On equational bases for the benzene ortholattice and Płonka sums of generalized Boolean algebras

Peter Jipsen

Chapman University, California, USA

Trends in Logic 2022 University of Cagliari, Italy, July 18–20

Outline

Part 1: Joint work with **J.B. Nation and Ralph Freese**, U. Hawaii Ortholattice varieties and some equational bases

Part 2: Joint work with **Melissa Sugimoto**, U. Leiden Involutive ℓ -semilattices and Plonka sums of generalized Boolean algebras

Ortholattices

An **ortholattice** $(A, +, \cdot, ', 0, 1)$ is a lattice $(A, +, \cdot)$ with a unary **orthocomplement** ' that satisfies

$$x'' = x$$
, $(x + y)' = x' \cdot y'$, $x \cdot x' = 0$ and $x + x' = 1$.

Examples: Boolean algebras, $MO_n = a_1 \propto a'_1 \wedge \cdots \wedge a_n$

Benzene hexagon
$$H = b$$
 Not an OL: N_5

Varieties of ortholattices

A variety of ortholattices is a class of all ortholattices that satisfy a given set E of ortholattice identities.

In this case E is an **equational basis** for the variety it defines.

Example: $T = \{x = y\}$ is a basis for all **one-element** ortholattices

 $D = \{x(x' + y) + y = y\}$ is an **OL basis** for all Boolean algebras

 $M = \{(xz + y)z = xz + yz\}$ is a basis for all **modular** ortholattices

 $O = \{x + x'(x + y) = x + y\}$ is a basis for all **orthomodular** lattices

Generating varieties of ortholattices

Any **intersection** of varieties is again a variety.

For a class K of ortholattices, let V(K) be the **smallest variety** containing K.

By **Birkhoff's HSP theorem**, $\mathbb{V}(\mathcal{K}) = \mathbb{HSP}(\mathcal{K})$, where

 $\mathbb{P}=\mathsf{all}$ products, $\mathbb{S}=\mathsf{all}$ subalgebras,

 $\mathbb{H}=$ all homomorphic images of members of $\mathcal{K}.$

Examples: $\mathcal{MO}_n = \mathbb{V}(MO_n)$

 $\mathcal{H} = \mathbb{V}(H)$ the variety generated by the **hexagon benzene ring**.

The set of all ortholattice varieties is a **complete lattice** ordered by inclusion. $\mathcal{V} \wedge \mathcal{W} = \mathcal{V} \cap \mathcal{W}$ and $\mathcal{V} \vee \mathcal{W} = \mathbb{V}(\mathcal{V} \cup \mathcal{W})$

The lattice $\Lambda_{\mathcal{OL}}$ of varieties of ortholattices

Peter Jipsen

Equational bases for some varieties

Baker [1972] proved that any **congruence distributive variety** that is generated by a finite algebra has a **finite equational basis**.

For bounded lattices L, M the (glued) **horizontal sum** $L +_h M$ is the disjoint union with the bounds identified. If L, M are ortholattices, so is $L +_h M$, and the **orthomodular identity is preserved**.

Bruns and Kalmbach [1971] found equational bases for all varieties of orthomodular lattices that are generated by **finite horizontal** sums of finite Boolean algebras.

In particular, \mathcal{MO}_2 has a **3-variable equational basis** c(x,y)+c(x,z)+c(y,z)=1, where c(x,y)=xy+x'y+xy'+x'y'.

Lattice equational bases for M_n , MO_n

$$M_3 = 0$$
 $M_n = a_1$ $M_\omega = 0$

Jónsson [1968] \mathcal{M}_{ω} has basis $E = \{w(x+yz)(y+z) \le x+wy+wz\}$

 \mathcal{MO}_{ω} has the same **lattice basis** relative to \mathcal{OL} .

$$\mathcal{M}_n$$
 has basis $E_n = E \cup \{w \cdot \prod_{1 \le i < j \le n} (x_i + x_j) \le wx_1 + wx_2 + \cdots + wx_n\}$

E.g. \mathcal{M}_3 has basis $w(x_1 + x_2)(x_1 + x_3)(x_2 + x_3) \le wx_1 + wx_2 + wx_3$

 \mathcal{M}_4 has a **5-variable basis**, and \mathcal{MO}_2 has the **same lattice** basis.

 \mathcal{MO}_n has a 2n+1-variable lattice basis E_{2n} .

An equational basis for the hexagon variety \mathcal{H} ?

In Sept 2020 **John Harding** sent me an email about finding an equational basis for \mathcal{H} .

Kirby Baker's finite basis theorem is in principle **constructive**, but in practice not feasible even for very small algebras.

Roberto Giuntini proposed a 3-variable basis

$$B = \{(x+y)(x+z)(x'+yz) = (x+yz)(x'+yz), (x+y)(x'+y) + xy' = x+y\}$$

McKenzie [1972] found a 4-variable basis for the lattice variety \mathcal{N}_5

$$M = \{w(x+y)(x+z) \le w(x+yz) + wy + wz, w(x+y(w+z)) = w(x+wy) + w(wx+yz)\}$$

We also investigated whether this is a basis for \mathcal{H} , but (at that time) no progress after a few weeks.

When is an OL variety defined by lattice equations?

Joint work with J.B. Nation and Ralph Freese (Jan 2022).

RdK denotes the **lattice reduct** of an ortholattice K.

Let $\Lambda_{\mathcal{L}}$ be the lattice of varieties of lattices and define $\rho: \Lambda_{\mathcal{OL}} \to \Lambda_{\mathcal{L}}$ by $\rho(\mathcal{V}) = \mathbb{V}(\{\operatorname{Rd} K \mid K \in \mathcal{V}\})$.

- (i) Describe the range of ρ .
- (ii) When is a variety \mathcal{V} of ortholattices determined by an equational basis of $\rho(\mathcal{V})$?

Note: Varieties in the range of ρ are **self-dual**.

If k is odd then $\mathbb{V}(M_k)$ is **not** in the range of ρ .

An embedding $h: L \hookrightarrow \prod L_i$ is **subdirect** if $(\pi_i \circ h)[L] = L_i$ for all $i \in I$ L is **subdirectly irreducible** if $L \stackrel{sd}{\hookrightarrow} \prod L_i$ implies $L \cong L_i$ for some $i \in I$

Theorem

Let L be a finite s.i. lattice. Then L is a lattice-subdirect factor of an ortholattice if and only if there exists an ortholattice S such that $RdS \stackrel{sd}{\hookrightarrow} L \times L^d$, where L^d is the dual of L.

Proof (outline).

Let $K \in \mathcal{OL}$ and θ a lattice congruence with $(\operatorname{Rd} K)/\theta \cong L$. On K define θ' by $x\theta'y \iff x'\theta y'$. Then θ' is a lattice congruence (by De Morgan's law), $(\operatorname{Rd} K)/\theta' \cong L^d$ and $\theta \cap \theta'$ is an ortholattice congruence (since $x\theta \cap \theta' y \iff x'\theta' \cap \theta y'$). So take $S = K/\theta \cap \theta'$, then $\operatorname{Rd} S \stackrel{sd}{\hookrightarrow} \operatorname{Rd} K/\theta \times \operatorname{Rd} K/\theta' \cong L \times L^d$.

Deciding if $\mathbb{V}(L \times L^d)$ is in the range of ρ

For a finite s.i. lattice L, check if there exists a **subdirectly** embedded sublattice S of $L \times L^d$ that supports an orthocomplement.

Example: $\mathbb{V}(N_5 \times N_5^d) = \mathbb{V}(N_5) = \rho(\mathbb{V}(H))$ since $H \stackrel{sd}{\hookrightarrow} N_5 \times N_5^d$.

Any lattice basis for $\mathbb{V}(N_5)$ is a basis for $\mathbb{V}(H)$

Let K be an ortholattice such that $RdK \in V(N_5)$.

Then RdK has a subdirect embedding into a product of copies of N_5 and 2.

As in the proof of the preceding theorem, every N_5 -congruence $\theta \in \text{Con}(\text{Rd}K)$ is paired with $\theta' = \{(x,y) \mid x'\theta y'\}$, and $\bar{\theta} := \theta \cap \theta'$ is an ortholattice congruence.

Thus we get an embedding of K into a product of $K/\bar{\theta}$ and copies of 2, where θ ranges over all N_5 -congruences.

Since $K/\bar{\theta}$ is an orthocomplemented sublattice of $N_5 \times N_5$, it suffices to check that all subdirect sublattices of $N_5 \times N_5$ that admit an orthocomplement are isomorphic to H.

Any lattice basis for $\mathbb{V}(N(L))$ is a basis for $\mathbb{V}(L+L^d)$

This was first checked with a computer calculation for $N_5 \times N_5$.

Later generalized by hand to cover all lattices $N(L) = L + \{c\}$ where L is a finite subdirectly irreducible lattice.

(For lattices L, M the (loose) **parallel sum** L + M is the disjoint union of L and M with a **new** 0, 1 added.)

Note: $L + L^d$ is orthocomplemented by the map $x \leftrightarrow x^d$, $0 \leftrightarrow 1$.

Theorem

For any finite subdirectly irreducible lattice L, the ortholattice variety $\mathbb{V}(L+L^d)$ is determined by lattice identities.

 \mathcal{H} is covered by the case when L=2.

Lattices with several (nonisomorphic) orthocomplements

These two ortholattices cannot be distinguished by lattice identities.

However $2^3 +_h 2^3$ is orthomodular, whereas H is a subalgebra of K.

Recall: $\Lambda_{\mathcal{OL}}$ lattice of ortholattice varieties

Peter Jipsen

Peter Jipsen

Nine ortholattices that generate covers of $\mathbb{V}(H)$

 \mathcal{O}_5 shows that a basis for $\mathbb{V}(H)$ requires 3 variables.

Other subdirectly irreducible ortholattices

More details of the lattice $\Lambda_{\mathcal{OL}}$ of ortholattice varieties

Peter Jipsen

A full list of covering varieties gives a test for bases

Suppose $\mathcal V$ is a variety and $\mathcal C$ is a collection of varieties that **strongly cover** $\mathcal V$, i.e. for all varieties $\mathcal W$, $\mathcal V \subset \mathcal W$ implies $\mathcal U \subseteq \mathcal W$ for some $\mathcal U \in \mathcal C$.

Then E is a basis for V iff $V \models E$ and for all $U \in C$, $U \not\models E$.

Jónsson and Rival [1979] $\mathcal{M}_3 \vee \mathcal{N}_5$, $\mathbb{V}(L_1), \dots, \mathbb{V}(L_{15})$ strongly cover \mathcal{N}_5 . $(L_1, \dots, L_{15}$ were found by **McKenzie** [1972].)

 \Rightarrow can easily test lattice identities to see if they are a basis for \mathcal{N}_5 .

If so, then by the **preceding results** they are also a basis for \mathcal{H} .

But to test ortholattice identities we need a full list of covers of ${\cal H}$

Is $\mathcal{MO}_2 \vee \mathcal{H}, \mathcal{O}_1, ..., \mathcal{O}_9$ a full list of covers of \mathcal{H} ?

So far we have proved the following result.

Theorem

If a finite ortholattice K has an atom a such that $\downarrow a'$ is not a prime ideal, then there exists $x \in K$ such that Sg(a,x) contains MO_2 or O_j for some $j \in \{1,2,3,4,8\}$.

Now can assume that K is a finite ortholattice in which $\downarrow a'$ is a prime ideal for every atom a. If $K \notin \mathcal{H}$ then show K contains MO_2 or O_j for some $j \in \{4, 5, 6, 7, 9\}$.

Last step would be to remove finiteness of K.

If $\mathcal{MO}_2 \vee \mathcal{H}, \mathcal{O}_1, ..., \mathcal{O}_9$ is a full list of covers of \mathcal{H} then **Roberto Giuntini's identities** B are also a basis for \mathcal{H} .

Some references for Part 1

- G. Bruns and G. Kalmbach: Varieties of orthomodular lattices, Canadian J. Math., Vol. XXIII, No. 5, 1971, pp. 802–810
- B. Jónsson: Equational classes of lattices. Math. Scand., 22:187–196, 1968.
- B. Jónsson and I. Rival: Lattice varieties covering the smallest nonmodular variety. Pacific J. Math., 82(2):463–478, 1979.
- R. McKenzie: Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc., 174:143, 1972.

Part 2

Joint work with Melissa Sugimoto, U. Leiden

Involutive $\ell\text{-semilattices}$ and Plonka sums of generalized BAs

Involutive po-semigroups

An **involutive po-semigroup** or **ipo-semigroup** $(A, \leq, \cdot, \sim, -)$ is a poset (A, \leq) with an associative binary operation \cdot , two unary **order-reversing operations** $\sim, -$ that are an **involutive pair**: $\sim -x = x = -\infty x$, and for all $x, y, z \in A$

(ires)
$$xy \le z \iff x \le -(y \cdot \sim z) \iff y \le \sim (-z \cdot x).$$

It follows that ipo-semigroups are residuated.

Hence · is order-preserving.

A convenient **equivalent** formulation of (ires):

(rotate)
$$xy \le z \iff y \cdot \sim z \le \sim x \iff -z \cdot x \le -y$$
.

Involutive po-monoids

A **ipo-monoid** $(A, \leq, \cdot, 1, \sim, -)$ is an ipo-semigroup $(A, \leq, \cdot, \sim, -)$ such that 1x = x = x1.

In this case we denote -1 by 0 and (rotate) can be replaced by

$$x \le y \iff x \cdot \sim y \le 0 \iff -y \cdot x \le 0.$$

Note that $\sim 1 = 0$, $1 = -0 = \sim 0$.

The class of ipo-monoids includes all groups (if \leq is =) and all partially ordered groups where $\sim x = -x = x^{-1}$.

MV-algebras are ipo-monoids, in fact $i\ell$ -monoids (\vee , \wedge are definable)

Involutive po-semilattices

An **ipo-semilattice** $(A, \leq, \cdot, -)$ is an ipo-semigroup where \cdot is commutative and idempotent. (Commutativity implies $\sim x = -x$.)

In an ipo-semilattice there is another partial order \sqsubseteq called the **multiplicative order**, defined by $x \sqsubseteq y \iff xy = x$.

Examples of ipo-semilattices: Boolean algebras $(A, \leq, \cdot, -)$, where join is $-(-x \cdot -y)$.

They form a **po-subvariety** defined by $x \cdot -x \le y \cdot -y$.

More generally, ipo-semilattices can be visualized by the **two** Hasse diagrams for \leq , \sqsubseteq

Visualizing ipo-semilattices

$$-a=a$$
 $b=-b$
 \bot
 $b=-b$
 \bot

Figure: Partial order and multiplicative order of the smallest ipo-semilattice that does not have an identity element.

Figure: Smallest ipo-semilattice that is not lattice-ordered.

Unital involutive po-semilattices

An element t in an ipo-semilattice is the **multiplicative identity** iff t is the top element in the multiplicative order.

Hence an ipo-semilattice is **unital** if and only if the multiplicative order has a **top element**.

Sugihara monoid reducts without \land, \lor are unital ipo-semilattices.

For finite commutative idempotent involutive residuated lattices (CldlnRL for short) a **full structural description** has been given by **[J., Tuyt, Valota 2021]**.

An **i** ℓ -semigroup $(A, \vee, \cdot, \sim, -)$ is an ipo-semigroup where the **poset is a lattice** and \vee (hence \wedge) are part of the signature.

Structural description for ipo-semilattices

We give a description of finite ipo-semilattices based on **Płonka** sums of generalized Boolean algebras.

Similar methods are used by Jenei [2022] to describe the structure of **even and odd involutive commutative residuated chains**.

Inspired by a duality for involutive bisemilattices by Bonzio, Loi, Peruzzi [2019], we give a more compact dual description of finite ipo-semilattices based on **semilattice direct systems of partial maps between sets**.

Lemma 1

Let A be a **residuated po-semilattice** and let $x, y \in A$ such that $x \setminus x = y \setminus y$. Then

- $2 x \backslash x = xy \backslash xy,$

Defining an Equivalence Relation

Define an equivalence relation \equiv on A by $x \equiv y \iff x \setminus x = y \setminus y$. Part (1) of the previous lemma shows that the partial order \leq and the semilattice order \sqsubseteq agree on each equivalence class of \equiv .

The term $x \setminus x$ is denoted by 1_x .

Lemma 2

Let A be an rpo-semilattice and define \equiv as above. Then each equivalence class of \equiv is a semilattice ($[x]_{\equiv}$, ·) with identity element 1_x .

Note: In an ipo-semilattice $1_x = x \setminus x = -(x \cdot -x)$.

In an ipo-semilattice define $0_x = -1_x$ or equivalently $0_x = x \cdot -x$.

Lemma 3

Let A be an ipo-semilattice and define

$$\mathbb{B}_{x} = \{ a \in A \mid 0_{x} \sqsubseteq a \sqsubseteq 1_{x} \}.$$

Then

- ① the intervals \mathbb{B}_x are closed under negation, i.e., $v \in \mathbb{B}_x \implies -v \in \mathbb{B}_x$.
- $x \sqsubseteq y \text{ implies } 0_x \sqsubseteq 0_y \text{ and } 0_x \le 0_y,$

- $\mathbf{0} \ \mathbf{1}_{x} \cdot \mathbf{1}_{y} = \mathbf{1}_{xy}.$

ipo-semilattices are unions of Boolean algebras

Define $x + y = -(-y \cdot -x)$.

Theorem 1. Partition by Boolean Algebras

Given an ipo-semilattice A, the semilattice intervals $(\mathbb{B}_x, \cdot, +, -, 0_x, 1_x)$ are Boolean algebras and they **partition** A.

Figure: (Right) unital ipo-semilattice that is **not** an i ℓ -semilattice.

The Boolean components are denoted by **thick lines** and are connected by homomorphisms (thin lines). For **CldInRL** the above theorem is due to **[J., Tuyt, Valota 2021]**.

Note: A finite $i\ell$ -semilattice is a (nonunital) commutative idempotent involutive (i.e. Frobenius) quantale.

Now we can construct all these algebras (only \sqsubseteq is shown):

Subdirectly irreducible unital iℓ-semilattices

Lemma

Let **A** be a unital ipo-semilattice. If $0_x = 1_x$ then x = 1, hence all Boolean components except possibly the top one are nontrivial.

A unital ipo-semilattice is called **odd** if it satisfies the identity -1 = 1 (i.e., 0 = 1).

Theorem 2.

A finite unital ipo-semilattice **A** is odd if and only if |A| is odd.

A finite unital i ℓ -semilattice **A** is subdirectly irreducible if and only if 1 has a unique coatom in the monoidal order.

of elem.
$$n = 12345678910111213141516$$
 unital i ℓ -semilats a large 11 1 2 2 4 4 9 10 21 22 49 52 114 121 270 subdir. irreducible 0 1 1 1 2 2 4 4 9 10 21 22 49 52 114 121

Some join-irreducible subvarieties of unital i ℓ -semilattices

Some equational bases

The previous diagram is complete below \mathcal{SM} and $\mathcal{S}_{5,2}$.

Hence we have full lists of covering varieties for proper subvarieties of \mathcal{SM} (excluding \mathcal{OSM}).

 \mathcal{BA} is covered only by $\mathcal{S}_3 \vee \mathcal{BA}$, so x0 = 0 is a basis relative to \mathcal{SM}

 \mathcal{S}_3 has $(x \vee -x)(0 \vee -y) = x \vee -(xy)$ as basis relative to \mathcal{OSM} .

 S_4 has $0 \le x \lor -(xy)$ as basis relative to SM.

 $S_{5,2}$ has $(x \lor -x)(0 \lor -y) = x \lor -(xy)$ as basis relative to odd unital i ℓ -semilattices.

Theorem 3.

Let **A** be an $i\ell$ -semilattice. Then for every $x \in A$ the multiplicative downset of 1_x is a **unital** sub-i ℓ -semilattice.

Proof

- Let \mathbf{A}_X denote the multiplicative downset of $\mathbf{1}_X$. If $y \cdot \mathbf{1}_X = y$ and $z \cdot \mathbf{1}_X = z$ then $(y \vee z) \cdot \mathbf{1}_X = (y \cdot \mathbf{1}_X) \vee (z \cdot \mathbf{1}_X) = y \vee z$ since \cdot distributes over \vee . Therefore \mathbf{A}_X is closed under join.
- Each Boolean component is closed under -, so it is clear that
 A_x is closed under -.
- By DeMorgan laws, closure under and ∨ guarantees closure under ∧.

Therefore \mathbf{A}_{x} is a sub-i ℓ -semilattice.

Figure: An 8-element $i\ell$ -semilattice. Its multiplicative order shows its unital sub- $i\ell$ -semilattices.

Semilattice direct systems and Płonka sums

A semilattice direct system (or sd-system for short) is a triple $\mathbf{B} = (\mathbf{B}_i, h_{ij}, I)$ such that

- I is a semilattice,
- {B_i : i ∈ I} is a family of algebras of the same type with disjoint universes,
- $h_{ij}: \mathbf{B}_i \to \mathbf{B}_j$ is a homomorphism for all $i \geq j \in I$ such that h_{ii} is the identity on \mathbf{B}_i and for all $i \geq j \geq k$, $h_{jk} \circ h_{ij} = h_{ik}$.

The **Płonka sum** over **B** is the algebra $P_{\mathsf{f}}(\mathbf{B}) = \bigcup_{i \in I} \mathbf{B}_i$ with each fundamental operation $g^{\mathbf{B}}$ defined by

$$g^{\mathbf{B}}(b_{i_1},\ldots,b_{i_n})=g^{\mathbf{B}_j}(h_{i_1j}(b_{i_1}),\ldots,h_{i_nj}(b_{i_n}))$$

where $b_{i_k} \in \mathbf{B}_{i_k}$ and $j = i_1 \cdots i_n$ is the semilattice meet of $i_1, \ldots, i_n \in I$.

iℓ-semilattices are multiplicative Płonka sums

Theorem 4.

Let **A** be an i ℓ -semilattice, and define $I = (\{1_x \mid x \in A\}, \cdot)$. Then

- **9** $\mathbf{B} = (\mathbb{B}_i, h_{ij}, I)$ is a sd-system of Boolean algebras, where each $h_{ij} : \mathbb{B}_i \to \mathbb{B}_j$ is a generalized Boolean algebra homomorphism (i.e., mapping 1_i to 1_j but not 0_i to 0_j) defined by $h_{ij}(x) = x \cdot j$,
- ② the image $h_{ij}[\mathbb{B}_i]$ is a proper filter,
- **3** the Płonka sum $P_{t}(\mathbf{B})$ reconstructs the reduct algebra $(A, \cdot, -)$.

Reconstructing the lattice order takes more work.

Colimits of finite unital sub-i\(\ell\)-semilattices

Theorem 5.

Let **A** be a finite i ℓ -semilattice, define $I = (\{1_x \mid x \in A\}, \cdot)$ and let A_i be the multiplicative downset of $i \in I$.

Then $\{A_i : i \in I\}$ is a system of finite unital subalgebras of A such that $A_i \cap A_i = A_{ii}$ and $A = \sum_{i \in I} A_i$.

By [J., Tuyt, Valota 2021] each finite unital $i\ell$ -semilattice is determined by its monoidal semilattice, so the above theorem extends this result to nonunital $i\ell$ -semilattices.

The same result is conjectured to hold for ipo-semilattices.

Dual Representation by Partial Functions Between Sets

Partial Functions

Definition. A **proper partial function** $f: X \to Y$ is a function from U to Y where $U \subsetneq X$ is the domain of f.

Developing a Dual Representation

Given an ipo-semilattice \mathbf{A} , it is a partition of Boolean components by Theorem 1.

Each Boolean component is determined by its set of atoms.

The partial functions map between sets of atoms (opposite to homomorphisms).

A dual representation of sd-systems of Boolean algebras gives a much more compact way of drawing finite ipo-semilattices.

Dual Representation by Partial Functions Between Sets

Every finite Boolean algebra \mathbb{B}_i is **isomorphic** to the powerset Boolean algebra of its finite set X_i of atoms.

For $i \leq j$, the **generalized BA homomorphism** h_{ji} corresponds to the **partial map** $f_{ij}: X_i \rightarrow X_i$ defined by

$$f_{ij}(a) = b \iff a \le h_{ji}(b) \text{ and } a \nleq h_{ji}(0_j).$$

A sd-system of proper partial maps is a triple $\mathbf{X} = (X_i, f_{ij}, I)$ such that

- I is a semilattice,
- $\{X_i : i \in I\}$ is a family of disjoint sets, and
- $f_{ij}: X_i \to X_j$ is a proper partial map for all $i \le j \in I$ such that $f_{ii} = id_{X_i}$ and for all $i \le j \le k$, $f_{ik} \circ f_{ij} = f_{ik}$.

Dual Representation by Partial Functions Between Sets

Lemma

In every ipo-semilattice $x, y \sqsubseteq z \implies 0_x \cdot 0_y = 0_{xy}$.

An sd-system of partial maps is **covering** if for all $i, j \leq k$ with $i \cdot j = \ell$, $dom(f_{\ell,i}) \cup dom(f_{\ell,j}) = X_{\ell}$.

Corollary

Every sd-system of partial maps of an ipo-semilattice is covering.

$$0_{x} \xrightarrow{1_{x}} 1_{y}$$

$$0_{x} \xrightarrow{0} 0_{y}$$

$$0_{x} \xrightarrow{0} 0_{y}$$

$$0_{x} \xrightarrow{0} 0_{y}$$

Figure: A nonunital ipo-semilattice that has no unital completion

Beyond idempotence and commutativity

Current joint work with Sid Lodhia and José Gil-Ferez

- For a suitable subvariety of involutive residuated lattices, the finite members are disjoint unions of MV-algebras.
- This uses a Płonka sum with generalized MV-algebra homomorphisms.
- The dual representation of partial functions between sets generalizes to a dual representation of partial functions between multisets.
- In a more general setting, a large class of involutive residuated lattices can be constructed from disjoint unions of integral involutive residuated lattices.

Some references for Part 2

S. Bonzio, A. Loi, L. Peruzzi: A duality for involutive bisemilattices, Studia Logica, (2019) 107: 423–444.

S. Jenei: Group-representation for even and odd involutive commutative residuated chains. Studia Logica, 2022.

P. Jipsen, O. Tuyt, D. Valota: Structural characterization of commutative idempotent involutive residuated lattices, Algebra Universalis, **82**, 57, 2021.

W. McCune: Prover9 and Mace4. www.cs.unm.edu/~mccune/prover9/, 2005—2010.

THANKS!