The lattice of varieties generated by small residuated lattices

Peter Jipsen

School of Computational Sciences and Center of Excellence in Computation, Algebra and Topology (CECAT) Chapman University

> LATD, July 17, 2014 Vienna Summer of Logic

Outline

- Lattice of finitely generated CD varieties
- The HS order on finite subdirectly irreducibles
- Computing finite residuated lattices
- Using automated theorem provers
- Amalgamation in residuated lattices

Residuated lattices – Substructural logics

A residuated lattice $(A, \lor, \land, \cdot, 1, \backslash, /)$ is an algebra where (A, \lor, \land) is a lattice, $(A, \cdot, 1)$ is a monoid and for all $x, y, z \in A$

$$x \cdot y \leq z \iff y \leq x \setminus z \iff x \leq z/y$$

Residuated lattices generalize many algebras related to logic, e. g. Boolean algebras, Heyting algebras, MV-algebras, Hajek's basic logic algebras, linear logic algebras, ...

FL = Full Lambek calculus = the starting point for substructural logics

corresponds to class FL of all residuated lattices with a new ${\bf constant} \ 0$

Extensions of **FL** correspond to subvarieties of FL

Hiroakira Ono

(California, September 2006)

[1985] Logics without the contraction rule

(with Y. Komori)

Provides a framework for studying many substructural

logics, relating sequent calculi with semantics

The name **substructural logics** was suggested

by K. Dozen, October 1990

[2007] Residuated Lattices: An algebraic glimpse

at substructural logics (with Galatos, J., Kowalski)

Some propositional logics extending FL

Congruence distributive varieties

A class ${\mathcal V}$ of algebras is a variety if it is defined by identities

$$\iff \mathcal{V} = \mathsf{HSP}(\mathcal{K})$$
 for some class \mathcal{K} of algebras

 ${\mathcal V}$ is finitely generated if ${\mathcal K}$ can be a finite class of finite algebras

An algebra is **congruence distributive** (CD) if its lattice of congruences is distributive

A class ${\mathcal V}$ of algebras is CD if every member is CD

Who is this?

Bjarni Jónsson

(AMS-MAA meeting in Madison, WI 1968) Algebras whose congruence lattices are distributive [1967]

- * Jónsson's Lemma implies that the lattice
 - of subvarieties of a CD variety is $\ensuremath{\textit{distributive}}$
- * The completely join-irreducibles in this lattice

are generated by a single s. i. algebra

* for finite algebras A, B

 $\mathsf{HSP}\{A\} \subseteq \mathsf{HSP}\{B\} \iff A \in \mathsf{HS}\{B\}$

The lattice of finitely generated varieties

The relation $A \in HS\{B\}$ is a **preorder** on algebras (since $SH \leq HS$)

For finite s. i. algebras in a CD variety it is a partial order

Called the HS-poset of the variety

The lattice of **finitely generated** subvarieties is given by **downsets** in this poset

The HS-poset of MV-algebras

Komori [1981] Super-Lukasiewicz propositional logics

Computing finite residuated lattices

First compute all lattices with n elements

[J. and N. Lawless 2013]: there are $1\,901\,910\,625\,578$ for n = 19Then compute all **lattice-ordered z-monoids** over each lattice For residuated lattices there are 295292 for n = 8[Belohlavek and Vychodil 2010]: 30 653 419 CIRL of size n = 12Remove **non-s**. **i**. **algebras** from list (very few) Compute maximal proper subalgebras of each algebra

Compute maximal homomorphic images (=minimal congruences)

A small sample

n	RL	Chn	DE	F	M	N	FL	Chn	DE	<i>F</i>	М	N
1	1	1					1	1				
2	1	1					2	2				
3	3	3					9	9				
4	20	15	5				79	60	19			
5	149	84	20	11	8	26	737	420	97	53	37	130
Tot	174	104					828	492				

Residuated lattices of size \leq 4

RL var	FL var	Name, id, transformations	Sub	Hom
GBA	BA	$\langle 2_1, 1 \rangle$		
WH	MV	$\langle 3_1, 2, 01 \rangle$	21	
RBr	GA	$\langle 3_2, 2, 11 \rangle$	21	21
CRRL	RInFLe	$\langle 3_3, 1, 22 \rangle$		
WH	MV	$\langle 4_1, 3, 001, 012 \rangle$	21	
BH	BL	$\langle 4_2, 3, 011, 122 \rangle$	3 ₁ 3 ₂	31
		$\langle 4_{3}, 3, 111, 112 \rangle$	3 ₁ 3 ₂	21
RBr	GA	$\langle 4_4, 3, 111, 122 \rangle$	3 ₂	32
CIRRL	RInFL _{ew}	$\langle 4_5, 3, 001, 022 \rangle$	21	21
CIRRL	RFLew	$\langle 4_6, 3, 001, 002 \rangle$	31	
IRRL	RFL _w	$\langle 4_7, 3, 001, 122 \rangle$	21	
		$\langle 4_{8}, 3, 011, 022 \rangle$	21	
CRRL	RInFLe	$\langle 4_9, 1, 233, 333 \rangle$	33	
		$\langle 4_{10}, 2, 113, 333 \rangle$	21 33	33
CRRL	RFLe	$\langle 4_{11}, 1, 223, 333 \rangle$	33	
		$\langle 4_{12}, 2, 011, 133 \rangle$		
		$\langle 4_{13}, 2, 111, 133 \rangle$	33	21
RRL	RFL	$\langle 4_{14}, 2, 111, 333 \rangle$		
		$\langle 4_{15}, 2, 113, 133 \rangle$		
GBA	BA	$\langle D_1, 3, 101, 022 \rangle$	21	21
CDRL	DInFLe	$\langle D_{2,1}, 1, 202, 323 \rangle$	33	
		$\langle D_{3,1}, 1, 213, 333 \rangle$	33	
		$\langle D_{4,2}, 1, 233, 333 \rangle$	33	
CDRL	DFLe	$\langle D_5, 1, 222, 323 \rangle$	33	

HS-poset of residuated lattices with \leq 4 elements

The Amalgamation Property

 $h \circ f = k \circ \varphi$

Let \mathcal{K} be a class of mathematical structures

(e. g. sets, groups, residuated lattices, ...)

Usually there is a natural notion of morphism for ${\cal K}$

(e. g. function, homomorphism,...)

${\cal K}$ has the amalgamation property if

for all $A, B, C \in \mathcal{K}$ and all **injective** $f : A \hookrightarrow B, g : A \hookrightarrow C$

there exists $D \in \mathcal{K}$ and **injective** $h : B \hookrightarrow D$, $k : C \hookrightarrow D$ such that

The Amalgamation Property

Let ${\mathcal K}$ be a class of mathematical structures

(e. g. sets, groups, residuated lattices, ...)

Usually there is a natural notion of morphism for ${\cal K}$

(e. g. function, homomorphism,...)

${\cal K}$ has the amalgamation property if

for all $A, B, C \in \mathcal{K}$ and all **injective** $f : A \hookrightarrow B, g : A \hookrightarrow C$

there exists $D \in \mathcal{K}$ and **injective** $h : B \hookrightarrow D$, $k : C \hookrightarrow D$ such that

 $h \circ f = k \circ g$

Connections with logic

Bill Craig (Berkeley, CA 1977) Craig interpolation theorem [1957] If $\phi \implies \psi$ is true in first order logic then there exists θ containing only the relation symbols in both ϕ, ψ such that $\phi \implies \theta$ and $\theta \implies \psi$

Also true for many other logics, including classical propositional logic and intuistionistic propositional logic

Let ${\mathcal K}$ be a class of algebras of an algebraizable logic ${\mathcal L}$

Then \mathcal{K} has the (strong/super) amalgamation property iff \mathcal{L} satisfies the Craig interpolation property

What is known?

There are two versions: 1. the amalgamation property (AP)

for all $A, B, C \in \mathcal{K}$ and all **injective** $f : A \hookrightarrow B, g : A \hookrightarrow C$

there exists $D \in \mathcal{K}$ and **injective** $h : B \hookrightarrow D$, $k : C \hookrightarrow D$ such that

2. the strong amalgamation property (SAP): in addition to

 $h \circ f = k \circ g$ also require $h[f[A]] = h[B] \cap k[C]$

Equivalently: If A is a subalgebra of B, C in \mathcal{K} and $A = B \cap C$ then there exists $D \in \mathcal{K}$ such that B, C are subalgebras of D

A sample of what is known

These categories have the strong amalgamation property:

Sets Groups [Schreier 1927] Sets with any binary operation [Jónsson 1956] Variety of all algebras of a fixed signature Partially ordered sets [Jónsson 1956] Lattices [Jónsson 1956]

These categories only have the amalgamation property:

Distributive lattices [Pierce 1968] Abelian lattice-ordered groups [Pierce 1972]

These categories fail to have the amalgamation property:

Semigroups [Kimura 1957] Lattice-ordered groups [Pierce 1972] Kiss, Márki, Pröhle and Tholen [1983] Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness and injectivity

They summarize some general techniques for establishing these properties

They give a table with known results for 100 categories

Day and Jezek [1984] The only lattice varieties that satisfy AP are the trivial variety, the variety of distributive lattices and the variety of all lattices

Busianiche and Montagna [2011]: *Amalgamation, interpolation and Beth's property in* **BL** (Section 6 in Handbook of Mathematical Fuzzy Logic)

Metcalfe, Montagna and Tsinakis [2014]: *Amalgamation and interpolation in ordered algebras*, Journal of Algebra

How to prove/disprove the AP

Look at three examples:

- 1. Why does SAP hold for class of all Boolean algebras?
- 2. Why does AP hold for distributive lattices?
- 3. Why does AP fail for distributive residuated lattices?
- 1. Boolean algebras (BA) can be embedded in complete and atomic Boolean algebras (caBA)

caBA is dually equivalent to Set

Amalgamation for BA

So we need to fill in the following dual diagram in Set

Can take P to be the **pullback**, so $P = \{(b, c) \in Uf(B) \times Uf(C) : Uf(f)(b) = Uf(g)(c)\}$

Then $h = \pi_1|_P$ and $k = \pi_2|_P$

h is **surjective** since for all $b \in Uf(B)$, there exists $c \in Uf(C)$ s.t. Uf(f)(b) = Uf(g)(c) because Uf(g) is **surjective**

Similarly k is surjective

2. Amalgamation for distributive lattices

Theorem [J. and Rose 1989]: Let \mathcal{V} be a congruence distributive variety whose members have one-element subalgebras, and assume that \mathcal{V} is generated by a finite simple algebra that has no proper nontrivial subalgebras. Then \mathcal{V} has the amalgamation property.

The variety of distributive lattices is generated by the **two-element lattice**, which is **simple** and has only **trivial proper subalgebras**, hence **AP holds**.

Corollary: The **AP holds** for the variety of **Sugihara algebras** $(= V(3_3))$, and for $V(4_{12})$, $V(4_{14})$, $V(4_{15})$ as well as for any variety generated by an atom of the HS-poset

3. AP fails for distributive residuated lattices

Finally we get to mention some **computational tools**

To **disprove AP** or **SAP**, we essentially want to search for 3 small models A, B, C in \mathcal{K} such that A is a **submodel** of both B and C

We use the Mace4 model finder from Bill McCune [2009] to enumerate nonisomorphic models $A_1, A_2, ...$ in a finitely axiomatized first-order theory Σ

For each A_i we construct the **diagram** Δ_i and use **Mace4** again to find all **nonisomorphic** models B_1, B_2, \ldots of $\Delta_i \cup \Sigma \cup \{\neg (c_a = c_b) : a \neq b \in A_i\}$ with **slightly more** elements than A_i

Note that by construction, each B_j has A_i as submodel

Checking failure of AP

Iterate over **distinct** pairs of models B_j , B_k and construct the theory Γ that extends Σ with the **diagrams of these two models**, using only **one set of constants** for the overlapping submodel A_i

Add formulas to Γ that ensure all constants of B_j are distinct, and same for B_k

Use Mace4 to check for a limited time whether Γ is satisfiable in some small model

If not, use the **Prover9 automated theorem prover** (McCune [2009]) to search for a proof that Γ is **inconsistent**. If **yes**, then a **failure of AP** has been found

To check if **SAP** fails, add formulas that ensure constants of each pair of models cannot be identified, and also iterate over pairs B_j , B_j

Amalgamation for residuated lattices

Open problem: Does AP hold for all residuated lattices?

Commutative residuated lattices satisfy $x \cdot y = y \cdot x$

Kowalski, Takamura ['04] AP holds for commutative resid. lattices

Distributive residuated lattices satisfy $x \land (y \land z) = (x \land y) \lor (x \land z)$

Theorem [J. 2014]: AP fails for any variety of distributive residuated lattices that includes two specific 5-element commutative distributive integral residuated lattices

In particular, **AP fails** for the varieties DRL, CDRL, IDRL, CDIRL and any varieties between these

Conclusion

Many other **minimal** failures of **AP** and **SAP** can be found automatically

By studying the **amalgamations of small algebras** one can get **hints** of how **AP** may be proved in general

The method of enumerating small models and using **diagrams** of structures in **automated theorem provers** is applicable to many other problems, e.g., in coalgebra, combinatorics, finite model theory, ...

Computational research tools like **Sage**, **Prover9**, **UACalc**, **Isabelle**, **Coq**, ... are becoming **very useful** for research in algebra, logic and combinatorics