω

M

M ∨ N5

L

AD

Compare with the lattice ΛL of lattice varieties
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Nine ortholattices that generate covers of V(H)

O1 O2 O3 O4 O5 O6

O7 O8 O9

O5 shows that a basis for V(H) requires 3 variables.
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Other subdirectly irreducible ortholattices

Q1 Q2 Q3 Q4 Q5 Q6

Q7 Q8 R1 R2 R3 R4
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More details of the lattice ΛOL of ortholattice varieties

OL

OML

MOL

· · ·R4R3R2R1

· · ·Q8Q7Q6Q5Q4Q3Q2Q1

O9O8O7O6O5O4O3O2O1MO2∨H

H

MOω

MO5

MO4

MO3 (5)23(3)2322+23

MO2

BA

T A partial diagram of ΛOL
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A full list of covering varieties gives a test for bases

Suppose V is a variety and C is a collection of varieties that
strongly cover V, i.e. for all varieties W, V ⊂ W implies U ⊆ W
for some U ∈ C.

Then E is a basis for V iff V |= E and for all U ∈ C, U 6|= E .

Jónsson and Rival [1979] M3 ∨N5,V(L1), . . . ,V(L15) strongly
cover N5. (L1, . . . , L15 were found by McKenzie [1972].)

⇒ can easily test lattice identities to see if they are a basis for N5.

If so, then by the preceding results they are also a basis for H.

But to test ortholattice identities we need a full list of covers of H
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Is MO2 ∨H,O1, ...,O9 a full list of covers of H?

So far we have proved the following result.

Theorem

If a finite ortholattice K has an atom a such that ↓a′ is not a
prime ideal, then there exists x ∈ K such that Sg(a, x) contains
MO2 or Oj for some j ∈ {1, 2, 3, 4, 8}.

Now can assume that K is a finite ortholattice in which ↓a′ is a
prime ideal for every atom a. If K /∈ H then show K contains MO2

or Oj for some j ∈ {4, 5, 6, 7, 9}.
Last step would be to remove finiteness of K .

If MO2 ∨H,O1, ...,O9 is a full list of covers of H then
Roberto Giuntini’s identities B are also a basis for H.
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Part 2

Joint work with Melissa Sugimoto, U. Leiden

Involutive `-semilattices and Plonka sums of generalized BAs
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Involutive po-semigroups

An involutive po-semigroup or ipo-semigroup (A,≤, ·,∼,−) is
a poset (A,≤) with an associative binary operation ·, two unary
order-reversing operations ∼,− that are an involutive pair:
∼−x = x = −∼x , and for all x , y , z ∈ A

(ires) xy ≤ z ⇐⇒ x ≤ −(y · ∼z) ⇐⇒ y ≤ ∼(−z · x).

It follows that ipo-semigroups are residuated.

Hence · is order-preserving.

A convenient equivalent formulation of (ires):

(rotate) xy ≤ z ⇐⇒ y · ∼z ≤ ∼x ⇐⇒ −z · x ≤ −y .
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Involutive po-monoids

A ipo-monoid (A,≤, ·, 1,∼,−) is an ipo-semigroup (A,≤, ·,∼,−)
such that 1x = x = x1.

In this case we denote −1 by 0 and (rotate) can be replaced by

x ≤ y ⇐⇒ x · ∼y ≤ 0 ⇐⇒ −y · x ≤ 0.

Note that ∼1 = 0, 1 = −0 = ∼0.

The class of ipo-monoids includes all groups (if ≤ is =) and

all partially ordered groups where ∼x = −x = x−1.

MV-algebras are ipo-monoids, in fact i`-monoids (∨,∧ are definable)
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Involutive po-semilattices

An ipo-semilattice (A,≤, ·,−) is an ipo-semigroup where · is
commutative and idempotent. (Commutativity implies ∼x = −x .)

In an ipo-semilattice there is another partial order v called the
multiplicative order, defined by x v y ⇐⇒ xy = x .

Examples of ipo-semilattices: Boolean algebras (A,≤, ·,−),
where join is −(−x · −y).

They form a po-subvariety defined by x · −x ≤ y · −y .

More generally, ipo-semilattices can be visualized by the two
Hasse diagrams for ≤, v
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Visualizing ipo-semilattices

>
b=−b−a=a

⊥ ≤

ba
>
⊥ v

Figure: Partial order and multiplicative order of the smallest
ipo-semilattice that does not have an identity element.

>

⊥
≤

>

⊥
v

Figure: Smallest ipo-semilattice that is not lattice-ordered.
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Unital involutive po-semilattices

An element t in an ipo-semilattice is the multiplicative identity
iff t is the top element in the multiplicative order.

Hence an ipo-semilattice is unital if and only if the multiplicative
order has a top element.

Sugihara monoid reducts without ∧,∨ are unital ipo-semilattices.

For finite commutative idempotent involutive residuated lattices
(CIdInRL for short) a full structural description has been given
by [J., Tuyt, Valota 2021].

An i`-semigroup (A,∨, ·,∼,−) is an ipo-semigroup where the
poset is a lattice and ∨ (hence ∧) are part of the signature.
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Structural description for ipo-semilattices

We give a description of finite ipo-semilattices based on P lonka
sums of generalized Boolean algebras.

Similar methods are used by Jenei [2022] to describe the structure
of even and odd involutive commutative residuated chains.

Inspired by a duality for involutive bisemilattices by Bonzio, Loi,
Peruzzi [2019], we give a more compact dual description of finite
ipo-semilattices based on semilattice direct systems of partial
maps between sets.
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Lemma 1

Let A be a residuated po-semilattice and let x , y ∈ A such that
x\x = y\y . Then

1 x v y ⇐⇒ x ≤ y ,

2 x\x = xy\xy ,

3 if y\y = z\z then x\x = yz\yz , and

4 if y v z v x\x then x\x = z\z .
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Defining an Equivalence Relation

Define an equivalence relation ≡ on A by x ≡ y ⇐⇒ x\x = y\y .
Part (1) of the previous lemma shows that the partial order ≤ and
the semilattice order v agree on each equivalence class of ≡.

The term x\x is denoted by 1x .

Lemma 2

Let A be an rpo-semilattice and define ≡ as above. Then each
equivalence class of ≡ is a semilattice ([x ]≡, ·) with identity
element 1x .

Note: In an ipo-semilattice 1x = x\x = −(x · −x).
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In an ipo-semilattice define 0x = −1x or equivalently 0x = x · −x .

Lemma 3

Let A be an ipo-semilattice and define

Bx = {a ∈ A | 0x v a v 1x}.

Then

1 the intervals Bx are closed under negation, i.e.,
y ∈ Bx =⇒ −y ∈ Bx ,

2 x v y implies 0x v 0y and 0x ≤ 0y ,

3 0x v 0y if and only if 0x ≤ 0y ,

4 x v y implies 1x v 1y , and

5 1x · 1y = 1xy .
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ipo-semilattices are unions of Boolean algebras

Define x + y = −(−y · −x).

Theorem 1. Partition by Boolean Algebras

Given an ipo-semilattice A, the semilattice intervals
(Bx , ·,+,−, 0x , 1x) are Boolean algebras and they partition A.

≤

12

0211

01 v ≤

12

02
11

01 v
Figure: (Right) unital ipo-semilattice that is not an i`-semilattice.

The Boolean components are denoted by thick lines and are
connected by homomorphisms (thin lines). For CIdInRL the above
theorem is due to [J., Tuyt, Valota 2021].
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Note: A finite i`-semilattice is a (nonunital) commutative
idempotent involutive (i.e. Frobenius) quantale.
Now we can construct all these algebras (only v is shown):

1 2 S3 S4 S4,2 S4,3 S5 S5,2 S5,3 S5,4 S6

S6,2 S6,3 S6,4 S6,5 S6,6 S6,7 S6,8 S6,9 S6,10
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Subdirectly irreducible unital i`-semilattices

Lemma

Let A be a unital ipo-semilattice. If 0x = 1x then x = 1, hence all
Boolean components except possibly the top one are nontrivial.

A unital ipo-semilattice is called odd if it satisfies the identity
−1 = 1 (i.e., 0 = 1).

Theorem 2.

A finite unital ipo-semilattice A is odd if and only if |A| is odd.

A finite unital i`-semilattice A is subdirectly irreducible if and only
if 1 has a unique coatom in the monoidal order.

# of elem. n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

unital i`-semilats 1 1 1 2 2 4 4 9 10 21 22 49 52 114 121 270
subdir. irreducible 0 1 1 1 2 2 4 4 9 10 21 22 49 52 114 121
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Some join-irreducible subvarieties of unital i`-semilattices

Let Si ,j = Var(Si ,j). unital i`

SM

OSM

S8,2S8

S6,2S6S7,2S7 S7,3

S4S5,2S5

S3 BA

T(O)SM = (odd) Sugihara monoids
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Some equational bases

The previous diagram is complete below SM and S5,2.

Hence we have full lists of covering varieties for proper subvarieties
of SM (excluding OSM).

BA is covered only by S3∨BA, so x0 = 0 is a basis relative to SM

S3 has (x ∨ −x)(0 ∨ −y) = x ∨ −(xy) as basis relative to OSM.

S4 has 0 ≤ x ∨ −(xy) as basis relative to SM.

S5,2 has (x ∨ −x)(0 ∨ −y) = x ∨ −(xy) as basis relative to odd
unital i`-semilattices.
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Theorem 3.

Let A be an i`-semilattice. Then for every x ∈ A the multiplicative
downset of 1x is a unital sub-i`-semilattice.

Proof

Let Ax denote the multiplicative downset of 1x . If y · 1x = y
and z · 1x = z then (y ∨ z) · 1x = (y · 1x) ∨ (z · 1x) = y ∨ z
since · distributes over ∨. Therefore Ax is closed under join.

Each Boolean component is closed under −, so it is clear that
Ax is closed under −.

By DeMorgan laws, closure under − and ∨ guarantees closure
under ∧.

Therefore Ax is a sub-i`-semilattice.
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≤ v

Figure: An 8-element i`-semilattice. Its multiplicative order shows its
unital sub-i`-semilattices.
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Semilattice direct systems and P lonka sums

A semilattice direct system (or sd-system for short) is a triple
B = (Bi , hij , I ) such that

I is a semilattice,

{Bi : i ∈ I} is a family of algebras of the same type with
disjoint universes,

hij : Bi → Bj is a homomorphism for all i ≥ j ∈ I such that
hii is the identity on Bi and for all i ≥ j ≥ k , hjk ◦ hij = hik .

The P lonka sum over B is the algebra P l(B) =
⋃

i∈I Bi with each
fundamental operation gB defined by

gB(bi1 , . . . , bin) = gBj (hi1j(bi1), . . . , hinj(bin))

where bik ∈ Bik and j = i1 · · · in is the semilattice meet of
i1, . . . , in ∈ I .
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i`-semilattices are multiplicative P lonka sums

Theorem 4.

Let A be an i`-semilattice, and define I = ({1x | x ∈ A}, ·). Then

1 B = (Bi , hij , I ) is a sd-system of Boolean algebras, where each
hij : Bi → Bj is a generalized Boolean algebra homomorphism
(i.e., mapping 1i to 1j but not 0i to 0j) defined by
hij(x) = x · j ,

2 the image hij [Bi ] is a proper filter,

3 the P lonka sum P l(B) reconstructs the reduct algebra
(A, ·,−).

Reconstructing the lattice order takes more work.
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Colimits of finite unital sub-i`-semilattices

Theorem 5.

Let A be a finite i`-semilattice, define I = ({1x | x ∈ A}, ·) and let
Ai be the multiplicative downset of i ∈ I .
Then {Ai : i ∈ I} is a system of finite unital subalgebras of A such
that Ai ∩ Aj = Aij and A =

∑
i∈I Ai .

By [J., Tuyt, Valota 2021] each finite unital i`-semilattice is
determined by its monoidal semilattice, so the above theorem
extends this result to nonunital i`-semilattices.

The same result is conjectured to hold for ipo-semilattices.
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Dual Representation by Partial Functions Between Sets

Partial Functions

Definition. A proper partial function f : X → Y is a function
from U to Y where U ( X is the domain of f .

Developing a Dual Representation

Given an ipo-semilattice A, it is a partition of Boolean components
by Theorem 1.

Each Boolean component is determined by its set of atoms.

The partial functions map between sets of atoms (opposite to
homomorphisms).

A dual representation of sd-systems of Boolean algebras gives a
much more compact way of drawing finite ipo-semilattices.
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Dual Representation by Partial Functions Between Sets

Every finite Boolean algebra Bi is isomorphic to the powerset
Boolean algebra of its finite set Xi of atoms.

For i ≤ j , the generalized BA homomorphism hji corresponds to
the partial map fij : Xi → Xj defined by

fij(a) = b ⇐⇒ a ≤ hji (b) and a � hji (0j).

A sd-system of proper partial maps is a triple X = (Xi , fij , I )
such that

I is a semilattice,

{Xi : i ∈ I} is a family of disjoint sets, and

fij : Xi → Xj is a proper partial map for all i ≤ j ∈ I such that
fii = idXi

and for all i ≤ j ≤ k , fjk ◦ fij = fik .
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Dual Representation by Partial Functions Between Sets

Lemma

In every ipo-semilattice x , y v z =⇒ 0x · 0y = 0xy .

An sd-system of partial maps is covering if for all i , j ≤ k with
i · j = `, dom(f`,i ) ∪ dom(f`,j) = X`.

Corollary

Every sd-system of partial maps of an ipo-semilattice is covering.

1y1x

0x 0y

1y

0 = 1

1x

0x 0y
∅

Figure: A nonunital ipo-semilattice that has no unital completion
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Beyond idempotence and commutativity

Current joint work with Sid Lodhia and José Gil-Ferez

For a suitable subvariety of involutive residuated lattices, the
finite members are disjoint unions of MV-algebras.

This uses a P lonka sum with generalized MV-algebra
homomorphisms.

The dual representation of partial functions between sets
generalizes to a dual representation of partial functions
between multisets.

In a more general setting, a large class of involutive residuated
lattices can be constructed from disjoint unions of integral
involutive residuated lattices.
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