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Rel(X ) = set of binary relations R on a set X

R ;S = composition of relations = {(u, v) : ∃w (u,w) ∈ R , (w , v) ∈ S}

unary domain, antidomain, range and converse operations are defined by

d(R) = {(u, u) ∈ X 2 : (u, v) ∈ R for some v ∈ X}

a(R) = {(u, u) ∈ X 2 : (u, v) /∈ R for all v ∈ X}

r(R) = {(v , v) ∈ X 2 : (u, v) ∈ R for some u ∈ X}

R` = {(v , u) ∈ X 2 : (u, v) ∈ R}

In relation algebras, d(R) = R ;R` ∩ id, a(R) = id − d(R),

r(R) = R`;R ∩ id, id = {(u, u) : u ∈ X}
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Elements of Rel(X ) represent actions or computations

Operations model the control flow in the system

Multiplication represents e.g. sequential or parallel composition of actions

Addition (union) represents nondeterministic choice

Multiplicative units (id) model ineffective actions (skip)

Additive units (∅) model abortive actions

E.g. semigroups or monoids model sequential composition

Semirings model sequential composition and nondeterministic choice

Concrete models of such algebras are sets of partial and total functions,
binary relations, languages, sets of computation paths . . .
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A domain operation yields enabledness conditions for actions

I.e. the domain d(x) of an action x models those states from which the
action x can be executed

The antidomain a(x) models those states from which the action x cannot
be executed

Recall that a semigroup is a set with an associative binary operation ·

A monoid is a semigroup with an identity element 1
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A domain semigroup, or d-semigroup, is a semigroup (S , ·) extended by a
domain operation d : S → S that satisfies the following axioms

(D1) d(x)x = x

(D2) d(xy) = d(xd(y))

(D3) d(d(x)y) = d(x)d(y)

(D4) d(x)d(y) = d(y)d(x)

A monoid that satisfies these axioms is a domain monoid or d-monoid

It is easy to check that the axioms (D1)-(D4) hold in Rel(X )

(D2) is called the locality axiom

In semigroups, (D2) has also been called left-congruence condition
[Jackson and Stokes 2001]

[Resende 2006] calls d stable if it satisfies (D2)
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A quantale (Q,
∨

, ·) is a complete join-semilattice (Q,
∨

)

with an associative binary operation · on Q that

distributes over arbitrary joins in both variables.

∨
∅ is denoted by 0, and

∨
Q is denoted by ⊤

Q is unital if (Q, ·, e) is a monoid for some e ∈ Q

Q is involutive if there is a completely join-preserving unary operation `

such that x`` = x and (xy)` = y`x`

Quantale morphisms are maps that preserve arbitrary joins and ·

Morphisms of unital and/or involutive quantales also preserve e and/or `

=⇒ 4 categories: Qnt Qnte Qnt
`

Qnte`
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Q is unital if (Q, ·, e) is a monoid for some e ∈ Q

Q is involutive if there is a completely join-preserving unary operation `

such that x`` = x and (xy)` = y`x`

Quantale morphisms are maps that preserve arbitrary joins and ·

Morphisms of unital and/or involutive quantales also preserve e and/or `
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Examples

For any semigroup (S , ·) the complex algebra (P(S),
⋃

, ·) is a quantale,
where

X · Y = {xy : x ∈ X , y ∈ Y }

If (S , ·, e) is a monoid then (P(S),
⋃

, ·, {e}) is a unital quantale

If (S , ·,−1 , e) is a group then (P(S),
⋃

, ·,−1 , {e}) is a unital involutive
quantale

For any set U the full relation algebra

Rel(U) = (P(U2),
⋃

,
⋂

,−, ; ,` , idU)

has a unital involutive quantale reduct

Any complete residuated lattice has a quantale reduct if one forgets ∧, \, /
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Any frame is a unital involutive quantale if we define xy = x ∧ y , x` = x

The category Frm of frames is a full subcategory of Qnte and Qnte`

A stably supported quantale (Q,
∨

, ·,` , d , e) is a unital involutive
quantale with a completely join-preserving ς : Q → Q that satisfies

ς(x) ≤ e ς(x) ≤ xx`

ς(x)x = x

ς(xy) = ς(xς(y))

ς(ς(x)y) = ς(x)ς(y)

ς(x)ς(y) = ς(y)ς(x)

The last 4 are the same axioms as for domain semigroups!

ς is called the support of Q, and (D2) makes it stable

Will denote the support by d rather than ς
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From the involution one can define r(x) = d(x`)

However in CS applications, ` is not so prominent

A domain quantale (Q,
∨

, ·, d , e) is a unital quantale with a domain
operation d that is completely join-preserving and satisfies d(x) ∨ e = e

So domain quantales are stably supported quantales without ` axioms

Lemma

If Q is a domain quantale then d(Q) = {d(x) : x ∈ Q} is a frame with
x ∧ y = xy

If Q is a stably supported quantale then d(Q) = ↓e
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Program semantics from domain quantales

The complemented elements in the frame d(Q) are considered as Boolean
predicates p = d(x) with complement p̄

Can be used for modeling the programming constructs “if p then x else y”
by px ∨ p̄y

“while p do x” by (
∨

<ω

n=0(px)n)p̄,

where z0 = e and zn+1 = zzn.

Hence in this model of program semantics the frame contains predicates
over a state space and

the quantale contains programs that transform predicates by
multiplication.
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Domain quantales from domain monoids

Domain monoids produce domain quantales by a modified powerset
construction:

Let (S , ·, d , e) be a domain monoid and define the fundamental order on S
by

x ≤ y ⇔ x = d(x)y

and let D(S) be all downward closed subsets of S

Then (D(S),
⋃

, ·, d , ↓e) is a domain quantale where for X ,Y ∈ D(S)

X · Y = ↓{xy : x ∈ X , y ∈ Y } d(X ) = ↓{d(x) : x ∈ X}

Another example of a domain quantale is Rel(U) with
⋃

, composition,
and domain
Peter Jipsen (Chapman University) On Semigroups, Quantales and Frames OAL 2009 Dec 4, 2009 12
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Representable d -monoids

Tarski [1948] defined the class RA of abstract relation algebras and asked
if every relation algebra is representable, i.e. embeddable into an algebra
of binary relations

Monk [1964] proved that the class RRA of representable relation algebras
is not finitely axiomatizable

Does the axiomatisation of d-monoids captures all the properties of the
domain operation of binary relations?

A d-monoid is called representable if it can be embedded in Rel(X ) for
some set X such that ·, d and 1 correspond to composition, relational
domain and idX

By the fundamental theorem for relation algebras [Schein 1970] the class
of representable d-monoids is a quasivariety
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Proposition

The following quasiequation fails in a 4-element d-monoid but holds in
Rel(X ): xy = d(x) and yx = x and d(y) = 1 imply x = d(x)

Proof.

Finding a 4-element counterexample for d-monoids is straight forward

To prove the result for Rel(X ), consider x , y ∈ Rel(X ) and (a, b) ∈ x .

Then d(y) = 1 implies (b, c) ∈ y for some c .

It follows from xy = d(x) that c = a, hence (b, a) ∈ y .

Now yx = x implies that (b, b) ∈ x .

Finally xy = d(x) yields (b, a) ∈ d(x), whence b = a.

Since (a, b) is arbitrary it follows that x = d(x).

Corollary

The quasivariety of representable d-monoids is not a variety
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Twisted Domain Semigroups

Partial functions under composition satisfy another equational property
called the twisted law by [Jackson and Stokes 2001]:

xd(y) = d(xy)x

This identity fails in Rel(X ) if we take x to be any relation that is not
deterministic

A d-semigroup/monoid is twisted if it satisfies the twisted law

[Manes 2006] refers to them as guarded semigroups/monoids

d(x) is the guard of x
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Various representation theorems have been proved for families of
semigroups with respect to partial functions. E.g.

• every group is embedded in the symmetric group S(X ) of all
permutations of a set X .

• every semigroup is embedded in the transformation semigroup T (X ) of
all functions on a set X .

Inverse semigroups are semigroups with a unary operation −1 that satisfies
the identities x−1−1 = x , xx−1x = x and xx−1yy−1 = yy−1xx−1.

It is a standard result of semigroup theory (independently due to Vagner
1952 and Preston 1954) that

• every inverse semigroup is embedded in the symmetric inverse semigroup
PI (X ) of all partial injections on X .
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Theorem (Trokhimenko 1973, Jackson Stokes 2001)

Every twisted d-semigroup can be embedded in a partial transformation
semigroup, hence representable.
If the semigroup has a unit, it is mapped to the identity function.

Proof (outline).

Let S be a twisted d-semigroup and consider the partial transformation
semigroup PT (S). For a ∈ S define

• Da = {xd(a) : x ∈ S} = {y ∈ S : yd(a) = y},

• fa : Da → S by fa(x) = xa, and

• h : S → PT (S) by h(a) = fa.

The map h is called the Cayley embedding and it remains to check that

1 d(fa) = fd(a),

2 fa;fb = fab, and

3 h is injective.

This is fairly straight forward, using the twisted law for (2).
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So verification of deterministic sequential programs can be done abstractly
entirely within the variety of twisted d-monoids

Corollary

Every commutative d-semigroup (d-monoid) is twisted, and can be
embedded in a partial transformation semigroup (monoid)

d(xy)x
D2
= d(xd(y))x

com
= d(d(y)x)x

D3
= d(y)d(x)x

D1
= d(y)x

com
= xd(y)

Hence the classes of commutative representable d-semigroups and
d-monoids are both finitely axiomatizable varieties

This is in contrast to relation algebras where the variety of commutative
representable relation algebras is not finitely axiomatizable
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d -monoids are not finitely axiomatizable

Theorem (Hirsch and Mikulas 2009)

The class of representable domain (and antidomain) monoids is not finitely
axiomatizable

Given a d-monoid or a-monoid A, they define a two-player game where the
existential player has a winning strategy iff A is representable

Then they define an infinite sequence of d-monoids An that are
nonrepresentable but the ultraproduct (

∏
An)/U for some nonprincipal

ultrafilter U is representable
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Free domain monoids

The free domain monoid is interesting for applications:

Identifies exactly those terms of domain monoids that have the same value
in all domain monoids

A recursive description provides decision procedures

The domain axioms of domain monoids hold for relation algebras, domain
quantales and stably supported quantales

The structure of free domain monoids can be lifted to free domain
quantales

The free domain monoid will turn out to be representatble by binary
relations

Peter Jipsen (Chapman University) On Semigroups, Quantales and Frames OAL 2009 Dec 4, 2009 20



One-generated domain terms

(D1) d(x)x = x (D2) d(xd(y)) = d(xy) (D3) d(d(x)y) = d(x)d(y)

As usual, we define x0 = 1 and xn+1 = xnx

Lemma

In a domain monoid, if m ≤ n then

d(xm)xn = xn and d(xm)d(xn) = d(xn)

Proof.

Assuming m ≤ n, we write xn = xmxn−m, and using (D1) we have

d(xm)xn = d(xm)xmxn−m = xmxn−m = xn

Now (D3) implies d(xm)d(xn) = d(d(xm)xn) = d(xn)
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Expanded normal forms

On elements of the form d(x j), the order is induced by the
meet-semilattice structure: d(x j) ≤ d(xk) iff j ≥ k, hence these elements
form a chain

Can rewrite any term in expanded normal form:

d(x j0)xd(x j1)xd(x j2)x · · · xd(x jm)

where jk ≥ 1 + jk+1 for k = 0, 1, . . . ,m − 1

E.g.
d(x4)x2d(x) = d(x4)xxd(x) = d(x4)xd(x)xd(x) = d(x4)xd(x2)xd(x)

where the last step holds since d(xd(x)) = d(x2) by (D2)
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Decreasing sequences of numbers

For brevity denote such a term by the sequence (j0, j1, j2, . . . , jm)

Note that this is always a strictly decreasing sequence of nonnegative
integers

Let P = (P ,≤) be the set of all such sequences, ordered by reverse
pointwise order

Thus sequences of different length are not comparable, and the maximal
elements of this poset are

(0), (1, 0), (2, 1, 0), . . .

corresponding to the terms

d(1) = 1, d(x)xd(1) = x , d(x2)xd(x)xd(1) = x2, . . .
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The poset of join-irreducibles below 1 and x

d(x5)

d(x4)

d(x3)

d(x2)

d(x1)

1 = d(x0)

(5)

(4)

(3)

(2)

(1)

(0)

...

x

d(x2)x

d(x3)x

d(x4)x

d(x5)x

d(x6)x

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)...
...

...
...

...
...

d(x6)xd(x)

d(x6)xd(x2)

d(x6)xd(x3)

d(x6)xd(x4)

xd(x5)

(6, 1)

(6, 2)

(6, 3)

(6, 4)

(6, 5)

(5, 4) = xd(x4)

(4, 3) = xd(x3)

(3, 2) = xd(x2)

(2, 1) = xd(x)

(5, 3) = d(x5)xd(x3)

(4, 2) = d(x4)xd(x2)

(3, 1) = d(x3)xd(x)
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The poset of join-irreducibles below x
2

x2 = (2, 1, 0)

(3, 1, 0)

(4, 1, 0)

(5, 1, 0)

(6, 1, 0)...
...
...
...
...

(6, 2, 0)

(6, 3, 0)

(6, 4, 0)

(6, 5, 0)
... ... ... ...

(6, 4, 3)

(5, 3, 2)

(4, 2, 1)

(3, 2, 1)

(4, 3, 2)

(5, 4, 3)
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The product of two decreasing sequences

A multiplication is defined on P by the following “ripple product”

(j0, j1, j2, . . . , jm) · (k0, k1, k2, . . . , kn) = (j ′0, j
′

1, j
′

2, . . . , j
′

m, k1, k2, . . . , kn)

where j ′m = max(jm, k0) and j ′i = max(ji , j
′

i+1 + 1) for i = m − 1, . . . , 2, 1, 0

For example, (7, 3, 2) · (4, 3, 1) = (7, 5, 4, 3, 1),

while (4, 3, 1) · (7, 3, 2) = (9, 8, 7, 3, 2)

Can show that this is the result of multiplying the corresponding expanded
normal forms and rewriting result in expanded normal form

It is tedious but not difficult to check that this operation is associative

Peter Jipsen (Chapman University) On Semigroups, Quantales and Frames OAL 2009 Dec 4, 2009 26



Domain and partial order

The domain of a sequence (j0, j1, j2, . . . , jm) is the length-one sequence (j0)

This corresponds to the domain term d(x j0)

The following example indicates how elements of P can be represented by
binary relations
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Example terms and corresponding relation

a = (4, 2, 1)

ta(x) = d(x4)xd(x2)xd(x)

b = (4, 3, 1)

tb(x) = d(x4)xd(x3)xd(x)

s f

Xa = {arrows}

Then ta(Xa) = {(s, f )} but tb(Xb) = ∅
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n-generated case (briefly)

A d-term is any term of the form d(t)

The identities d(x)x = x (D1), d(d(x)y) = d(x)d(y) (D3),

d(d(x)) = x , d(e) = e, xe = x and ex = x

form a confluent and terminating rewrite system when applied from left to
right (modulo associativity).

Will assume that all terms have been pre-normalized with respect to these
identities, so non-constant terms contain no occurrance of e or of
. . . d(d(. . .) . . .) . . ..

Hence every d-term is of the form

d(vd(t1) · · · d(tn−1)tn) or d(vd(t1) · · · d(tn−1)d(tn))

where v is a variable and the ti are arbitrary pre-normalized terms.
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In the first case, the term tn is a variable or a product of terms that starts
with a variable, so one application of (D2) will convert it into the second
form.

E.g. in the case n = 1, with t1 = xd(y) we have d(vxd(y)) converted to
d(vd(xd(y))).

This pre-normalized form for d-terms can be visualized by an edge-labelled
tree, where the root has a single outgoing edge labelled v , and attached to
the endpoint of this edge there are n (unordered) subtrees representing the
d-terms d(t1), . . . , d(tn)
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Let v ,w be variables and s1, . . . , sm, t1, . . . , tn be terms.

Define a preorder relation ⊑ on pre-normalized d-terms as follows.

d(vd(s1) · · · d(sm)) ⊑ d(wd(t1) · · · d(tn))

iff

v = w and ∀j ≤ n ∃i ≤ m (d(si) ⊑ d(tj))

This relation is obviously reflexive, and it is straight forward to check that
it is transitive.
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We say that two terms s, t are equal up to d-commutativity if t can be
derived from s by a sequence of applications of d(x)d(y) = d(y)d(x) (D4)
(which is clearly reversible, hence this notion is an equivalence relation).

Lemma

If d(s) ⊑ d(t) and d(t) ⊑ d(s) then s and t are equal up to associativity
and d-commutativity.

Lemma

If d(s) ⊑ d(t) then the identity d(s)d(t) = d(s) holds in all domain
monoids.

A d-term d(vd(t1) · · · d(tn) is reduced if d(ti ) 6⊑ d(tj) for all i 6= j

For example d(xd(x)d(y)) is reduced while d(xd(xd(x)d(y))d(xd(y))) is
not.
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Theorem

Every d-term is equivalent to a reduced d-term, which is unique up to
associativity and d-commutativity.

We now define the normal form for arbitrary domain monoid terms

A d-sequence is a finite product of d-terms. Note that 1 is considered a
d-sequence given by the empty product. Hence any term t can be written
in the form

t = s0v1s1v2s2 · · · sn−1vnsn

where v1, . . . , vn are variables in X and s0, . . . , sn are d-sequences.

The term t is said to be in expanded normal form if for all i < n some
d-term d(s) in the d-sequence si satisfies d(s) ⊑ d(vi+1si+1 · · · vnsn).

Lemma

Suppose t = s0v1s1v2s2 · · · sn−1vnsn is in expanded normal form. Then
d(t) = s0.
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We also extend the preorder ⊑ to d-sequences and arbitrary terms as
follows. Let d1, . . . , dm, d ′

1, . . . , d
′

n be d-terms. Then the
d1 · · · dm ⊑ d ′

1 · · · d
′

n iff for all j < n there exists i < m such that di ⊑ d ′

j .
In general, for alternations of d-sequences and variables we define

s0v1s1v2s2 · · · sm−1vmsm ⊑ t0w1t1w2t2 · · · tn−1wntn
iff

m = n, vi = wi and si ⊑ ti for all i = 1, . . . , n.

Theorem

Every term is equivalent to a term in expanded normal form, which is
unique up to associativity and d-commutativity.
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······ ··· ···

e

d(x) d(y)

Figure: Below e in the meet semilattice FDM(x , y)
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In the one-generated case, reduced d-terms are of the form d(x j),
d-sequences can always be replaced by a single d-term, and the expanded
normal form agrees with the one given before:

d(x j0)xd(x j1)xd(x j2)x · · · xd(x jm).

where jk > 1 + jk+1 for all k = 0, . . . ,m − 1.

In the two-generated case, we note that t = d(x2)d(xy) and
s = d(xd(x)d(y)) are both in expanded normal form, and that s ≤ t.

To see that they represent distinct elements in the free algebra, we need to
give an example of a domain monoid that distinguishes them.

Observe that the term t(x , y) = d(x2)d(xy) represents a tree with a root
0 and two branches with vertices 0, 1, 2 and 0, 3, 4.

The edges of the first branch are labeled by x and x , while the edges of
the second branch are labeled by x and y .
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Thus the tree defines a binary relation Xt = {(0, 1), (1, 2), (0, 3)} and
another one Yt = {(3, 4)}.

It is easy to check that t(Xt ,Yt) = {(0, 0)}, whereas s(Xt ,Yt) = ∅.

⇒ Relational representation similar to the one-generated case
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Conclusion

The domain axioms (D1)-(D4) have appeared in computer science,
relation algebra, semigroup theory and quantales

Every stably supported quantale and domain quantale contains a frame

Twisted d-monoids = guarded monoids are representable

Representable d-monoids and a-monoids are not finitely axiomatizable
(Hirsch-Mikulas 2009)

Free domain monoids can be described explicitly and are representable by
binary relations
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