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Once upon a time...

long, long ago...

even before the World Wide Web existed...

speci�cally in the summer of 1991...

at a NATO sponsored event...

Brian Davey...

gave an excellent series of talks with the title...

�Duality theory on ten dollars a day�



A very nice paper based on Brian's talks appeared in the
proceedings Algebras and Orders (ed. I.G. Rosenberg, G.
Sabidussi) of the summer school in 1993

The ebook can be downloaded for free from Springer

From the abstract: �...The presentation is in the style of a
travel guide�

Hence the title, from the classic �Europe on 5 dollars a day�

1957, updated to �$10� in 1976... �$85� in 2004



The title of the current talk is, however, meant more literally:

How much computation is possible if one spends $10 per day
on electricity?

Computational Science: using large scale computation to
support theoretical science and experimental science by
simulating systems, testing models and analyzing big data sets

E.g. computational biology, computational chemistry,
computational physics

and computational mathematics: applied mathematics,
operations research

but also computational group theory (e.g. GAP, Magma)
computational geometry (e.g. Flyspeck)
computational ring theory (e.g. Singular, Macauley)
computational number theory (e.g. GIMPS)



From Wikipedia: A brief history of supercomputing

First supercomputer 1964: CDC 6600 by Control Data
Corporation designed by Seymour Cray

Speed measured in FLOPS = �oating point operations per
second

Year Computer FLOPS

1964 CDC 6600 106

1976 Cray 1 108

1985 Cray 2 2 · 109
2008 IBM Roadrunner 1015

2012 Cray Titan 17 · 1015
2013 NUDT Tianhe-2 34 · 1015

Average recent laptop ≈ 1010 FLOPS/processor core



Logscale plot of computing speed



Speed increased from 106 to 3 · 1016 in 49 years, so increased
by a factor of

3 · 1010 = 234.8

49 ∗ 12/34.8 = 16.9 months doubling time

Conclusion: Computing power has doubled roughly every 18
months for the last 50 years

Computational universal algebra is not yet making signi�cant
use of this exponential growth



Cost of computing for 109 FLOPS

1985: $30 million (Cray XM/P)
1997: $40000 (Pentium Pro Beowulf clusters)
2003: $100 (KASY0)
2012: $0.75 (quad AMD 7970) 4 · 1012 FLOPS for $3000

Energy cost for running a supercomputer:

2010: Chinese Tianhe-1A running at 2.5 · 1015 FLOPS uses 4
MWatts

≈ $400/hour ≈ $10000/day ≈ $3.5 million/year

E�ciency: 6 · 108 FLOPS/Watt

2011: IBM Blue Gene e�ciency 2 · 109 FLOPS/Watt



How many FLOPS for ten dollars?

1 kWh costs about $0.10, so $10 = 100 kWh ≈ 4kWday =
4000W all day

= boiling water in two tea kettles (all day long)

≈ running 50 desktop computers, or 150 laptop computers

≈ 2 · 1012 FLOPS (for every second, all day long)

or 8 · 1012 FLOPS at IBM Blue Gene level of e�ciency

What can be computed fairly easily in universal algebra with
such a resource?



A database of �nite structures

In 2003 I started a list of varieties and quasivarieties

to collect some basic information about them

The list is still very much under construction

Current version is limited by the storage format (wiki pages)

Di�cult to use and extend the information within a computer
algebra system



New version: use a declarative data format

that is human-readable and machine-readable

Should integrate well with web browsers (via JavaScript)

automated theorem provers such as Prover9/Mace4

and computer packages such as Sage and UACalc (via
Python)



Each (quasi)variety is considered as a category

Around 100000 smallest members up to isomorphism are
computed

Also compute generators for the morphisms between objects

Requires computing all maximal proper subalgebras

all maximal proper homomorphic images of each algebra

and their isomorphisms to other objects



Simple example

The category of sets: Objects (up to isomorphism) are

0 = ∅,1 = {0},2 = {0, 1}, . . . ,n = {0, 1, . . . , n−1}, . . .

A function f : n→ m is given by [f (0), f (1), . . . , f (n−1)]

Generators for the morphisms: [ ] : ∅ → {0}

[1] : {0} → {0, 1} and [0, 0] : {0, 1} → {0}

[1, 2] : {0, 1} → {0, 1, 2} and [0, 1, 0] : {0, 1, 2} → {0, 1}

fn : n→ n+1 where fn(i) = i + 1

gn : n+1→ n where gn(i) = i if i < n and gn(n) = 0



And the transposition (01) = [1, 0, 2, 3, . . . , n−1] : n→ n

Lemma: All other morphisms are compositions of these

Proof:
Aut(n) = Sn is generated by (01) and (012 . . . n−1) = gn ◦ fn

Let h : n→ m be any function and let k = |f [n]|

Then h = f ◦ g where

g : n→ k is surjective and f : k→ m is injective

g = gk ◦ p1 ◦ gk+1 ◦ p2 ◦ · · · ◦ pn−k−1 ◦ gn−1 and

f = q ◦ fm−1 ◦ fm−2 ◦ · · · ◦ fk for some permutations pi , q �



Recall that the skeleton of a category is obtained by choosing
one object of each isomorphism class and all morphisms
between these objects

So we represent the skeleton of each category

The subdirectly irreducible members of an algebraic
category are the objects that have exactly one maximal
proper homomorphic image

The HS-poset of a variety is de�ned by A ≤HS B if A ∈ HS(B)

For congruence distributive varieties the lattice of
�nitely generated subvarieties is given by the �nite order
ideals of the HS-poset of subdirectly irreducibles



The category of Boolean algebras

We quickly run into a problem if we want to store the 100000
smallest Boolean algebras

Often it is more e�cient to move to a dual category in
which the objects and morphisms are easier to handle

For a �nite Boolean algebra, the dual is the set of atoms

So we already solved this: use the category of sets

In general, use the theory of natural dualities that Brian
Davey developed and presented at the NATO Institute of
Advanced Studies Summer School



The category of distributive lattices

Up to isomorphism there are

1+1+1+2+3+5+8+15+26+47+82+151+269+494+891+
1639+2978+5483+10006+18428+33749+62162 = 136441

distributive lattices of size up to 22

Could easily represent them directly

But it is much more e�cient to use the Priestley duals:

136441 �nite posets with order-preserving maps

What to use as generators for this category?



Again, use generators for the automorphism groups

and duals of maximal embeddings and hom. images

Which orderpreserving maps are dual to these?

[Adams, Dwinger, Schmid 1996] Maximal sublattices of
�nite distributive lattices

Use orderpreserving maps between posets that have the same
size and where a minimal number of incomparable
elements are mapped to comparable elements

These maps correspond to covers in the poset of partial orders

Also use epimorphisms from n+1-chains to n-chains and
embeddings from any poset P to P ∪ {∗} where ∗ is a new
incomparable element



The format of the database
1. A list of �rst-order theories (mostly varieties)

2. For each theory in the list, a list of smallest �nite models
of the theory with morphism generators between them

The compressed size of the lists in 2. should be less than a
few hundred MBytes

The entries for 1. are in the following format:

{�id�: �short name�, �name�: �Long name�,
�defn�: �detailed English de�nition�,
�signature�: {�LATEXsymbol�: [arity,�in�xl�(,priority)], ...}
�bgtheory�: �background theory selected�,
�axioms�: [�axiom1 (in LATEX)�, �axiom2�, ...],
�nmodels�: [1, ..., number of models of size n, ...],
�properties�: {�property name�: value, ...},
�subclasses�: [�shortname for max subclass�, ...] },



{�id�: �DLat�, �name�: �Distributive lattices�,
�defn�: �lattices with meet distributing over join (or
equivalently join distributing over meet)�,
�signature�: {�\vee�:[2,�in�xl�,60], �\wedge�:[2,�in�xl�,60]},
�axioms�: [�(x\vee y)\vee z = x\vee (y\vee z)�, �x\vee y =
y\vee x�, �x\vee x = x�, �(x\wedge y)\wedge z =
x\wedge(y\wedge z)�, �x\wedge y = y\wedge x�, �x\wedge x
= x�, �x\wedge(x\vee y) = x = x\vee(x\wedge y)�,
�x\wedge(y\vee z) = (x\wedge y)\vee(x\wedge z)�],
�nmodels�: [1, 1, 1, 2, 3, 5, 8, 15, 26, 47, 82, 151, 269, 494,
891, 1639, 2978, 5483, 10006, 18428, 33749, 62162, ...,
908414736485],
�properties�: {�Classtype�: �variety�, �QEqTheory�:
�decidable�, �FOTheory�: �undecidable�, �CD�: �yes�, �CP�:
�no�, �CR�: �no�, �CU�: �no�, �CEP�: �yes�, �EDPC�: �yes�,
�AP�: �yes�, �SAP�: �no�, �ES�: �no�, �LF�: �yes�, �RS�: �2�},
�superclasses�: [�MLat�, �SDLat�],
�subclasses�: [�BDLat�, �BrouwA�, �DRL�] },







Format for algebras and relational structures

�id�: { �cardinality�: 2,

�operations�: {�\cdot�:[[0,0],[0,1]], �1�:1, ...},

�relations�: {�\le�:[[1,1],[0,1]], �\prec�:{0:[1],1:[]}, ...},

�names�: {0: �\bot�, 1: �\top�},

�positions�: [[x1,y1], [x2,y2], ...],

�properties�: {�P�: �True�, �Q�: �False�, ...},

�autgens�: [g1, g2, ...],

�maxsubs�: [[id1,[...]], [id2,[...]], ...],

�maximages�: [[id3,[...]], [id4,[...]], ...] },



Semirings

A semiring is an algebra (S ,+, ·) such that

(x + y) + z = x + (y + z), x + y = y + x

(xy)z = x(yz), x(y+z) = xy+xz and (x+y)z = xz+yz

It is simple if it has only two congruences

Theorem: [Monico 2004] A �nite simple semiring S is either

I a ring or

I is idempotent (x + x = x for all x ∈ S) or

I (S , ·) is a simple semigroup with absorbing element ∞
and S + S =∞



Idempotent semirings are join-semilattices with · joinpreserving

Idem. semirings of size n: [1, 6, 61, 866, 15751, 354409]

Simple idem. semirings of size n: [1, 6, 3, 1, 4, 3]

Example: For a join-semilattice L the set End(L) is an
idempotent semiring under pointwise join and composition,
with idL as identity

A semiring has a neutral element 0 if x + 0 = x

It has a zero if this element also satis�es 0x = 0 = x0

Idem. semirings with neutral 0: [1, 6, 44, 479, 6738, ...]

Idem. semirings with a zero: [1, 2, 10, 68, 520, 4447 ...]

Idem. semirings with 1 and zero: [1, 1, 3, 20, 149, 1488,
18554, 295292]



If L has a bottom element, then End(L) always has a zero

Zumbrägel [2008] classi�ed all �nite simple idempotent
semiring with zero as dense subsemirings of End(L) where L
is a join-semilattice with bottom

[Dense means it contains all maps ea,b(x) = b if x � a and 0
otherwise]

Kendziorra [2012] extended this classi�cation to simple
semirings with a neutral element

Full classi�cation of �nite simple semirings is still open

Computation of simple idempotent semirings without
neutral elements is an ongoing project



Constructing all modular lattices of size n

Joint work with Nathan Lawless (Chapman University)

Heitzig, Reinhold [2002] enumerated all lattices up to size 18

Erne, Heitzig, Reinhold [2002] enumerated all distributive
lattices up to size 49

By 2008 modular lattices had only been counted up to size 11:

n 1 2 3 4 5 6 7 8 9 10 11

mn 1 1 1 2 4 8 16 34 72 157 343

where mn is the number of modular lattices of size n

Belohlavek and Vychodil [2009] showed that m12 = 766



Modular lattices up to size 9

The �rst few vertically indecomposable modular lattices



Using a cluster of 64 processors at a costs of about $10 a day

[J. and Lawless 2013]:

n 13 14 15 16 17 18

mn 1718 3899 8898 20475 47321 110024

n 19 20 21 22 23 24

mn 256791 601991 1415768 3340847 ? ?

The calculations use B. McKay's nauty program to �nd
automorphism generators and eliminate isomorphic copies

Faigle and Herrmann [1981] axiomatized poset geometries that
are dual to modular lattices

These duals may be easier to enumerate



n All lattices Semimodular Modular V. I. Mod Distrib S. I. Lat SI Mod

6 15 8 8 2 5 4 1

7 53 17 16 3 8 16 1

8 222 38 34 7 15 69 2

9 1,078 88 72 12 26 360 3

10 5,994 212 157 28 47 2,103 4

11 37,622 530 343 54 82 13,867 7

12 262,776 1,376 766 127 151 100,853 15

13 2,018,305 3,693 1,718 266 269 28

14 16,873,364 10,232 3,899 614 494 53

15 152,233,518 29,231 8,898 1,356 891 106

16 1,471,613,387 85,906 20,475 3,134 1,639 226

17 15,150,569,446 259,291 47,321 7,091 2,978 479

18 165,269,824,761 802,308 110,024 16,482 5,483 ←Erne

19 ↑Heitzig & 2,540,635 256,791 37,929 10,006 Heitzig

20 Reinhold 2002 8,220,218 601,991 88,622 18,428 Reinhold

21 27,134,483 1,415,768 206,295 33,749 2002 up

22 Bold entries '13 J. & Lawless 3,340,847 484,445 62,162 to n=49



Enumerating lattice contexts

Formal Concept Analysis connects binary relations
(contexts) with complete lattice using Birkho�'s polarities

Every �nite lattice L has a unique reduced context given by
≤ restricted to J(L)×M(L)

Recover L as the lattice of Galois closed sets of the context

How many reduced contexts are there from m to n elements?



Number of reduced contexts with m + n elements

- means there is no context with this combination of m, n

m
n 1 2 3 4 5 6 7 8

1 1 - - - - - - -
2 - 2 - - - - - -
3 - - 7 2 - - - -
4 - - 2 45 50 25 4 -
5 - - - 50 717 2241 3670 3598
6 - - - 25 2241 37535 266178
7 - - - 4 3670 266178
8 - - - - 3598

The calculation used Brendan McKay's bipartite graph
generator genbg





Finite lattice representation problem
Constructing �nite algebras with prescribed small congruence
lattices

Joint work with W. DeMeo, R. Freese, B. Lampe, J.B. Nation



Made a list of 7-element lattices, removed the distributive ones

We removed vertically and horizontally decomposable ones

Wrote programs to search for closed representations in Equ(n)

Used GAP to search for intervals in subgroup lattices

We got down to 2 interesting cases

The �rst one lead to the development of overalgebras

The second one is still open



Latest version of the database

math.chapman.edu/~jipsen/mathstructures

also in a Git repository on GitHub

(obviously still under construction...)



Conclusion (moral of the story)

If your algorithm has exponential complexity

that doesn't mean its useless

Just wait a couple of years and you can do the next step

for the same cost as the previous step

Ten dollars a day can go a long way!
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