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Abstract. Generalized basic logic algebras (GBL-algebras for short) have been introduced
in [JT02] as a generalization of Hájek’s BL-algebras, and constitute a bridge between alge-
braic logic and ℓ-groups. In this paper we investigate normal GBL-algebras, that is, integral

GBL-algebras in which every filter is normal. For these structures we prove an analogue
of Blok and Ferreirim’s [BF00] ordinal sum decomposition theorem. This result allows us
to derive many interesting consequences, such as the decidability of the universal theory
of commutative GBL-algebras, the fact that n-potent GBL-algebras are commutative, and

a representation theorem for finite GBL-algebras as poset sums of GMV-algebras, a result
which generalizes Di Nola’s and Lettieri’s [DL03] representation of finite BL-algebras.

1. Introduction

BL-algebras have been introduced by Hájek in [Ha98] as an algebraic semantics
of Basic fuzzy Logic BL. This logic is a common generalization of the three most im-
portant fuzzy logics, namely  Lukasiewicz, Gödel and product logics. In [CEGT00]
it is shown that the variety of BL-algebras is generated by the class of residuated
lattices arising from continuous t-norms on [0, 1] and their residuals, thus solving a
problem raised in [Ha98a]. Since then, BL-algebras have been investigated in the
framework of residuated lattices, cf [BT03] or [JT02] for an introduction. At the
same time, the deep connections between MV-algebras, the algebraic semantics for
 Lukasiewicz logic, and ℓ-groups ([Mu86], see also [Dv02] for the noncommutative
case) have been extended to BL-algebras [AM03]: every totally ordered BL-algebra
can be represented as an ordinal sum of an indexed family of negative cones of
abelian ℓ-groups and of MV-algebras, which in turn arise from abelian ℓ-groups
with a strong order unit via Mundici’s functor Γ. (For a proof of the main result
of [AM03] without using the axiom of choice see [Bu05]).

Trying to find a bridge between ℓ-groups, which constitute a very important
variety in classical algebra, and some varieties of algebras which are very important
in logic, like Boolean algebras, Heyting algebras and MV-algebras, some researchers
were led to a generalization of BL-algebras.

A first generalization is obtained by removing commutativity. This attempt led
to the variety of pseudo BL-algebras [DGJ02], [Dv06]. Among other results, we
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quote a generalization, due to Dvurečenskij [Dv06], of the ordinal sum decomposi-
tion theorem in [AM03] to the noncommutative case.

Another generalization of BL-algebras is obtained by removing representability.
For the ·,∧,→, 1 fragment, this generalization has led to the notion of hoop. In fact,
these structures were introduced before BL-algebras for reasons which are indepen-
dent of fuzzy logic, cf [Bo69]. An interesting feature of hoops is that these structures
include the ∧,→, 1 reducts of Heyting algebras. However, unlike Heyting algebras
and BL-algebras, hoops need not be lattice-ordered, i.e., a pair of incomparable
elements need not have a join. For hoops, an important representation theorem
is the Blok-Ferreirim theorem [BF00], which states that a subdirectly irreducible
hoop is representable as an ordinal sum of a proper subhoop of it and a Wajsberg
hoop, which is either a negative cone of an abelian ℓ-group, or the ·,→, 1 reduct of
an MV-algebra. A noncommutative variant of hoops, called pseudo hoops, has also
been investigated [GLP05].

But in our opinion, the most elegant generalization of BL-algebras is constituted
by the GBL-algebras, see [JT02] and [GT05]. These algebras are a common gener-
alization of ℓ-groups and of Heyting algebras, and therefore they constitute a bridge
between algebra and substructural logics. The most important properties which are
shared by ℓ-groups and Heyting algebras, and which are the defining properties of
GBL-algebras, are: (a) they are both residuated lattices (for ℓ-groups, residuals are
given by x/y = xy−1 and y\x = y−1x); (b) they both enjoy the divisibility prop-
erty: if x ≤ y, then there are z, u such that yz = uy = x (for ℓ-groups it suffices
to take z = y−1x and u = xy−1, for Heyting algebras, take u = z = y → x). Note
that some properties, like the identity x(x\e) = e or cancellativity, are satisfied
by ℓ-groups but not by Heyting algebras; other properties, like integrality (x ≤ e),
commutativity, idempotence (x2 = x) and boundedness (existence of a minimum
and of a maximum element) are satisfied by Heyting algebras and not by ℓ-groups.

Whilst the literature on BL-algebras and on pseudo BL-algebras is rapidly in-
creasing, at this moment only a few results, although significant, are known about
GBL-algebras. The deepest result in this field is a theorem by Galatos and Tsi-
nakis, saying that every GBL-algebra decomposes as a direct product of an ℓ-group
and an integral GBL-algebra, [GT05]. Another interesting result [JM06] states that
every finite GBL-algebra is commutative and integral.

In this paper we continue the investigation of GBL-algebras, focusing on the
representation theorems. First of all, we extend the Blok-Ferreirim theorem [BF00]
to normal GBL-algebras (a GBL-algebra is said to be normal iff every filter of it
is a normal filter). A consequence of the Blok-Ferreirim decomposition for normal
GBL-algebras is a generalization of [JM06]: every n-potent GBL-algebra (i.e., every
GBL-algebra satisfying the equation xn+1 = xn for some n) is commutative. As
another application we prove that the variety of commutative and integral GBL-
algebras has the finite embeddability property. It follows that the universal theory
of commutative GBL-algebras is decidable. The final section of the paper introduces
poset sums for residuated lattices as a generalization of direct products and ordinal
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sums. This concept and the Blok-Ferreirim decomposition are then used to prove
that every finite GBL-algebra is represented as the poset sum of finite Wajsberg
chains. As a consequence one obtains a bijective correspondence between finite
GBL-algebras and finite posets labeled by natural numbers.

2. Basic notions

Definition 1. A residuated lattice [JT02] is a system L = (L, ·, \, /,∨,∧, e) where

(a) (L, ·, e) is a monoid,
(b) (L,∨,∧) is a lattice,
(c) \ and / are binary operations such that the residuation property holds:

x · y ≤ z iff y ≤ x\z iff x ≤ z/y.

In the sequel the symbol · will be often omitted.

Definition 2. A residuated lattice is:

• commutative if it satisfies xy = yx;
• integral if it satisfies x ≤ e;
• divisible iff x ≤ y implies y(y\x) = (x/y)y = x;
• cancellative if xyw = xzw implies y = z;
• representable if it is isomorphic to a subdirect product of totally ordered

residuated lattices;
• bounded if it has a minimum element m and the language has an additional

constant 0 which is interpreted as m.

Note that a bounded residuated lattice also has a maximum, namely 0/0. More-
over, all of the above properties can be expressed by equations, cf [BT03], [JT02]
and [GO06]. Note also that ℓ-groups (i.e., groups with a multiplication that dis-
tributes over the lattice operations) can be presented as residuated lattices satis-
fying x(x\e) = e. Indeed, given an ℓ-group we obtain a cancellative and divisible
residuated lattice letting x\y = x−1y and y/x = yx−1. Conversely, from a residu-
ated lattice satisfying x(x\e) = e we obtain an ℓ-group letting x−1 = x\e = e/x.

In a commutative residuated lattice the operations x\y and y/x coincide and are
denoted by x→ y.

Definition 3. A GBL-algebra (cf [JT02], [GT05]) is a divisible residuated lat-
tice. A GMV-algebra is a GBL-algebra satisfying the equation y/((x\y) ∧ e)) =
((y/x) ∧ e)\y = x ∨ y. A BL-algebra [Ha98] is a commutative, integral, bounded
and representable GBL-algebra. An MV-algebra [COM00] is a commutative and
bounded GMV-algebra. (Note that commutative GMV-algebras, and hence MV-
algebras, are always representable, see e.g. [GT05].)

We note that bounded integral GMV-algebras are usually called pseudo-MV-
algebras, but have also been called generalized MV-algebras or GMV-algebras. To
avoid confusion, we only use the name “GMV-algebras” in its most general sense.

In any residuated lattice, the following conditions hold (cf [JT02], [GT05]).
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(1) x(x\y) ≤ y and (y/x)x ≤ y
(2) x(y ∨ z) = (xy) ∨ (yz) and (y ∨ z)x = (yx) ∨ (zx)
(3) (x ∨ y)\z = (x\z) ∧ (y\z) and z/(x ∨ y) = (z/x) ∧ (z/y)
(4) z\(x ∧ y) = (z\x) ∧ (z\y) and (x ∧ y)/z = (x/z) ∧ (y/z)
(5) (x/y)/z = x/(zy) and z\(y\x) = (yz)\x
(6) x\(z/y) = (x\z)/y
(7) x ≤ y/(x\y) and x ≤ (y/x)\y
(8) (x\y) = (y/(x\y))\y and (y/x) = y/((y/x)\y).

Moreover, any GBL-algebra has a distributive lattice reduct, and any integral
GBL-algebra satisfies:

(9) (y/x)\(x/y) = x/y and (y\x)/(x\y) = y\x.
(10) (x/y)y = y(y\x) = x ∧ y.

In [GT05], the following result is shown.

Proposition 4. Every GBL-algebra is isomorphic to the direct product of an ℓ-
group and an integral GBL-algebra.

Thus in the sequel we will mainly concentrate on integral GBL-algebras.

Lemma 5. An integral GBL-algebra A is a GMV-algebra iff for all a, b ∈ A one
has: (a ∨ b)\a = a iff a ∨ b = e iff a/(a ∨ b) = a.

Proof. In any integral GMV-algebra we have a/((a ∨ b)\a) = a ∨ b = (a/(a ∨ b))\a
and e\a = a/e = a, therefore (a∨b)\a = a iff a∨b = e iff a/(a∨b) = a. Conversely,
assume that (a ∨ b)\a = a iff a ∨ b = e iff a/(a ∨ b) = a for all a, b ∈ A. We
show that for all x, y ∈ A we have x/((x ∨ y)\x) = (x/(x ∨ y))\x = x ∨ y. Since
(x ∨ y)\x = y\x and x/(x ∨ y) = x/y holds in any integral residuated lattice, this
will imply the characteristic equation of integral GMV-algebras, namely, x/(y\x) =
(x/y)\x = x ∨ y. Now let u = x/((x ∨ y)\x). Then by (7) and (8) we have:

(11) x ∨ y ≤ u and u\x = (x ∨ y)\x.

Thus using (11), (10) and (5) we get

(x ∨ y)\x = (u ∧ (x ∨ y))\x = (u(u\(x ∨ y)))\x = (u\(x ∨ y))\(u\x) =

= (u\(x ∨ y))\((x ∨ y)\x).

Therefore, letting a = (x ∨ y)\x and b = u\(x ∨ y), we have a = b\a. But b =
u\(x ∨ y) ≥ u\x = (x ∨ y)\x = a, whence b = a ∨ b, and a = (a ∨ b)\a. It follows
that b = a ∨ b = e. Hence, u ≤ x ∨ y, and finally, by (11), u = x ∨ y. The proof of
(x/(x ∨ y))\x = x ∨ y is symmetric. �

Definition 6. A hoop (cf [Bo69] [BO75] [BF00]) is a commutative and integral
residuated partially ordered monoid (M, ·,→, e), with partial order ≤ defined by
x ≤ y iff x → y = e, satisfying the divisibility condition: x ≤ y iff y · (y → x) = x.
A hoop is said to be a Wajsberg hoop iff it is a subreduct of an MV-algebra. A
Wajsberg chain is a totally ordered Wajsberg hoop.



THE BLOK-FERREIRIM THEOREM FOR NORMAL GBL-ALGEBRAS 5

It can be proved that hoops are precisely the subreducts of commutative and
integral GBL-algebras with respect to the signature {·,→, e}. Moreover in any
hoop the meet operation is definable by x ∧ y = x · (x → y), and in a Wajsberg
hoop, the join is also definable by x ∨ y = (x → y) → y, cf [BF00], [Fe92]. Thus
Wajsberg hoops are term-equivalent to commutative and integral GMV-algebras.

Definition 7. The ordinal sum H1 ⊕ H2 (cf [Co82], [BF00]) of two hoops H1

and H2 is defined as follows: up to isomorphism, we may assume that H1 ∩H2 =
{eH1

} = {eH2
} (in the sequel we denote eH1

= eH2
by e). The universe of H1 ⊕H2

is H1 ∪H2, and the top element is e. The operations are defined as follows:

x · y =







x ·i y if x, y ∈ Hi (i = 1, 2)
x if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

x→ y =







x→i y if x, y ∈ Hi (i = 1, 2)
e if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

Building on work of Büchi and Owens [BO75], Blok and Ferreirim [BF00] proved
the following result.

Proposition 8. Every subdirectly irreducible hoop is the ordinal sum of a proper
subhoop H and a subdirectly irreducible nontrivial Wajsberg hoop W.

We are going to extend the notion of ordinal sum to integral GBL-algebras. If
we just copy the definition of ordinal sum of hoops, we meet a difficulty: if e is not
join irreducible in H1, and H2 has no minimum, then the ordinal sum defined as for
hoops is not closed under join. Indeed, let a, b < e in H1 such that a∨1 b = e. Then
a∨ b does not exist in H1 ⊕H2, because the upper bounds of a, b are precisely the
elements of H2, and this set has no minimum. Thus the ordinal sum construction
splits into the following cases:

Ordinal sums of type (a). If e is join irreducible in H1, then we can define the
ordinal sum of H1 and H2 in a way very similar to the case of hoops. Of course we
have to take into consideration that we now have two different residuals, and, more
importantly, we also have to define join and meet. Multiplication and residuals are
defined in the obvious way:

x · y =







x ·i y if x, y ∈ Hi (i = 1, 2)
x if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

x\y =







x\iy if x, y ∈ Hi (i = 1, 2)
e if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

y/x =







y/ix if x, y ∈ Hi (i = 1, 2)
e if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2
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Meet is definable as x ∧ y = x(x\y). In this way, we have:

x ∧ y =







x ∧i y if x, y ∈ Hi (i = 1, 2)
x if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

Moreover, it is easily seen that H1 ⊕ H2 is closed under join and that the join
operation is defined by:

x ∨ y =







x ∨i y if x, y ∈ Hi (i = 1, 2)
x if y ∈ H1 \ {e} , x ∈ H2

y if x ∈ H1 \ {e} , y ∈ H2

Ordinal sums of type (b). If e is not join-irreducible in H1 and H2 has a minimum
m then H1 ⊕ H2 is defined as in case (a) with the exception of join. Indeed,
if x ∨1 y = e in H1, then the least upper bound of x and y in H1 ⊕ H2 is the
minimum of H2. It follows that join in H1 ⊕ H2 is defined as follows:

x ∨ y =























x ∨2 y if x, y ∈ H2

x ∨1 y if x, y ∈ H1 and x ∨1 y < e
m if x, y ∈ H1 \ {e} and x ∨1 y = e
x if y ∈ H1 \ {e} , x ∈ H2

y if x ∈ H1 \ {e} , y ∈ H2

Ordinal sums of type (c). If e is not join irreducible in H1, and H2 has no minimum,
then the ordinal sum H1⊕H2 defined as in the case of hoops is not closed under join.
Therefore we have to change the whole construction slightly: replacing, if necessary,
H1 and H2 by isomorphic copies, we can assume without loss of generality that
H1 ∩H2 = ∅. Then define H1 ⊕ H2 as follows:

The universe of H1 ⊕ H2 is H1 ∪ H2, and eH2
is both the top element and the

monoid unit. The operations are as follows:

x · y =







x ·i y if x, y ∈ Hi (i = 1, 2)
x if x ∈ H1, y ∈ H2

y if y ∈ H1, x ∈ H2

x\y =























x\2y if x, y ∈ H2

x\1y if x, y ∈ H1 and x 6≤ y
eH2

if x, y ∈ H1 and x ≤ y
eH2

if x ∈ H1 and y ∈ H2

y if x ∈ H2 and y ∈ H1

y/x =























y/2x if x, y ∈ H2

y/1x if x, y ∈ H1 and x 6≤ y
eH2

if x, y ∈ H1 and x ≤ y
eH2

if x ∈ H1 and y ∈ H2

y if x ∈ H2 and y ∈ H1

x ∧ y =







x ∧i y if x, y ∈ Hi (i = 1, 2)
x if x ∈ H1, y ∈ H2

y if y ∈ H1, x ∈ H2
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x ∨ y =







x ∨i y if x, y ∈ Hi (i = 1, 2)
x if y ∈ H1, x ∈ H2

y if x ∈ H1, y ∈ H2

It is readily seen that in all cases H1⊕H2 is an integral GBL-algebra if H1 and H2

are (verification is left to the reader). We note that ordinal sums as defined here
can also be applied to integral residuated lattices in general.

In an ordinal sum H1 ⊕ H2 of any of the types (a), (b) or (c), of two integral
GBL-algebras, H2 is always a subalgebra of H1 ⊕H2. In ordinal sums of type (a),
H1 is also a subalgebra of H1⊕H2. In ordinal sums of type (b), H1 is closed under
all operations except from join, whereas in ordinal sums of type (c), H1 is not even
closed under residuals.

Ordinal sums of type (a) can be generalized in an obvious way to the case of
infinitely many summands. In this case we consider a totally ordered set I of
indices, and for all i ∈ I we consider an integral GBL-algebra Hi in such a way
that for i 6= j, Hi ∩ Hj = {ei} = {ej} = {e}, and for all i, ei is join irreducible in
Hi. Then the ordinal sum

⊕

i∈I Hi is defined as follows:

• The universe of
⊕

i∈I Hi is
⋃

i∈I Hi.

• x · y =







x ·i y if x, y ∈ Hi (i ∈ I)
x if x ∈ Hi \ {e} , y ∈ Hj with i < j
y if y ∈ Hi \ {e} , x ∈ Hj with i < j

• The partial order on
⊕

i∈I Hi is the unique partial order ≤ such that: (i)
e is the top element with respect to ≤; (ii) the partial order ≤i on Hi is
the restriction of ≤ to Hi, and (iii) if i < j, then every element of Hi \ {e}
precedes every element of Hj .

• The lattice operations and the residuals are uniquely determined by ≤ and
by ·.

In [AM03] the following is shown.

Proposition 9. Every totally ordered commutative and integral GBL-algebra A

can be represented as
⊕

i∈I Hi, where for all i ∈ I, Hi is a commutative, integral
and totally ordered GMV-algebra. If in addition A is a BL-algebra, then I must
have a minimum i0 and Hi0 must be an MV-algebra.

Recently Dvurečenskij [Dv06] has shown that Proposition 9 extends to the non-
commutative case.

3. The Blok-Ferreirim decomposition theorem for integral normal GBL-

algebras

Proposition 8 does not extend to integral GBL-algebras. In [JM06] the authors
present an example of a subdirectly irreducible integral GBL-algebra which cannot
be decomposed as an ordinal sum of two GBL-algebras and is not a GMV-algebra.
In this section we find some classes of integral GBL-algebras which satisfy the
Blok-Ferreirim decomposition theorem.
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Definition 10. A filter of a residuated lattice A is a set F ⊆ A such that e ∈ F ,
F is upward closed and F is closed under product and under meet. A filter is said
to be normal iff a ∈ F implies b\(ab) ∈ F and (ba)/b ∈ F for every b ∈ A.

Note that in an integral residuated lattice, normal filters are precisely the con-
gruence classes of e. In the nonintegral case, normal filters are the lattice filters
generated by the congruence classes of e. Since residuated lattices are e-regular, it
follows that normal filters are in one-to-one correspondence with congruences via
the map F 7→ {(a, b) : a/b, b/a ∈ F} (see [BT03], [JT02]).

Definition 11. Let L be a residuated lattice and let a ∈ L with a ≤ e. We say
that a is stable (cf [GOR]) iff for all c ∈ L there is a natural number n such that
anc ≤ ca and can ≤ ac. We say that L is:

• weakly commutative if for every a ∈ L, a ∧ e is stable,
• normal if every filter of it is normal, and
• n-potent if it satisfies xn+1 = xn.

The following result is a particular case of [GOR], Corollary 10.

Proposition 12. In any residuated lattice L, the following are equivalent:

(a) Every element a ≤ e is stable.
(b) For all b ∈ L, the normal filter Fg(b) generated by b is given by the formula

Fg(b) = {x ∈ L : ∃n ∈ ω((b ∧ e)n ≤ x)}.

As an immediate consequence, we have the following result.

Corollary 13. An integral residuated lattice is weakly commutative iff it is normal.

Lemma 14. Let L be an integral and normal residuated lattice and let x, y ∈ L.
Then the following hold.

(a) There is n ∈ ω such that x\y ≤ y/xn and y/x ≤ xn\y.
(b) x\y = y iff for all n ∈ ω, xn\y = y iff for all n ∈ ω, y/xn = y iff y/x = y.

Proof. (a) By Corollary 13, L is weakly commutative, therefore for all x, y ∈ L
there is n ∈ ω such that (x\y)xn ≤ x(x\y) ≤ y and xn(y/x) ≤ (y/x)x ≤ y. By
residuation, it follows that x\y ≤ y/xn and y/x ≤ xn\y.

(b) Suppose x\y = y. Then x2\y = x\(x\y) = x\y = y, and iterating we
get xn\y = y for every n. Now by (a) there is n such that y ≤ y/x ≤ xn\y = y,
therefore y/x = y. By a symmetric argument we get that y/x = y implies y/xn = y
for every n and this in turn implies x\y = y, hence the claim is proved. �

Lemma 15. Every n-potent GBL-algebra A is integral and normal.

Proof. By Proposition 4, A decomposes as a direct product of an integral GBL-
algebra and an ℓ-group. Since any n-potent ℓ-group is trivial, A is integral. With
regards to normality, for all x ∈ A, xn is an idempotent, and by [JM06], xny =
yxn = xn ∧ y. Thus we get xny = yxn ≤ yx and yxn = xny ≤ xy. It follows that
A is weakly commutative, therefore by Corollary 13 it is normal. �
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Lemma 15 holds for n-potent GBL-algebras but not for n-potent residuated
lattices in general. Indeed, in [GOR] the authors present an example of a finite and
integral (hence n-potent for some n) residuated lattice which is not normal.

Clearly, commutative GBL-algebras are normal, but the converse does not hold,
as illustrated by the next example.

Example 16. An ℓ-group is weakly abelian if it satisfies x2y ≤ yx for each x ≤ e and
for all y. Note that there are weakly abelian and nonabelian ℓ-groups [AF88]. Note
also that a weakly abelian ℓ-group satisfies yx2 ≤ xy whenever x ≤ e: replacing y
by y−1 in the definition of weakly abelian ℓ-group and multiplying both sides by y
to the left and to the right, we get y(x2y−1)y = yx2 ≤ y(y−1x)y = xy. Thus any
negative cone of a weakly abelian, but not abelian, ℓ-group with residuals defined
by x\y = (x−1y) ∧ e and y/x = (yx−1) ∧ e, is a weakly commutative but not
commutative integral GBL-algebra. The same is true of the ordinal sum of two (or
more) negative cones of weakly abelian ℓ-groups.

Let A be a subdirectly irreducible normal and integral GBL-algebra and let M
be its minimum nontrivial filter. An element a ∈ A is said to be fixed if a < e and
there exists m ∈ M \ {e} such that m\a = a/m = a. In the sequel, F will denote
the set of fixed elements of A and F+ will denote the set F ∪{e}. Finally, we define
M− = M \ {e} and S = A \ F . We establish a sequence of lemmas in full analogy
with [BF00].

Lemma 17. (a) For every a ∈ A \ {e} there is m ∈M− such that a ≤ m.
(b) For m,m′ ∈M , (m∨m′)\m′ = m′ implies m∨m′ = e and m′/(m∨m′) =

m′ implies m ∨ m′ = e. Thus, (by Lemma 5), M is the domain of an
integral GMV-algebra.

(c) If f ∈ F , then for all m ∈M we have f/m = m\f = f .
(d) M ∩ F = ∅.
(e) For f ∈ F and m ∈M , one has f ≤ m.

Proof. (a) Let m′ ∈M−. By the minimality of M , m′ belongs to the normal filter
generated by a, and by the normality and the integrality of A, there exists a positive
n such that an ≤ m′. Let n be the least positive integer with this property. Then
an−1\m′ < e and a ≤ an−1\m′. Finally, m′ ≤ an−1\m′, therefore an−1\m′ ∈ M−.
Thus m = an−1\m′ meets our requirements.

(b) Suppose (m∨m′)\m′ = m′. If m∨m′ < e, then the principal filter generated
by m ∨ m′ is the minimum nontrivial normal filter, therefore there exists k such
that (m∨m′)k ≤ m′. Moreover by Lemma 14 (b), we have (m∨m′)k\m′ = m′ < e,
and a contradiction has been reached. Again by Lemma 14 (b), m′/(m∨m′) = m′

implies (m ∨m′)\m′ = m′, which in turn implies m ∨m′ = e. Now every filter of
an integral GBL-algebra is a subalgebra of it. Thus M is the domain of an integral
GBL-algebra, which is a GMV-algebra by Lemma 5.

(c) Let f ∈ F and let m ∈ M− be such that f/m = m\f = f . Let m′ ∈ M .
Then there exists n ∈ ω such that mn ≤ m′, hence m′\f ≤ mn\f = f , therefore
m′\f = f . By Lemma 14 (b), f/m′ = f .
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(d) By (c), if m ∈M ∩ F , then m\m = m, therefore m = e, a contradiction.
(e) By (c), one has f/m = m\f = f . Moreover by the formula (9) in Section

2, we have (f/m)\(m/f) = m/f , therefore letting x = f/m = f and y = m/f ,
we have x\y = y, which by Lemma 14 (b), implies y = xn\y for every n. Now
y = m/f ≥ m ∈ M , therefore for some n, xn ≤ y, because the filter generated by
x contains M . This implies y = e and finally f ≤ m. �

Lemma 18. Let m ∈M , s ∈ S and f ∈ F . Then

(a) mf = fm = f ,
(b) f ′ ≤ f implies f ′ ∈ F ,
(c) F+ = F ∪ {e} is closed under all the operations of residuated lattices, with

the possible exception of ∨,
(d) f ≤ s, fs = sf = f ∧ s and s\f = f/s = f ,
(f) S is the domain of a subalgebra of A,
(g) S is the domain of an integral GMV-algebra.

Proof. (a) By Lemma 17 (e), we have f ≤ m, therefore f = f ∧m = m(m\f) =
(f/m)m = mf = fm.

(b) We have (m\f ′) ≤ m\f = f , therefore m\f ′ = (m\f ′) ∧ f . Now let us
compute (using repeatedly x(x\y) = x ∧ y and x\(y\z) = (yx)\z)

(m\f ′)\f ′ = ((m\f ′) ∧ f)\f ′

= (f(f\(m\f ′))\f ′

= (f\(m\f ′))\(f\f ′)
= ((mf)\f ′)\(f\f ′)
= (f\f ′)\(f\f ′)
= e

(recall that by (a), mf = f). Thus m\f ′ ≤ f ′, and m\f ′ = f ′. By Lemma 14 (b),
f ′/m = f ′, therefore f ′ ∈ F .

(c) Let f1, f2 ∈ F . Then m\(f1\f2) = (f1m)\f2 = f1\f2, and by Lemma 14 (b),
(f1\f2)/m = f1\f2. Thus either f1\f2 = e or f1\f2 ∈ F . It follows that F+ is
closed under \ and /. That F+ is closed under product and under meet is clear, as
F is downward closed.

(d) We have m\(f\s) = (fm)\s = f\s. By Lemma 14 (b), (f\s)/m = f\s.
Thus either f\s ∈ F or f\s = e. But since s ≤ f\s and F is downward closed,
f\s ∈ F would imply s ∈ F , which is impossible. Thus f\s = e and f ≤ s.

Now ((f/s)\f)/m = (f/s)\(f/m) = (f/s)\f . Therefore by Lemma 14 (b),
m\((f/s)\f) = (f/s)\f and (f/s)\f is either e or in F . Note that S is upward
closed, since F is downward closed. Thus since s ≤ (f/s)\s, we have (f/s)\f ∈ S
and (f/s)\f /∈ F . Hence (f/s)\f = e, therefore f/s ≤ f and f/s = f . By Lemma
14 (b), s\f = f .

Finally f = f ∧ s = s(s\f) = (f/s)s = sf = fs.
(e) Since S is upward closed, it is closed under \, under / and under join. We

prove that S is closed under product. Suppose s, s′ ∈ S. Without loss of generality,
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we may assume s, s′ < e. Then for all f ∈ F , (ss′)\f = s′\(s\f) = s′\f = f . By
Lemma 14 (b), f/(ss′) = f . Thus ss′ /∈ F , otherwise we would get e = (ss′)\(ss′) =
ss′. It follows that ss′ ∈ S. Finally s∧s′ ∈ S, because s∧s′ ≥ ss′, and S is upward
closed.

(f) Suppose (s∨s′)\s = s with s, s′ ∈ S. If s∨s′ < e, then by Lemma 17, (a) there
is an element m ∈ M− such that s ∨ s′ ≤ m. But then s ≤ m\s ≤ (s ∨ s′)\s = s,
and by Lemma 14 (b), m\s = s/m = s. This implies s ∈ F , a contradiction. It
follows that (s ∨ s′)\s = s implies s ∨ s′ = e. By Lemma 14 (b), s/(s ∨ s′) = s
implies (s ∨ s′)\s = s and s ∨ s′ = e. Thus by Lemma 5, S is the domain of a
GMV-algebra. �

We have seen that S is the domain of a subalgebra, S, of A which is an integral
GMV-algebra. Moreover F+ = F ∪ {e} is closed under all operations of residuated
lattices except possibly join. If F is also closed under join, then F+ is the domain of
a subalgebra, F, of A and A is the ordinal sum of type (a) of F and S. Otherwise,
note that every element of S is an upper bound of F , therefore if two elements of F
have no upper bound in F , then their join must be the minimum of S (recall that
A is closed under join). In this case, define for a, b ∈ F+, a∨F b = a∨ b if a, b ∈ F
and the join of a and b exists in F , and a ∨F b = e otherwise. Let us denote by F

the resulting algebra. Then A is the ordinal sum of type (b) of F and S. Summing
up, we have:

Theorem 19. Every normal subdirectly irreducible integral GBL-algebra decom-
poses as the ordinal sum, either of type (a) or of type (b), of an integral GBL-algebra
and a subdirectly irreducible integral nontrivial GMV-algebra.

4. n-potent GBL-algebras are commutative

In [JM06] it is shown that every finite GBL-algebra is commutative. In this
section we extend the result to n-potent GBL-algebras. Every finite GBL-algebra
is integral and hence n-potent for some n, but the converse does not hold. Therefore
the result we present here is a strengthening of [JM06]. We begin by recalling the
following observation from that paper.

Lemma 20. Let A be any integral GBL-algebra.

(a) If x is an idempotent element of A, then for all y ∈ A, xy = yx = x ∧ y.
(b) The set of idempotent elements of A is closed under join and meet.

Proof. (a) xy ≤ x ∧ y = x(x\y) = x2(x\y) = x(x ∧ y) ≤ xy.
(b) If x2 = x and y2 = y, then (x ∨ y)2 = x2 ∨ xy ∨ yx ∨ y2 = x ∨ y, and

(x ∧ y)2 = (xy)2 = x2y2 = xy = x ∧ y (we have used repeatedly part (a)). �

Lemma 21. In any n-potent subdirectly irreducible GBL-algebra, e is join irre-
ducible.



12 P. JIPSEN AND F. MONTAGNA

Proof. Let m < e be an element of the minimum nontrivial filter. If x < e and
y < e, then xn ≤ m and yn ≤ m, as the filter generated by x and the filter
generated by y contain m. Now by the identity x(y ∨ z) = xy ∨ xz, (x ∨ y)2n is
the join of products of 2n factors, of which k ≤ 2n are equal to x and 2n − k are
equal to y. Thus each product has either ≥ n factors equal to x or ≥ n factors
equal to y. Using integrality we see that each product is either ≤ xn or ≤ yn. Thus
(x ∨ y)2n ≤ xn ∨ yn ≤ m < e, therefore x ∨ y < e. �

We note that the previous result can also be deduced from Lemma 11 in [GOR],
stated below in a slightly rephrased form.

Proposition 22. [GOR] A weakly commutative GBL-algebra is finitely subdirectly
irreducible if and only if e is join irreducible.

Lemma 23. Every subdirectly irreducible n-potent GMV-algebra is a finite chain,
hence it is commutative.

Proof. Let A be a subdirectly irreducible n-potent GMV-algebra. First of all we
observe that A is totally ordered. Indeed, any integral GMV-algebra satisfies x\y∨
y\x = x/y ∨ y/x = e, cf [GT05], and since by the preceding lemma e is join-
irreducible in A, the claim follows.

We proceed with the proof. Let 1 < k ≤ n be the maximum natural number for
which there exists x ∈ A such that xk < xk−1, and let x be such an element. Note
that xk is an idempotent.

Claim (a): xk is the minimum of A. Indeed if y < xk, then xky = xk∧y = y, and
using the fact that xk is an idempotent and Lemma 20, y = xk(xk\y) = xk∧(xk\y),
therefore xk\y = y. But then e = y/(xk\y) = xk ∨ y = xk, which is impossible.

Claim (b): x is a coatom. Suppose, by way of contradiction, e > y > x. Then
x = y(y\x), and xk < xk−1 = (y(y\x))k−1. Let z = max {y, y\x}. Note that z < e,
as x < y < e. Then xk−1 ≤ zk−1zk−1 = z2k−2. But z2k−2 ≤ zk, and repeating the
argument used in the proof of Claim (a), with x replaced by z, we see that zk is
the minimum of A. Since zk ≥ xk−1 > xk, a contradiction has been reached. Thus
x is a coatom.

Since A is totally ordered, there is a unique coatom x. Now we prove that
A consists of e plus all powers xi : i = 1, . . . , k. Suppose by contradiction that
for some y ∈ A and for some i < k, xi+1 < y < xi. Then xi\y > x, because
xix = xi+1 < y and xi(xi\y) = y. But xi\y > x implies xi\y = e, as x is a coatom.
Thus xi ≤ y, which is a contradiction.

Thus A is a finite chain which is generated as a monoid by its coatom, therefore
it is also commutative. �

As noted in Example 16, there exist noncommutative integral normal GBL-
algebras. The following result shows that these examples cannot be n-potent.

Theorem 24. Any n-potent GBL-algebra A is commutative.
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Proof. Proceeding by contradiction, let a, b ∈ A such that ab 6= ba. Let U be
maximal among all filters F such that c = ((ab)\(ba)) ∧ ((ba)\(ab)) /∈ F , and let
B = A/U . Then B is subdirectly irreducible, and m = c/U is a generator of the
minimum filter M . Moreover, by Theorem 19, B decomposes as an ordinal sum
B0⊕W, where W is a nontrivial subdirectly irreducible GMV-algebra. By Lemma
23, W is a finite and commutative GMV-chain. Now let x = a/U and y = b/U .
Note that xy 6= yx, because m = ((xy)\(yx)) ∧ ((yx)\(xy)) < e. Thus either
(xy)\(yx) < e or (yx)\(xy) < e. Suppose without loss of generality (xy)\(yx) < e.
Distinguish the following cases:

(a) x, y ∈W . Then xy = yx, because W is commutative, and a contradiction is
reached.

(b) x ∈W and y /∈ W, or vice versa. Then xy = yx = x∧ y, and again we reach
a contradiction.

(c) x, y ∈ B0 \ {e}. Then xy, yx ∈ B0 \ {e} and xy\yx ∈ B0 \ {e}, since
B0 is closed under residuation. On the other hand, xy\yx ∈ W , because m =
(xy\yx) ∧ (yx\xy) ≤ xy\yx and m ∈ W . Once again, a contradiction has been
reached, and the proof is complete. �

5. Decision problems for GBL-algebras

Since all finite GBL-algebras are commutative and integral, neither GBL-algebras
nor integral GBL-algebras have the finite model property. In this subsection we
prove that commutative and integral GBL-algebras have the finite embeddability
property (FEP for short). Recall that a variety V has the FEP iff every finite partial
subalgebra of any algebra of V partially embeds into a finite algebra of V. Note
that the FEP is stronger than the finite model property: for a finitely axiomatized
variety V, the finite model property implies the decidability of the equational theory
of V, while the FEP implies the decidability of the universal theory of V.

At the end of this section we show that, without the assumption of commuta-
tivity, the quasiequational theory of all GBL-algebras is undecidable.

We start from the following lemma.

Lemma 25. Suppose H = H0 ⊕ W is an ordinal sum of type (b) and m is the
minimum of W. Then

(i) H0 ∪ {m} is the domain of a subalgebra of H, and
(ii) if K0 is a subalgebra of H0 and e is join irreducible in K0, then K0 is a

subalgebra of H.

Proof. (i). First note that m is an idempotent. Indeed, m2 ≤ m, but m2 ∈ W , as
W is a subalgebra of H. Thus m2 = m, as m is the minimum of W.

Now we prove that H0∪{m} is closed under all operations of residuated lattices.
It is clear that e ∈ H0 ∪ {m} and that H0 ∪ {m} is closed under · and under ∧,
since me = m and mx = x for all x ∈ (H0 \ {e}) ∪ {m}. Next, observe that for all
x ∈ H0 \{e}, m→ x = x and x→ m = e (this follows from the definition of ordinal
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sum of type (b)). Moreover, e→ m = m and m→ e = e. Thus H0 ∪ {m} is closed
under →. Finally, the join of two elements of H0 \{e} is either in H0 \{e} or equal
to m. Moreover m ∨ e = e, and for x ∈ H0 \ {e}, m ∨ x = m. Thus H0 ∪ {m} is
closed under ∨. This ends the proof of (i).

(ii). It follows from the definition of ordinal sum of type (b) that the only cases
where the join in H0 of two elements a, b of H0 differs from their join in H occurs
when in H0 a ∨ b = e and a, b < e. But this is excluded if a, b ∈ K0 and e is join
irreducible in K0. �

Theorem 26. The variety of commutative and integral GBL-algebras has the FEP.

Proof. We prove by induction on the cardinality n of P that if P is a finite partial
subalgebra of a commutative and integral GBL-algebra A such that e ∈ P , then
P partially embeds into a finite GBL-algebra. Without loss of generality, we may
assume that A is generated by P . Moreover, we may assume that A is subdirectly
irreducible: this can be seen by an argument used in [BF00] Lemma 3.7: for p 6= q ∈
P , let θp,q be maximal among the congruences which separate p and q. Then A/θp,q

is subdirectly irreducible, and P partially embeds into
∏

p6=q∈P A/θp,q. Assuming
that the claim holds for subdirectly irreducible algebras, we have that for all p 6=
q ∈ P , P/θp,q partially embeds into a finite algebra Bp,q. But then P partially
embeds into

∏

p6=q∈P Bp,q, which is a finite algebra.
Thus we can suppose that A is subdirectly irreducible. Moreover the above ar-

gument shows that we may assume without loss of generality that any nontrivial
congruence θ of A identifies two distinct elements of P. Thus, we assume that
P has cardinality n, and that the claim holds for all finite partial subalgebras of
cardinality < n of any commutative and integral GBL-algebra. Since A is sub-
directly irreducible, by Proposition 22, e is join irreducible in A, hence it is join
irreducible in P. Now decompose A as H ⊕ W, where H is a commutative and
integral GBL-algebra and W is a subdirectly irreducible nontrivial commutative
and integral GMV-algebra. Note that H is closed under the operations ·, ∧ and →
of A = H ⊕ W. Moreover, the join in A of two elements of H \ {e} is either in
H \ {e} or the minimum m of W. Now distinguish three cases:

Case (a): e is join irreducible in H. Then since Wajsberg hoops have the FEP
[BF00], commutative and integral GMV-algebras also have the FEP, being term
equivalent to Wajsberg hoops. Thus W ∩ P partially embeds into a finite GMV-
algebra, V say. Moreover, since A is generated by P and H is a subalgebra of A,
at least one element of P is in W \ {e}, therefore H ∩ P has cardinality < n, and
by the induction hypothesis it partially embeds into a finite GBL-algebra K. But
then P partially embeds into K ⊕ V (the ordinal sum is of type (a) or of type (b)
according to whether e is join irreducible in K or not).

Case (b): e is not join irreducible in H and W has more than two elements.
Then since H ∪ {m} is a subalgebra of A (Lemma 25) and A is generated by P,
W ∩ P must contain some element which is not in the subalgebra of A generated
by H. Therefore, H ∩ P has cardinality < n. Thus we can proceed as in case (a).
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Case (c): e is not join irreducible in H and W has only two elements. Then
W has a minimum m, which is necessarily an idempotent. Now note that W

is a nontrivial filter of A, therefore by our assumption on A, the congruence θ
associated to W identifies at least two different elements of P. It follows that
P/θ is a partial subalgebra of A/θ of cardinality < n, therefore by the induction
hypothesis it partially embeds into a finite GBL-algebra K. Note that θ does not
identify different elements of H \ {e}: indeed, if (x, y) ∈ θ, then m ≤ x → y and
m ≤ y → x, therefore mx ≤ y and my ≤ x. But if x ∈ H \ {e}, then mx = x,
therefore x ≤ y. Similarly y ≤ x, hence y = x. Moreover, θ does not identify e with
elements of H \ {e}, because the equivalence class of e is W. For the same reason,
θ does not identify m with any element of H \ {e}. Hence the only elements of A

identified by θ are m and e, therefore m and e must be in P. Thus P partially
embeds into the finite algebra K ⊕ W. �

Corollary 27.

(a) The universal theory of commutative and integral GBL-algebras is decidable.
(b) The universal theory of commutative GBL-algebras is decidable.

Proof. (a) This follows from Theorem 26 because the class is finitely axiomatized.
(b) By Proposition 4, any commutative GBL-algebra decomposes as a direct

product of a commutative and integral GBL-algebra and an abelian ℓ-group. Thus
any subdirectly irreducible commutative GBL-algebra is either an abelian ℓ-group
or a commutative and integral GBL-algebra. It follows that a quasiequation holds in
all commutative GBL-algebras if and only if it holds in all abelian ℓ-groups and in all
commutative and integral GBL-algebras. So the decidability of the quasiequational
theory of commutative GBL-algebras follows from (a) and from the decidability of
the quasiequational theory of abelian ℓ-groups (cf [We86]).

Since commutative GBL-algebras are closed under products, the universal theory
this class is also decidable by McKinsey’s lemma (see e.g. [Ho93] Cor. 9.1.7). �

Whilst the quasiequational theory of commutative GBL-algebras is decidable,
the quasiequational theory of GBL-algebras is undecidable, as shown by the next
proposition.

Recall that an ℓ-group can be regarded as a residuated lattice, with x\y = x−1y
and y/x = yx−1, and that the inverse operation can be written in the language of
residuated lattices as x−1 = x\e.

Proposition 28. To each quasiequation Φ of residuated lattices we can construc-
tively associate a quasiequation Φ′ such that Φ holds in all ℓ-groups iff Φ′ holds in
all GBL-algebras. Thus the quasiequational theory of GBL-algebras is undecidable.

Proof. Let Φ be (φ1&...&φn) ⇒ ψ, where φ1, ..., φn, ψ are equations in the language
of residuated lattices. Let φ = (φ1&...&φn), and let x1, ..., xk be the variables
occurring in Φ. For i = 1, ..., k, let γi denote the equation xi(xi\e) = e. Let
γ = γ1&...&γk, and let Φ′ = (γ&φ) ⇒ ψ. We claim that Φ holds in all ℓ-groups
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iff Φ′ holds in all GBL-algebras. By [GG83] the word problems for ℓ-groups, and
hence the quasiequational theory, are undecidable, so the claim will imply that the
quasiequational theory of GBL-algebras is also undecidable.

If Φ′ holds in all GBL-algebras, then it holds in all ℓ-groups. But γ1, ..., γk are
valid in all ℓ-groups, therefore in ℓ-groups Φ′ is equivalent to Φ. It follows that Φ
holds in all ℓ-groups.

Conversely, assume that Φ holds in all ℓ-groups. Let A be any GBL-algebra. By
Proposition 4 we can write it as A = B × G, where B is an integral GBL-algebra
and G is an ℓ-group. Let v be a valuation of variables into A such that γ&φ is
true under v. We can write v(xi) as v(xi) = (bi, gi) with bi ∈ B and gi ∈ G. Then
by the truth of γi under the valuation v, in B we must have bi(bi\e) = e, which
in turn implies bi = e, as B is integral. Thus the subalgebra C of A generated by
v(x1), . . . , v(xn) is in fact a subalgebra of {e}×G, therefore it is an ℓ-group. Hence
Φ is valid in C, and therefore it is true in A under the valuation v. Finally, the
truth of φ under v implies that ψ is also true under v. Thus Φ′ is valid in A, and
the claim is proved. �

6. Poset sum representability for finite GBL-algebras

In this section we define a generalization of ordinal sums, called poset sums.
Using the Blok-Ferreirim theorem for normal GBL-algebras, we proceed to show
that every finite GBL-algebra is isomorphic to a poset sum of finite Wajsberg chains.

It is proved in [JM06] that any finite GBL-algebra A is commutative, and that
the set I(A) of idempotents forms a subalgebra that satisfies xy = x∧ y and hence
is a Brouwerian algebra. Let P be the poset of join-irreducibles of this Brouwerian
algebra. Each i ∈ P has a unique lower cover i∗ ∈ I(A). We show, with the help
of Theorem 19, that the interval Ai = [i∗, i] is a chain, and has the multiplicative
structure of a Wajsberg hoop. The GBL-algebra A can be reconstructed from a
subset of the direct product of these Wajsberg chains.

For BL-algebras, this structure result is proved in [DL03]. In this case the
representability of BL-algebras implies that the poset of join-irreducibles is a forest
(i.e. the downset of any element is a chain). The approach taken here is somewhat
simpler and shows that representability plays no role in this result.

A generalized ordinal sum construction for bounded integral residuated lattices
is defined as follows:

Let P be a poset, and let Ai (i ∈ P ) be a family of residuated lattices. In addition
we require that for nonmaximal i ∈ P each Ai is integral, and for nonminimal i ∈ P
each Ai has a least element denoted by 0i. The poset sum is defined as

⊕

i∈P

Ai = {a ∈
∏

i∈P

Ai : aj < e =⇒ ak = 0k for all j < k}.

This subset of the product contains the constant function e. Note that an element
a is in the poset sum if and only if {i ∈ P : 0i < ai < e} is an antichain and
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{i ∈ P : ai = e} is downward closed (hence {i ∈ P : ai = 0i} is upward closed).
The operations ∧, ∨ and · are defined pointwise (as in the product). For the
definition of the residuals, we have

(a\b)i =

{

ai\bi if aj ≤ bj for all j < i
0i otherwise.

(a/b)i =

{

ai/bi if bj ≤ aj for all j < i
0i otherwise.

If i is a maximal (minimal) element of P , we refer to Ai as a maximal (minimal)
summand.

Theorem 29. The poset sum of residuated lattices is again a residuated lattice. If
all maximal summands are integral then the poset sum is integral, and if all minimal
summands have a least element, then the poset sum has a least element.

Proof. Let P be a poset, and B =
⊕

i∈P Ai a poset sum of residuated lattices.
It is straightforward to check that B is a submonoid and sublattice of

∏

i∈P Ai.
To show that B has a residual defined as above, we need to prove that (i) for all
a, b ∈ B, a\b ∈ B and (ii) for all x ∈ B, ax ≤ b if and only if x ≤ a\b.

For (i), let j < k and assume (a\b)j < e. If al ≤ bl for all l < k, then in particular
aj ≤ bj , and al ≤ bl for all l < j. Hence (a\b)j = aj\bj = e, contradicting the
assumption (a\b)j < e. So we conclude al 6≤ bl for some l < k, and thus (a\b)k = 0k

as required.
For (ii), note that aixi ≤ bi for all i ∈ P iff xi ≤ ai\bi (in Ai) for all i ∈ P .

Assume that aixi ≤ bi holds for all i ∈ P . If al 6≤ bl for some l < i, then
xl ≤ al\bl < e, hence xi = 0i. It follows that for all i ∈ P , xi ≤ (a\b)i. The reverse
implication is obvious since (a\b)i ≤ ai\bi.

Poset sums (as defined here) already require that all nonmaximal summands
are integral, so if all maximal summands are integral as well then the identity e
of the poset sum is the top element. Similarly it is easy to see that if all minimal
summands have a bottom element then so does the poset sum. �

We note that poset sums generalize both ordinal sums and direct products.
Indeed, if the poset P is a chain, the poset sum produces an ordinal sum (of type
(a) or (b) since we are assuming that Ai has a least element for all nonminimal
i ∈ P ), and if P is an antichain then it produces a direct product. Since poset
sums are generalizations of ordinal sums, we cannot expect the varieties of Boolean
algebras, MV-algebras or involutive lattices to be closed under poset sums. However
it does preserve the defining property of generalized basic logic.

Theorem 30. The variety of integral GBL-algebras is closed under poset sums.

Proof. Suppose the factors Ai of the poset sum B all satisfy the GBL-quasi-identity
x ≤ y ⇒ x = (x/y)y = y(y\x), let a ≤ b ∈ B and consider i ∈ P . If bl 6≤ al for some
l < i then (b\a)i = 0i and al < bl ≤ e, whence ai = 0i = bi(b\a)i. Here we made
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use of the fact that a is a member of the poset sum, and that 0x = 0 = x0 holds
in any bounded residuated lattice. On the other hand, if bl ≤ al for all l < i then
ai = bi(bi\ai) = bi(b\a)i. Thus a = b(b\a), and a = (a/b)b is proved similarly. �

In fact, for GBL-algebras, this construction describes all the finite members. For
a residuated lattice A and an idempotent element i of A, we let ↓i = {a ∈ A : a ≤ i}
and A↓i = (↓i, ·, \i, /i,∨,∧, i), where a\ib = (a\b) ∧ i and a/ib = (a/b) ∧ i.

Lemma 31. For any integral GBL-algebra A and any idempotent element i of A,
the map î : A→ ↓i given by î(a) = a∧ i is a homomorphism from A to A↓i. Hence
the algebra A↓i is an integral GBL-algebra.

Proof. By Lemma 20(a) for any x ∈ A we have x∧ i = ix = xi hence î(ab) = abi2 =

aibi = î(a)̂i(b). Clearly î(a ∧ b) = î(a) ∧ î(b), and î(a ∨ b) = î(a) ∨ î(b) follows by

distributivity. Finally î(a)\iî(b) = ((a ∧ i)\(b ∧ i)) ∧ i = ((ai)\b) ∧ ((ai)\i) ∧ i =

(i\(a\b)) ∧ i = i(i\(a\b)) = (a\b) ∧ i = î(a\b). The argument for / is similar. �

The next result follows from the observation that lattice operations and residu-
als are first-order definable from the partial order and the monoid operation of a
residuated lattice.

Lemma 32. Suppose A,B are residuated lattices and h : A → B is an order-
preserving and order-reflecting monoid isomorphism. Then h is a residuated lattice
isomorphism.

Theorem 33. Let A be a finite GBL-algebra and let P be the set of all join-
irreducible idempotents of A. For i ∈ P , let i∗ ∈ A be the unique maximal idempo-
tent below i, and let Ai = {x : i∗ ≤ x ≤ i} = [i∗, i]. Then Ai = (Ai,∧,∨, ·, \

i, /i, i)
is a Wajsberg chain and A ∼=

⊕

i∈P Ai.

Proof. By [JT02], the congruence lattice of a finite residuated lattice is dually
isomorphic to the poset of negative central idempotents, hence if the identity in a
finite residuated lattice is join irreducible then this algebra is subdirectly irreducible.

Thus for a join irreducible idempotent i, the algebra A↓i is a subdirectly irre-
ducible GBL-algebra. Note that the bottom element of A is not join-irreducible
(since it is the value of the empty join). It follows from Theorem 19 that this alge-
bra decomposes into the ordinal sum B ⊕ W where W is a nontrivial subdirectly
irreducible GMV-algebra. Since it is finite, W is commutative and therefore a Wa-
jsberg chain. The least element of W is the unique maximal idempotent i∗, hence
W is Ai as defined in the statement of the theorem.

Define hi : A→ Ai by hi(a) = (a ∧ i) ∨ i∗ and let h : A→
∏

i∈P Ai be given by
h(a) = (hi(a) : i ∈ P ).

Next we prove that h maps into the poset sum of the Ai. Suppose i < j and
hj(a) 6= j∗. We need to show that hi(a) = i. Since hj(a) = (a ∧ j) ∨ j∗, it follows
that a ∧ j 6≤ j∗. Since A↓j decomposes as an ordinal sum with the chain Aj as
upper component, we have a ∧ j > j∗. Thus a > j∗ ≥ i, which implies hi(a) = i.
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GBL-algebras are distributive, hence h is a lattice homomorphism. By Lemma 31,
(ab) ∧ i = (a ∧ i)(b ∧ i). Also, for any idempotent j we have (a ∨ j)(b ∨ j) =
ab ∨ aj ∨ bj ∨ j2 = ab ∨ j so hi(ab) = hi(a)hi(b).

By Lemma 32 it suffices to prove that h is a bijection, then it follows that
h preserves the residuals. Define g :

⊕

i∈P Ai → A by g(x) =
∨

{xi : xk =
k for all k < i}. We claim that g is the inverse of h. Note that g(h(a)) =

∨

{(a ∧

i) ∨ i∗ : (a ∧ k) = k for all k < i}. Since i∗ =
∨

A{k : k < i}, we have g(h(a)) =
∨

{(a ∧ i) : i∗ ≤ a}.
Since the set of idempotents of A is closed under meets, for any join irreducible

p ∈ A there exists a smallest idempotent i ≥ p.
Claim: i is join irreducible. If p is idempotent, then i = p and the claim holds.

So suppose p2 < p. If i is not join irreducible then i has at least two lower covers,
say b, c. If p 6≤ b then pb ≤ p ∧ b < p and p2 ∨ pb = p(p ∨ b) = pi = p ∧ i = p
contradicting the assumption that p is join irreducible. If p is below both b, c, let
b̄, c̄ be the maximal idempotents below b, c respectively. By choice of i, we have
p 6≤ b̄, c̄, and by Lemma 2 of [JM06], b̄, c̄ are not below p and b̄ ∨ c̄ = i. Hence
(p∧ b̄)∨ (p∧ c̄) = p, again contradicting the join irreducibility of p. This proves the
claim.

It follows that each join irreducible p ≤ a of A lies in a unique interval [i∗, i],
hence p = a ∧ i for some i∗ ≤ a. Thus g(h(a)) = a.

It remains to show that for all x in the poset sum h(g(x)) = x. By definition
h(g(x)) = (g(x) ∧ i) ∨ i∗ = (

∨

{xj : xk = k for all k < j} ∧ i) ∨ i∗ ∈ [i∗, i]. Using
distributivity we may write this in the form

∨

{(xj ∧ i) ∨ i
∗ : xk = k for all k < j}.

Now suppose xi = i. Then xk = k for all k < i, so xi is one of the joinands,
hence hi(g(x)) = i = xi. On the other hand, if xi < i then hi(g(x)) ≥ xi (even in
case xk < k for some k < i, since then xi = i∗). We need to show that xj ∧ i ≤ xi

for all other joinands, i.e. whenever xk = k for all k < j. In this case we know
j 6> i since xi < i. If j < i then xj ≤ j ≤ i∗ ≤ xi, and if i, j are incomparable, then
i ∧ j is an idempotent ≤ i∗ so xj ∧ i ≤ j ∧ i ≤ i∗ ≤ xi. �

Moreover, there is a bijective correspondence between finite GBL-algebras and
finite posets labeled with natural numbers > 1, denoting the size of the correspond-
ing Wajsberg chain in the poset sum.

If the poset is a forest, the GBL-algebra is representable hence, adding a least
element 0 to the type, it becomes a BL-algebra. Thus the result proved here
generalizes the one in [DL03].

Our representation result is useful for constructing and counting finite GBL-
algebras. For example, Figure 1 shows the lattice structure of a GBL-algebra with
17 elements that is obtained from a poset sum of a 2, 3, 4, and 5-element Wajsberg
chain over the poset 2 × 2 (the join irreducible idempotents are denoted by black
dots). Theorem 33 implies that the same lattice supports 26 = 64 nonisomorphic
GBL-algebras since there are six other join irreducibles that could be chosen as
idempotents.
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2

3 4

5

Figure 1. A GBL-algebra and its labeled poset of join-irreducibles

Posets of join-irreducibles of distributive lattices of size n
with number of nonisomorphic GBL-algebras below each poset
1 2 3 n = 4 n = 5 n = 6

∅

1 1 2 1 4 1 1 8 2 2 2 1 16

n = 7

1 2 2 4 4 2 2 32

Size n = 1 2 3 4 5 6 7
GBL-algebras 1 1 2 5 10 23 49
si GBL-algebras 0 1 2 4 9 19 42
BL-algebras 1 1 2 5 9 20 38
si BL-algebras 0 1 2 4 8 16 32

Figure 2. Counting nonisomorphic GBL-algebras of size n

When counting the number of nonisomorphic GBL-algebras of size n, it is con-
venient to consider the poset of all join irreducibles of the lattice reduct. Elements
that have no upper cover, more than one upper cover or whose upper cover has
more than one lower cover must be idempotents of the GBL-algebra (denoted by
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black dots in Figure 2). The remaining elements each have unique upper covers of
which they are the only lower cover. These elements can be chosen as idempotents
(or not), giving rise to distinct GBL-algebras (see Figure 2). A finite GBL-algebra
is subdirectly irreducible iff the poset of join-irreducibles has a top element, and
the algebra is representable (and hence expands to a finite BL-algebra) iff the poset
of join-irreducibles is a forest. Hence the lower table of Figure 2 is obtained by
inspecting the posets in the upper table. In particular, since subdirectly irreducible
BL-algebras are chains, it follows that for n > 1 there are precisely 2n−2 noniso-
morphic subdirectly irreducible n-element BL-algebras.

Note that the variety of idempotent GBL-algebras is (term-equivalent to) the
variety of Brouwerian algebras. Now the finite members in this variety are just
finite distributive lattices, expanded with the residual of the meet operation. Thus
Birkhoff’s duality between finite posets and finite distributive lattices shows that
finite Brouwerian algebras are isomorphic to poset sums of the two-element gen-
eralized Boolean algebra (= two-element Wajsberg chain). Using the preceding
theorem, this result can be generalized to n-potent GBL-algebras.

Corollary 34. Any finite n-potent GBL-algebra is isomorphic to a poset sum of
Wajsberg chains with at most n elements.

We would like to thank James Raftery and an anonymous referee for many
valuable comments that have substantially improved this paper.
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[Ha98] P. Hájek, “Metamathematics of Fuzzy Logic”, Trends in Logic, Studia Logica Library
no. 4, Kluwer Academic Publishers, Dordrecht, Boston, London 1998.
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