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Some brief history

Boolean Algebras with Operators: BAOs
Jónsson-Tarski 1951, 1952, Goldblatt 1989, Jónsson 1993

Distributive Lattices with Operators: DLOs
Goldblatt 1989, Gehrke-Jónsson 1994, 2000, 2004

Lattices with Operators: LOs
Gehrke-Harding 2001, Dunn-Gehrke-Palmigiano 2005

Heyting Algebras with Operators: HAOs
Bezhanishvili 1998, 1999 (monadic), Hasimoto 2001 (unary operators),
Orlowska-Rewitzky 2007
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Some brief history

Bjarni Jónsson was professor at Vanderbilt University 1966-1993

Mai Gehrke was a postdoc at Vanderbilt University 1988-1990
Then moved to New Mexico State University

John Harding was a postdoc at Vanderbilt University 1991-1993
Then moved to New Mexico State University

Guram Bezhanishvili was a PhD student of Leo Esakia and Hiroakira Ono
until 1998, published three papers on monadic Heyting algebras by 2000
Then moved to New Mexico State University

I was a PhD student at Vanderbilt University 1987-1992
I should have moved to New Mexico State University
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To each their own duality and logic

BAOs have a duality based on Stone spaces
Algebraic semantics of polymodal logics

DLOs have a duality based on Priestley spaces
Algebraic semantics of positive polymodal logics

LOs have a duality based on topological polarities (contexts)
Algebraic semantics of nondistributive positive polymodal logics

HLOs have a duality based on Esakia spaces
Algebraic semantics of intuitionistic polymodal logics
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Some search metrics

Search query MathSciNet Google Scholar

Boolean algebras with operators 104 1990

Heyting algebras with operators 7 101

Distributive lattices with operators 12 329

Lattices with operators 14 112

Next we consider bounded distributive lattices and Heyting algebras

with a binary operator or one or two unary operators.
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Distributive lattice-ordered magmas

Definition

A distributive lattice-ordered magma (d`-magma for short)
(A,∧,∨,⊥,>, ·) is a bounded distributive lattice with a binary operation ·
such that for all x , y , z ∈ A

x ·(y ∨ z) = x ·y ∨ x ·z x ·⊥ = ⊥
(x ∨ y)·z = x ·z ∨ y ·z ⊥·x = ⊥

A d`-monoid is a d`-magma with 1 ∈ A such that (A, ·, 1) is a monoid.

A d`-magma is commutative if x · y = y · x .

∧-free reducts of d`-monoids are (additively) idempotent semirings.

Complete and completely join-preserving d`-monoids are unital quantales

and they expand uniquely to complete distributive residuated lattices.
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Finite distributive lattice-ordered magmas

Up to isomorphism, there are many finite d`-magmas:

2 of size 2

20 of size 3

1116 of size 4

Restricting to d`-monoids helps: let fn = number of algebras of size n

f1 = 1, f2 = 1, f3 = 3, f4 = 20, f5 = 115, f6 = 899, f7 = 7782, f8 = 80468

A binary operation · is idempotent if x · x = x .

N. Alpay P. Jipsen, M. Sugimoto (Chapman) Unary-determined d`-magmas October 18, 2021 7 / 1



Unary-determined d`-magmas

Definition

A d`-magma is unary-determined if x ·y = (x ·> ∧ y) ∨ (x ∧ >·y).

A Boolean magma is a d`-magma that has a complement operation ¬
s.t.

x ∧ ¬x = ⊥ and x ∨ ¬x = >.

Theorem

Every idempotent Boolean magma is unary-determined.

Proof.

(x ∧ y)·(x ∧ y) ≤ x ·y ≤ (x ∨ y)·(x ∨ y) since · is order-preserving.

Therefore idempotence ⇐⇒ x ∧ y ≤ x ·y ≤ x ∨ y .

Now x ·> ∧ y = x ·(y ∨ ¬y) ∧ y = (x ·y ∧ y) ∨ (x ·(¬y)) ∧ y)

≤ x ·y ∨ ((x ∨ ¬y) ∧ y) = x ·y ∨ (x ∧ y) ∨ (¬y ∧ y) = x ·y
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Idempotent Boolean BI-algebras are unary-determined

Proof (continued).

Similarly x ∧ >y ≤ x ·y , hence x ·y ≥ (x ·> ∧ y) ∨ (x ∧ >·y).

The opposite inequality x ·y ≤ (x ·> ∧ y) ∨ (x ∧ >·y) is equivalent to

x ·y ∧ ¬(x ·> ∧ y) ≤ x ∧ >·y

⇐⇒ (x ·y ∧ ¬(x ·>)) ∨ (x ·y ∧ ¬y) ≤ x ∧ >·y

⇐⇒ (x ·y ∧ ¬y) ≤ x ∧ >·y since x ·y ≤ x ·>

By idempotence, x ·y ∧ ¬y ≤ (x ∨ y) ∧ ¬y = (x ∧ ¬y) ∨ (y ∧ ¬y) ≤ x and
x ·y ∧ ¬y ≤ x ·y ≤ >·y .
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Term-equivalence for unary-determined d`-magmas

Definition

A d`pq-algebra (A,∧,∨,⊥,>, p, q) is a bounded distributive lattice with
two unary operations p, q that satisfy

p⊥ = ⊥ p(x ∨ y) = px ∨ py x ∧ p> ≤ qx

q⊥ = ⊥ q(x ∨ y) = qx ∨ qy x ∧ q> ≤ px

Unary-determined d`-magmas are term-equivalent to d`pq-algebras:

Theorem
1 Let A be a d`pq-algebra and define x ·y = (px ∧ y) ∨ (x ∧ qy).

Then (A,∧,∨,⊥,>, ·) is a d`-magma that is unary-determined and
p, q are definable as px = x ·> and qx = >·x.

2 Let A be a unary-determined d`-magma and define px=x ·>, qx=>·x .
Then (A,∧,∨,⊥,>, p, q) is a d`pq-algebra and · is definable as
x ·y = (px ∧ y) ∨ (x ∧ qy).
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Associativity, Commutativity, Idempotence from p, q

Theorem

Let (A,∧,∨,⊥,>, p, q) be a d`pq-algebra and x · y = (px ∧ y)∨ (x ∧ qy).

1 The operation · is commutative if and only if p = q.

2 If p = q then · is associative if and only if
p((px ∧ y) ∨ (x ∧ py)) = (px ∧ py) ∨ (x ∧ ppy).

3 If p = q and x ≤ px = ppx then · is associative if and only if
px ∧ py ≤ p((px ∧ y) ∨ (x ∧ py)).

4 The operation · is idempotent if and only if x ≤ px and x ≤ qx, if
and only if p> = > = q>.

5 The operation · has an identity 1 if and only if p1 = > = q1 and
(px ∨ qx) ∧ 1 ≤ x.

6 If · has an identity then · is idempotent.
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Heyting algebras and bunched implication algebras

Definition

A Heyting algebra (A,∧,∨,⊥,>,→) is a bounded lattice (A,∧,∨,⊥,>)
such that → is the residual of ∧, i. e.,

x ∧ y ≤ z ⇐⇒ y ≤ x → z .

The residual → ensures that the lattice is distributive.

Definition

A bunched implication algebra (BI-algebra) (A,∧,∨,⊥,>,→, ∗, 1,−∗) is
a Heyting algebra (A,∧,∨,⊥,>,→) such that (A, ∗, 1) is a commutative
monoid and −∗ is the residual of ∗, i. e.,

x ∗ y ≤ z ⇐⇒ y ≤ x−∗z .

The class of Heyting algebras and BI-algebras can both be defined by
equations, so they are varieties.
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BI-algebras and BI-logic

Bunched implication algebras are the algebraic semantics of BI-logic

BI-logic is the propositional part of separation logic, which is a Hoare
logic for reasoning about data structures, memory allocation and
concurrent programs.

The structure of BI-algebras is not well understood.

Defining ¬x = x → ⊥ and adding ¬¬x = x to BI-algebras gives the
variety of Boolean BI-algebras, which contains the variety CRA of
commutative relation algebras.

Finite BI-algebras “=” finite commutative distributive residuated lattices.

Every BI-algebra has a commutative d`-monoid as a reduct.

Every finite commutative d`-monoid expands uniquely to a BI-algebra.
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Aim: find easy-to-describe subvarieties of BI-algebras

A BI-algebra is idempotent if x∗x = x .

Recall that a preorder P is a binary relation that is reflexive and transitive

Theorem (Alpay, J. 2020)

Every finite idempotent Boolean BI-algebra is determined by a preorder P
on the set of atoms such that

P is a preorder forest: xPy and xPz implies yPz or zPy, and

P has singleton roots: xPy and yPx and ∀z(xPz =⇒ zPx) implies x = y

Preorder forests with singleton roots are counted by an Euler transform:

n 1 2 3 4 5 6 7 8 9 10 11
fn 1 2 5 14 41 127 402 1306 4314 14465 49054

idem. BBI fn 1 1 0 2 0 0 0 5 0 0 0
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Term equivalence for idemp. unary-determined BI-algebras

An operation p∗ is the residual of p if px ≤ y ⇐⇒ x ≤ p∗y holds.

Theorem

1 Let A be a Heyting algebra with an operation p, residual p∗ and
constant 1 such that px ∧ py ≤ p((px ∧ y) ∨ (x ∨ py)),
x ≤ px = ppx, p1 = > and px ∧ 1 ≤ x.

Define x∗y = (px ∧ y) ∨ (x ∧ py) and x−∗y = (px → y) ∧ p∗(x ∧ y).

Then (A,∧,∨,⊥,>,→, ∗,−∗, 1) is an idempotent unary-determined
BI-algebra.

2 Let (A,∧,∨,>,⊥,→, ∗,−∗, 1) be an idempotent unary-determined
BI-algebra, and define px = >∗x and p∗x = >−∗x.

Then (A,∧,∨,→,>,⊥, p, p∗, 1) is a Heyting algebra with an
operation p that has p∗ as residual and satisfies x ≤ px = ppx,
px ∧ py ≤ p((px ∧ y) ∨ (x ∨ py)), p1 = > and px ∧ 1 ≤ x.
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Distributive lattices (= Heyting algebras) of cardinality ≤ 6

2 3 22 4 22⊕1 1⊕22 5

2×3 22⊕2 1⊕22⊕1 2⊕22 6

Figure: The completely join-irreducible elements are in black.
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Downsets and completely join-irreducibles

Definition

Let (W ,≤) be a poset. A downset is a subset X ⊆W such that
y ≤ x ∈ X implies y ∈ X .

Let D(W ,≤) be the set of all downsets.

The downset lattice is (D(W ,≤),∩,∪, ∅,W ).

The downset lattice is a bounded distributive lattice.

Definition

An element x in a lattice A is completely join-irreducible if

x 6=
∨
{y ∈ A | y < x}.

J(A) denotes the set of completely join-irreducibles of A.
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Kripke semantics for finite d`-magmas

Definition

(J(A),≤,R) is the Birkhoff frame of a finite d`-magma A with the
ternary relation R defined by R(x , y , z) ⇐⇒ x ≤ y ·z .

From (x ∨ y)·z = x ·z ∨ y ·z it follows that · is order preserving.

Hence R satisfies:

(R1) u ≤ x & R(x , y , z) =⇒ R(u, y , z) (downward closure)
(R2) R(x , y , z) & y ≤ v =⇒ R(x , v , z) (upward closure)
(R3) R(x , y , z) & z ≤ w =⇒ R(x , y ,w) (upward closure).

Definition

In general a Birkhoff frame W = (W ,≤,R) is a poset (W ,≤) with a
ternary relation R ⊆W 3 that satisfies (R1), (R2), (R3).

The terminology “Birkhoff frame” is from [Galatos-J. 2017].
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Birkhoff frames produce d`-magmas

Definition

For a Birkhoff frame W define the downset algebra
D(W) = (D(W ,≤),∩,∪, ·, ∅,W ), where for Y ,Z ∈ D(W ,≤)

Y ·Z = {x ∈W | R(x , y , z) for some y ∈ Y and z ∈ Z}.

Y ·Z is a downset by (R1), (R2), (R3) of R.

Theorem

Let W be a Birkhoff frame. Then

D(W) is a d`-magma.

D(W) is idempotent if and only if for all x , y , z ∈W, R(x , x , x), and
(R(x , y , z) =⇒ x ≤ y or x ≤ z).
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PQ-Frames and P-Frames

Definition

(W ,≤,P,Q) is a PQ-frame if

1 (W ,≤) is a poset.

2 u ≤ x & P(x , y) & y ≤ v =⇒ P(u, v)

3 u ≤ x & Q(x , y) & y ≤ v =⇒ Q(u, v)

i.e., P, Q are weakening relations.

A P-frame is a PQ-frame where P = Q.

P is reflexive if P(x , x) for all x ∈W .

P is transitive if P(x , y) & P(y , z) =⇒ P(x , z).

Note: x ≤ y & P(y , y) =⇒ P(x , y) by weakening.
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Correspondence theory for PQ-Frames and d`pq-algebras

Lemma

Let W = (W ,≤,P,Q) be a PQ-frame, and A = D(W) a d`pq-algebra.
If it exists, the constant 1 ∈ A corresponds to a downset E ⊆W. Then

1 x ≤ px holds in A if and only if P is reflexive,

2 ppx ≤ px holds in A if and only if P is transitive,

3 px = qx holds in A if and only if P = Q,

4 p1 = > holds in A if and only if ∀x∃y(y ∈ E & xPy) holds in W,

5 px ∧ 1 ≤ x holds in A if and only if x ∈ E & xPy ⇒ x ≤ y in W,

6 px ∧ py ≤ p((px ∧ y) ∨ (x ∧ py)) holds in A if and only if
wPx & wPy ⇒ ∃v(wPv & (vPx & v ≤ y or v ≤ x & vPy)) in W.

If x ≤ px = ppx then from (6) we get associativity in the term-equivalent
d`-magma (A,∧,∨,⊥,>, ·), where x ·y = (px ∧ y) ∨ (x ∧ py).
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Preorder forest P-frames

A preorder forest P-frame is a P-frame such that P is a preorder (i. e.
reflexive and transitive) and satisfies the formula

(Pforest) xPy and xPz =⇒ x ≤ y or x ≤ z or yPz or zPy .

Theorem (main result; generalizes [Alpay, J. 2020])

Let W = (W ,≤,P) be a preorder forest P-frame and D(W) its
corresponding downset algebra. Then

the operation x∗y = (px ∧ y) ∨ (x ∧ py) is associative in D(W),

E ⊆W is an identity element for ∗ in the downset algebra D(W) if
and only if E is a downset and pE = W

if and only if (D(W ,≤),∩,∪, ∅,W ,→, ∗,−∗,E ) is an idempotent
unary-determined BI-algebra, where X−∗Y = {z ∈W | X∗{z} ⊆ Y }.
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Figure: All 40 preorder forest P-frames (W ,≤,P) with up to 3 join-irreducibles. Solid lines
show (W ,≤), dotted lines show the additional edges of P, and the identity (if it exists) is the
set of black dots. The first row shows the lattice of downsets.
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Conclusion

Distributive lattices with unary operations are simpler than ones with
binary operations. Hence the term-equivalence between
unary-determined d`-magmas and d`pq-algebras is useful.

We defined Birkhoff frames for d`-magmas, and PQ-frames for
d`pq-algebras. These frames are logarithmic in size compared to the
algebras.

Preorder forest P-frames can be calculated more efficiently than
idempotent unary-determined BI-algebras, and the P-frames can be
drawn as Hasse diagrams of the poset (solid lines) and the preorder
(dotted and solid lines).

n 1 2 3 4 5 6 7 8 9

all BI fn 1 1 3 16 70 399 2261
idem. BI fn 1 1 2 6 15 44 115 326

idem. u-d BI fn 1 1 2 5 10 24 47 108 223
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Open problems

Do commutative idempotent unary-determined d`-monoids have a
decidable equational theory?

Do idempotent unary-determined BI-algebras have a decidable equational
theory?

Find an axiomatization for the variety generated by residuated complex
algebras of preorder forest P-frames.

How is this variety related to monadic Heyting algebras?
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