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Residuated lattices � Substructural logics

A residuated lattice (A,∨,∧, ·, 1, \, /) is an algebra where
(A,∨,∧) is a lattice, (A, ·, 1) is a monoid and for all x , y , z ∈ A

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y

Residuated lattices generalize many algebras related to logic,
e. g. Boolean algebras, Heyting algebras, MV-algebras,
Hajek's basic logic algebras, linear logic algebras, . . .

FL = Full Lambek calculus = the starting point for substructural
logics

corresponds to class FL of all residuated lattices with a new
constant 0

Extensions of FL correspond to subvarieties of FL



Hiroakira Ono

(California, September 2006)

[1985] Logics without the contraction rule

(with Y. Komori)

Provides a framework for studying many substructural

logics, relating sequent calculi with semantics

The name substructural logics was suggested

by K. Dozen, October 1990

[2007] Residuated Lattices: An algebraic glimpse

at substructural logics (with Galatos, J., Kowalski)



Some propositional logics extending FL







Congruence distributive varieties

A class V of algebras is a variety if it is de�ned by identities

⇐⇒ V = HSP(K) for some class K of algebras

V is �nitely generated if K can be a �nite class of �nite algebras

An algebra is congruence distributive (CD) if its lattice of
congruences is distributive

A class V of algebras is CD if every member is CD



Who is this?

Bjarni Jónsson

(AMS-MAA meeting in Madison, WI 1968)

Algebras whose congruence lattices

are distributive [1967]

* Jónsson's Lemma implies that the lattice

of subvarieties of a CD variety is distributive

* The completely join-irreducibles in this lattice

are generated by a single s. i. algebra

* for �nite algebras A,B

HSP{A} ⊆ HSP{B} ⇐⇒ A ∈ HS{B}



The lattice of �nitely generated varieties

The relation A ∈ HS{B} is a preorder on algebras (since
SH ≤ HS)

For �nite s. i. algebras in a CD variety it is a partial order

Called the HS-poset of the variety

The lattice of �nitely generated subvarieties is given by downsets
in this poset



The HS-poset of MV-algebras

Komori [1981] Super-Lukasiewicz propositional logics



Computing �nite residuated lattices

First compute all lattices with n elements

[J. and N. Lawless 2013]: there are 1 901 910 625 578 for n = 19

Then compute all lattice-ordered z-monoids over each lattice

For residuated lattices there are 295292 for n = 8

[Belohlavek and Vychodil 2010]: 30 653 419 CIRL of size n = 12

Remove non-s. i. algebras from list (very few)

Compute maximal proper subalgebras of each algebra

Compute maximal homomorphic images (=minimal congruences)



A small sample
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n RL Chn DE F M N FL Chn DE F M N

1 1 1 1 1

2 1 1 2 2

3 3 3 9 9

4 20 15 5 79 60 19

5 149 84 20 11 8 26 737 420 97 53 37 130

Tot 174 104 828 492





Residuated lattices of size ≤ 4
RL var FL var Name, id, transformations Sub Hom
GBA BA 〈21, 1〉
WH MV 〈31, 2, 01〉 21
RBr GA 〈32, 2, 11〉 21 21
CRRL RInFLe 〈33, 1, 22〉
WH MV 〈41, 3, 001, 012〉 21
BH BL 〈42, 3, 011, 122〉 31 32 31

〈43, 3, 111, 112〉 31 32 21
RBr GA 〈44, 3, 111, 122〉 32 32
CIRRL RInFLew 〈45, 3, 001, 022〉 21 21
CIRRL RFLew 〈46, 3, 001, 002〉 31
IRRL RFLw 〈47, 3, 001, 122〉 21

〈48, 3, 011, 022〉 21
CRRL RInFLe 〈49, 1, 233, 333〉 33

〈410, 2, 113, 333〉 21 33 33
CRRL RFLe 〈411, 1, 223, 333〉 33

〈412, 2, 011, 133〉
〈413, 2, 111, 133〉 33 21

RRL RFL 〈414, 2, 111, 333〉
〈415, 2, 113, 133〉

GBA BA 〈D1, 3, 101, 022〉 21 21
CDRL DInFLe 〈D2,1, 1, 202, 323〉 33

〈D3,1, 1, 213, 333〉 33
〈D4,2, 1, 233, 333〉 33

CDRL DFLe 〈D5, 1, 222, 323〉 33



HS-poset of residuated lattices with ≤ 4 elements
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The Amalgamation Property
Let K be a class of mathematical structures

(e. g. sets, groups, residuated lattices, ...)

Usually there is a natural notion of morphism for K

(e. g. function, homomorphism,...)

K has the amalgamation property if

for all A,B,C ∈ K and all injective f : A ↪→ B , g : A ↪→ C

there exists D ∈ K and injective h : B ↪→ D, k : C ↪→ D such that
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Dh ◦ f = k ◦ g
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Connections with logic
Bill Craig

(Berkeley, CA 1977)

Craig interpolation theorem [1957]

If φ =⇒ ψ is true in �rst order logic

then there exists θ containing only

the relation symbols in both φ, ψ

such that φ =⇒ θ and θ =⇒ ψ

Also true for many other logics, including classical propositional
logic and intuistionistic propositional logic

Let K be a class of algebras of an algebraizable logic L

Then K has the (strong/super) amalgamation property i� L
satis�es the Craig interpolation property



What is known?
There are two versions: 1. the amalgamation property (AP)

for all A,B,C ∈ K and all injective f : A ↪→ B , g : A ↪→ C

there exists D ∈ K and injective h : B ↪→ D, k : C ↪→ D such that
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2. the strong amalgamation property (SAP): in addition to

h ◦ f = k ◦ g also require h[f [A]] = h[B] ∩ k[C ]

Equivalently: If A is a subalgebra of B,C in K and A = B ∩ C

then there exists D ∈ K such that B,C are subalgebras of D



A sample of what is known
These categories have the strong amalgamation property:

Sets
Groups [Schreier 1927]
Sets with any binary operation [Jónsson 1956]
Variety of all algebras of a �xed signature
Partially ordered sets [Jónsson 1956]
Lattices [Jónsson 1956]

These categories only have the amalgamation property:

Distributive lattices [Pierce 1968]
Abelian lattice-ordered groups [Pierce 1972]

These categories fail to have the amalgamation property:

Semigroups [Kimura 1957]
Lattice-ordered groups [Pierce 1972]



Kiss, Márki, Pröhle and Tholen [1983] Categorical algebraic
properties. A compendium on amalgamation, congruence
extension, epimorphisms, residual smallness and injectivity

They summarize some general techniques for establishing these
properties

They give a table with known results for 100 categories

Day and Jezek [1984] The only lattice varieties that satisfy AP
are the trivial variety, the variety of distributive lattices and
the variety of all lattices

Busianiche and Montagna [2011]: Amalgamation, interpolation

and Beth's property in BL (Section 6 in Handbook of
Mathematical Fuzzy Logic)

Metcalfe, Montagna and Tsinakis [2014]: Amalgamation and

interpolation in ordered algebras, Journal of Algebra



How to prove/disprove the AP

Look at three examples:

1. Why does SAP hold for class of all Boolean algebras?

2. Why does AP hold for distributive lattices?

3. Why does AP fail for distributive residuated lattices?

1. Boolean algebras (BA) can be embedded in complete and
atomic Boolean algebras (caBA)
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caBA is dually equivalent to Set



Amalgamation for BA

So we need to �ll in the following dual diagram in Set

P

Uf (B)

Uf (C )

Uf (A)

Uf (f )

Uf (g)

h

k

Can take P to be the pullback, so
P = {(b, c) ∈ Uf (B)× Uf (C ) : Uf (f )(b) = Uf (g)(c)}

Then h = π1|P and k = π2|P

h is surjective since for all b ∈ Uf (B), there exists c ∈ Uf (C ) s.t.
Uf (f )(b) = Uf (g)(c) because Uf (g) is surjective

Similarly k is surjective



2. Amalgamation for distributive lattices

Theorem [J. and Rose 1989]: Let V be a congruence
distributive variety whose members have one-element
subalgebras, and assume that V is generated by a �nite simple
algebra that has no proper nontrivial subalgebras. Then V has
the amalgamation property.

The variety of distributive lattices is generated by the two-element
lattice, which is simple and has only trivial proper subalgebras,
hence AP holds.

Corollary: The AP holds for the variety of Sugihara algebras
(= V (33)), and for V (412), V (414), V (415) as well as for any
variety generated by an atom of the HS-poset



3. AP fails for distributive residuated lattices

Finally we get to mention some computational tools

To disprove AP or SAP, we essentially want to search for 3 small
models A,B,C in K such that A is a submodel of both B and C

We use the Mace4 model �nder from Bill McCune [2009] to
enumerate nonisomorphic models A1,A2, . . . in a �nitely
axiomatized �rst-order theory Σ

For each Ai we construct the diagram ∆i and use Mace4 again to
�nd all nonisomorphic models B1,B2, . . . of
∆i ∪ Σ ∪ {¬(ca = cb) : a 6= b ∈ Ai} with slightly more elements
than Ai

Note that by construction, each Bj has Ai as submodel



Checking failure of AP

Iterate over distinct pairs of models Bj ,Bk and construct the
theory Γ that extends Σ with the diagrams of these two models,
using only one set of constants for the overlapping submodel Ai

Add formulas to Γ that ensure all constants of Bj are distinct, and
same for Bk

Use Mace4 to check for a limited time whether Γ is satis�able in
some small model

If not, use the Prover9 automated theorem prover (McCune
[2009]) to search for a proof that Γ is inconsistent. If yes, then a
failure of AP has been found

To check if SAP fails, add formulas that ensure constants of each
pair of models cannot be identi�ed, and also iterate over pairs
Bj ,Bj



Amalgamation for residuated lattices

Open problem: Does AP hold for all residuated lattices?

Commutative residuated lattices satisfy x · y = y · x

Kowalski, Takamura ['04] AP holds for commutative resid. lattices

Distributive residuated lattices satisfy x∧(y∧z) = (x∧y)∨(x∧z)

Theorem [J. 2014]: AP fails for any variety of distributive
residuated lattices that includes two speci�c 5-element
commutative distributive integral residuated lattices

In particular, AP fails for the varieties DRL, CDRL, IDRL, CDIRL
and any varieties between these



Conclusion

Many other minimal failures of AP and SAP can be found
automatically

By studying the amalgamations of small algebras one can get
hints of how AP may be proved in general

The method of enumerating small models and using diagrams of
structures in automated theorem provers is applicable to many
other problems, e.g., in coalgebra, combinatorics, �nite model
theory, . . .

Computational research tools like Sage, Prover9, UACalc,
Isabelle, Coq, . . . are becoming very useful for research in
algebra, logic and combinatorics

Thanks!


