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Abstract. A categorical equivalence between algebraic contexts with
relational morphisms and join-semilattices with homomorphisms is pre-
sented and extended to idempotent semirings and domain semirings.
These contexts are the Kripke structures for idempotent semirings and
allow more efficient computations on finite models because they can be
logarithmically smaller than the original semiring. Some examples and
constructions such as matrix semirings are also considered.
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1 Introduction

The characterization of complete and atomic Boolean algebras as powerset al-
gebras, essentially due to Tarski, is the basis of the categorical duality between
the category of complete and atomic Boolean algebras with complete homomor-
phisms and the category of sets with arbitrary functions. This duality has been
extended in many ways to other dualities such as between modal algebras and
Kripke frames, between Boolean algebras with operators (which include relation
algebras) and atom structures, between distributive lattices with operators and
partially ordered frames, and between residuated lattices and residuated frames,
to name some of the main examples. Here we present a categorical equivalence
that is suitable for idempotent semirings with additional operations and which
is based on notions from formal concept analysis. Recall that two categories C,
D are equivalent if they are “essentially the same”, i.e., there are covariant func-
tors F : C → D, G : D → C such that GF and FG are naturally isomorphic
to the identity functors 1C and 1D respectively. If the same condition holds for
contravariant functors, then the categories are dually equivalent.

In formal concept analysis a complete lattice is represented by a context,
i.e., a triple X = (X−, X+, X) where X ⊆ X− × X+ is the incidence relation.
Since we are interested in idempotent semirings, we consider (completely) join-
preserving maps as morphisms between complete lattices, which places us in the
category called SUP (since joins are also called suprema). In a recent develop-
ment M. A. Moshier [12] defined morphisms for contexts to obtain a relational
category Cxt that is dual to the category INF of complete meet semilattices
with completely meet-preserving homomorphisms. Specifically, a morphism R
from X to Y = (Y−, Y+, Y ) is a binary relation R ⊆ X− × Y+ that satisfies



a natural compatibility condition, and composition of morphisms is defined in
such a way that the incidence relation of a context is the identity morphism
for that object. Since INF is both dual and equivalent to SUP (a symmetry
that is made explicit in the category Cxt) we find this setting well suited for
our purposes. For the categories of lattices and complete perfect lattices, similar
dualities are contained in [9, 3, 7]

We extend this duality to an equivalence between semilattices and algebraic
contexts (i.e., contexts where the incidence relation induces an algebraic closure
operator) with morphisms that are directed-join-preserving relations between
contexts. An alternative presentation of algebraic contexts with approximable
maps as morphisms, and their relation to various other categories in domain
theory, is given in [10]. For applications to domain semirings, we add a multipli-
cation on the context side via a ternary relation; the identity element corresponds
to a unary relation; and a domain operation is given by a binary relation. One of
the advantages of the equivalent category of contexts with relations is that the
objects can be “logarithmic” in size relative to their algebraic counterparts. In
fact objects on the algebraic side correspond to contexts of many different sizes
which are all isomorphic in the category Cxt (this is possible since the notion
of isomorphism in Cxt is not based on bijections). This makes the construc-
tion of examples on the context side less restricted, so for example idempotent
semirings can be obtained from Gentzen-style proof systems. Another interesting
aspect is that the equivalence maps products of domain semirings to certain dis-
joint unions of contexts, and other constructions like ordinal products and poset
products can also be obtained by combinatorial means on the context side.

Furthermore the relational morphisms in the category of contexts give this
setting a flavor of the category Rel (where the objects are sets and morphisms
are binary relations), and it is indeed the case that Rel is isomorphic to a
full subcategory of Cxt. We also observe that the ideal completions of Kleene
algebras are related to the equivalence with algebraic contexts. Since the notion
of relational context morphism is relatively recent, this area is currently still
developing and is likely to yield further insight into proof-theoretic and algebraic
properties of idempotent semirings with additional operations.

2 Background

We first recall some standard definitions and fix the notation that is convenient
for our approach. A context is a structure X = (X−, X+, X) such that X−, X+

are sets and X ⊆ X− × X+. Thus a context is simply a typed relation, called
the incidence relation, and we will usually not distinguish between the relation
X and the context X that it defines. The relation X determines two functions
X↑ : P(X−)→ P(X+) and X↓ : P(X+)→ P(X−) by X↑A = {b : ∀a ∈ A aXb}
and X↓B = {a : ∀b ∈ B aXb}. As usual, these maps form a Galois connection
from P(X−) to P(X+), which means that A ⊆ X↓B ⇔ B ⊆ X↑A for all A ⊆ X−
and B ⊆ X+. Moreover, X↓X↑ and X↑X↓ are closure operators on X− and X+

respectively. The sets Cl−(X) = {X↓X↑A : A ⊆ X−} and Cl+(X) = {X↑X↓B :



B ⊆ X+} of Galois-closed sets are dually isomorphic complete lattices with
intersection as meet and Galois-closure of union as join. Note that Cl−(X) can
also be defined as {X↓B : B ⊆ X+}, so a set is Galois-closed if and only if it
is in the image of X↓ (or similarly X↑ for Cl+(X)). The operations X↑ and X↓

both map unions to intersections, and sets of the form X↓{x} are a basis from
which all Galois-closed sets can be obtained by intersections.

For contexts X,Y a context morphism R : X → Y is a relation R ⊆ X−×Y+

such that X↓X↑R↓ = R↓ = R↓Y ↑Y ↓ (or equivalently X↓X↑A ⊆ R↓R↑A and
Y ↑Y ↓B ⊆ R↑R↓B for all A ⊆ X−, B ⊆ Y+), in which case the relation is said to
be compatible with X,Y (see Fig. 1). Here the operations R↑ : P(X−)→ P(Y+)
and R↓ : P(Y+)→ P(X−) are defined in the same way as for the binary relation
X above, and we use juxtaposition for both function composition and function
application (associating to the right). Note that the incidence relation X is itself

X+ Y+

X−

X

OO
R

==

Y−

Y

OO

R ⊆ X− ×X+ and X↓X↑R↓ = R↓ = R↓Y ↑Y ↓

Fig. 1. Context morphism

a morphism from X to X (since X↓X↑X↓ = X↓), and with the composition
defined below it is, in fact, the identity morphism on X. Furthermore, compati-
bility implies that the map R↓Y ↑ maps closed sets to closed sets, and it is easy
to see that if B is a closed set then A ⊆ R↓Y ↑B if and only if Y ↑B ⊆ R↑A
or equivalently Y ↓R↑A ⊆ B. Hence the maps Y ↓R↑ and R↓Y ↑ are residuals,
which implies that Y ↓R↑ : Cl−(X) → Cl−(Y ) preserves arbitrary joins and
R↓Y ↑ : Cl−(Y ) → Cl−(X) preserves arbitrary intersections. Given a context Z
and morphism S : Y → Z, the composite morphism R #S : X → Z is defined by
xR # S y ⇔ x ∈ R↓Y ↑S↓{y} (see Fig. 2).

X+ Y+ Z+

X−
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R
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Y−

Y

OO
S

>>

Z−

Z

OO
X+ Z+

X−

X

OO
R#S

==

Z−

Z

OO

Fig. 2. Composition of context morphisms

Finally, the Dedekind-MacNeille context of a poset L is DM(L) = (L,L,≤).



Theorem 1. [12]

1. The collection Cxt of all contexts with compatible relations as morphism is a
category with the incidence relation of each context as the identity morphism.

2. The category Cxt is dually equivalent to the category INF of complete
semilattices with completely meet-preserving homomorphisms. The adjoint
functors are Cl− : Cxt → INF and DM: INF → Cxt. On morphisms,
Cl−(R) = R↓Y ↑ : Cl−(Y )→ Cl−(X) and for an INF morphism h : L→M ,
DM(h) = {(x, y) ∈M × L : x ≤ h(y)}.

Lemma 2. (i) R : X → Y is a monomorphism in Cxt if and only if R↓R↑ =
X↓X↑.

(ii) R : X → Y is an epimorphism in Cxt if and only if R↑R↓ = Y ↑Y ↓.
(iii) R : X → Y is an isomorphism if and only if it is both mono and epi, or

equivalently if R↓R↑X↓ = X↓ and R↑R↓Y ↑ = Y ↑.

To illustrate the duality in Theorem 1(2) we discuss a few examples. On objects,
the duality is simply Birkhoff’s [1] notion of polarity that represents any complete
lattice as the lattice of Galois-closed sets of some binary relation. This has been
studied extensively in formal concept analysis [6] and many tools have been
developed to compute with finite contexts. However the notion of morphism for
contexts has not gotten as much attention, and several competing definitions
have appeared [4, 7, 10]. The category Cxt of [12], defined above, has one of the
most natural notions of morphism and fits best with the applications we are
interested in.

1. Let S be any set, and consider the context S = (S, S, 6=). Then for any subset
A of S we have 6=↑A = S\A, hence the Galois closure of A is S\(S\A) = A. It
follows that Cl−(S) = (P(S),

⋂
), so the complete semilattice corresponding

to the context S is the complete and atomic Boolean algebra of all subsets
of S. Of course the duality between the category of complete and atomic
Boolean algebras and the category of sets and functions is well known, but
here the duality between INF and Cxt restricts to a duality of complete and
atomic Boolean algebras with

∧
-preserving functions and the category Rel

of sets and binary relations (since all relations are compatible in this case,
hence Cxt morphisms. For example if S = {0, 1} and T = {0, 1, 2} then there
are 22·3 = 64 binary relations from S to T , hence there are 64 morphisms
from context S to T = (T, T, 6=), corresponding to 64

∧
-preserving maps

from an 8-element Boolean algebra to a 4-element Boolean algebra. One of
these morphisms is illustrated in Figure 3.

2. Let (P,≤) be a partially ordered set, and consider the context P = (P, P,�).

Then for any subset A of P we have �↑A = {x ∈ P : a � x for all a ∈ A},
which is the largest downset of P that does not intersect A. Hence the

Galois closure of A is P \ (�↑A) = the smallest upset containing A, and
therefore Cl−(P) is the complete

⋂
-semilattice of upsets of the poset P .

This is in fact a complete and perfect distributive lattice (a lattice is perfect
if every element is a join of completely join irreducible elements and a meet



R

S T
R↓ 6=↑

P(T ) P(S)

Fig. 3. One of 64 morphisms from S to T.

of completely meet irreducible elements). The duality between finite posets
and finite distributive lattices is due to Birkhoff, but as in 1., the morphisms
are compatible relations for the contexts and

∧
-preserving functions for the

complete
∧

-semilattices.

3. Both 1. and 2. have dualities that can be described without the use of con-
texts (sets for 1. and posets for 2.). However for semilattices in general,
contexts are required. Note that complete

∧
-semilattices are complete lat-

tices since the
∨
A =

∧
{b : a ≤ b for all a ∈ A}. If a lattice L is also perfect,

then we can obtain a smallest context by taking (J∞(L),M∞(L),≤), where
J∞(L) is the set of completely join irreducible elements and M∞(L) is the set
of completely meet irreducible elements of L. Figure 4 shows some 6-element
(semi)lattices with their contexts.
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Fig. 4. Examples of 6-element (semi)lattices and corresponding contexts.



3 Semilattices and algebraic contexts

Since we are interested in idempotent semirings, we want to obtain a similar
categorical connection between the category of (not necessarily complete) join-
semilattices with bottom element and (finite) join-preserving maps, and the cat-
egory of so-called algebraic contexts and certain context morphisms.

Recall [2] that a family {Ai : i ∈ I} of sets is directed if for all i, j ∈ I there
exists k ∈ I such that Ai ∪ Aj ⊆ Ak. For a context X, the closure operator
X↓X↑ is algebraic if the closure of any subset is the union of the closures of its
finite subsets, or equivalently ([2], Theorem 7.14), if for any directed family of
sets {Ai ⊆ X− : i ∈ I} we have X↓X↑

⋃
i Ai =

⋃
i X
↓X↑Ai. The compact sets

of a context X are given by K(X) = {X↓X↑A : A is a finite subset of X−}.
For algebraic contexts X,Y , an algebraic morphism R : X → Y is a context
morphism such that R↓Y ↑ preserves directed unions, i.e., for any directed family
{Ai ⊆ X− : i ∈ I} we have R↓Y ↑

⋃
i Ai =

⋃
i R
↓Y ↑Ai. This property holds for

identity morphisms and is preserved by composition, hence algebraic contexts
form a subcategory of Cxt denoted by ACxt. Observe that all finite contexts
are algebraic, and in this case the compact sets K(X) coincide with the closed
sets Cl−(X).

The category of join-semilattices with bottom element 0 and join-preserving
homomorphisms that preserve 0 is denoted by JSLat0. We will use + to denote
the join operation, since this is in agreement with idempotent semirings. For a
join-semilattice L, an ideal is a subset J of L such that for all x, y ∈ J , x+y ∈ J
and for all z ∈ L if z ≤ x then z ∈ J . The set of ideals of L is denoted by I(L).
Given a join-semilattice L, the ideal context of L is C(L) = (L, I(L),∈), i.e.,
the incidence relation is the element-of relation. Note that the closure operator
∈↓∈↑ generates ideals from subsets of L, and since every ideal is the union of its
finitely generated subideals, this is an algebraic context.

Theorem 3. The category JSLat0 is equivalent to ACxt. The adjoint functors
are K : ACxt → JSLat0 and C : JSLat0 → ACxt. On morphisms, K(R) =
Y ↓R↑ : K(X) → K(Y ) and for a JSLat0 morphism h : L → M , C(h) =
{(a,D) ∈ L× I(M) : h(a) ∈ D}.

Proof. We first show that up to isomorphism C and K are inverses on objects
of the category. For L in JSLat0 and A ⊆ L, the closure ∈↓∈↑ A = 〈A〉 is the
ideal generated by A. For a finite subset A, this ideal is always principal, hence
K(C(L)) is the set of principal ideals of L. Since any ideal is the union of the
principal ideals it contains, and since they are the closure of a singleton, it follows
that C(L) is algebraic. It is easy to check that the map a 7→ ↓ a = {b ∈ L : b ≤ a}
is an isomorphism from L to K(C(L)) ordered by inclusion.

Now let X be an algebraic context and consider A,B ∈ K(X). Then A+B =
X↓X↑A0 + X↓X↑B0 = X↓X↑(A0 ∪ B0) for some finite A0 ⊆ A and B0 ⊆ B.
Hence K(X) is a semilattice, and the least element is X↓X↑∅. We need to prove
that (K(X), I(K(X)),∈) is isomorphic to X, so we define a relation R from
X− to I(K(X)) by xRD if and only if X↓X↑{x} ∈ D. To see that R is an
isomorphism, it suffices by Lemma 2(iii) to check that R is compatible and that



R↓R↑X↓ = X↓ and R↑R↓∈↑ =∈↑. Note also that each of these equations holds
for all subsets if it is valid for singleton subsets.

X↓X↑R↓ = R↓: Let D be an ideal of K(X). Then R↓{D} = {x ∈ X− :
X↓X↑{x} ∈ D} = {x ∈ X− : x ∈ A for some A ∈ D} =

⋃
D. Since D is a

directed set and X is an algebraic context, X↓X↑
⋃

D =
⋃

A∈D X↓X↑A =
⋃

D.

∈↑∈↓R↑ = R↑: For x ∈ X− we have

R↑{x} = {D ∈ I(K(X)) : X↓X↑{x} ∈ D}

which is the collection of all ideals that include the principal ideal, say J, gener-
ated by X↓X↑{x} in K(X). Now ∈↓ of this collection is the intersection of all
these ideals, hence is equal to the ideal J . Since J is principal, it follows that
∈↑J = {D : X↓X↑{x} ∈ D} = R↑{x}.

R↓R↑X↓ = X↓: Note that for A ⊆ X− we have R↑A = {D : X↓X↑{a} ∈ D
for all a ∈ A} = {D : {X↓X↑{a} : a ∈ A} ⊆ D}. Hence x ∈ R↓R↑A implies
xRDA, where DA is the ideal generated by the set {X↓X↑{a} : a ∈ A}. Therefore
X↓X↑{x} ∈ DA, so X↓X↑{x} ⊆ X↓X↑{a1, . . . , an} for some finite subset of A.
It follows that x ∈ X↓X↑A, and replacing A with X↓B proves the result.

R↑R↓∈↑ = ∈↑: We first observe that for C ∈ K(X) we have

R↓∈↑{C} = R↓{D : C ∈ D} =
⋂
{
⋃

D : C ∈ D}

since R↓{D} =
⋃
D. But one of the ideals D is ↓ C, and

⋃
↓ C = C, hence

R↓∈↑{C} = C. It follows that R↑R↓∈↑{C} = R↑C = {D : X↓X↑{x} ∈ D for
all x ∈ C}. Therefore R↑C ⊆ {D : C ∈ D} = ∈↑{C} as required.

This isomorphism also shows that R is an algebraic morphism. To check that
K is a functor, recall that the identity morphism idX of a context is the incidence
relation X. Hence K(idX) = X↓X↑ which is the identity map on the semilattice
K(X) since the elements of K(X) are closed. Composition is preserved since if
R : X → Y and S : Y → Z then

K(R;S) = Z↓(R;S)↑ = Z↓S↑Y ↓R↑ = K(S)K(R).

For the map C we have C(idL) = {(a,D) ∈ L× I(L) : idL(a) ∈ D} = {(a,D) :
a ∈ D} = ∈, and this is the incidence relation of the context C(L). Let h : L→
M and g : M → N be JSLat0 homomorphisms, then aC(h);C(g)D if and only
if

a ∈ C(h)↓∈↑C(g)↓{D} = C(h)↓∈↑g−1[D] = C(h)↓{g−1[D]}

= h−1[g−1[D]] = (gh)−1[D]

and this is equivalent to aC(gh)D. Moreover, it is not difficult to check that
C(h) is an algebraic morphism, that K(R) is a JSLat0 homomorphism, and
that K(C(h)) and C(K(R)) are naturally isomorphic to h and R respectively.
�

The above equivalence is of course closely related to the Hofmann-Mislove-
Stralka duality [11] between join-semilattices and algebraic lattices with maps



that preserve all meets and directed joins (see also [8], p. 274). However, the
category of algebraic contexts is much “bigger” than the category of algebraic
lattices, since there are many contexts of different sizes that correspond to the
same algebraic lattice. Consequently one has much more freedom constructing
contexts, and for many semilattices one can obtain contexts that are logarith-
mically smaller. For example, if a semilattice is given by the compact elements
of a complete and atomic Boolean algebra B, then one may take the algebraic
context (At(B), At(B), 6=) to represent the semilattice. As mentioned at the end
of the previous section, in formal concept analysis many algorithms and visual-
ization tools have been developed for contexts, and with the above equivalence
they can be readily applied to arbitrary semilattices.

We have also noted that the category of algebraic contexts contains a subcat-
egory that is isomorphic to Rel, the category of sets and binary relations. The
objects of this subcategory are the contexts (A,A, 6=) where A is any set, and the
morphisms are any binary relation, since the compatibility conditions are auto-
matically satisfied. Another interesting subcategory is obtained by considering
posets (P,≤) and defining the contexts (P, P,�). The algebraic lattice in this
case is the lattice of all downsets of P , which is a complete perfect distributive
lattice, and the semilattice of compact elements consists of the downsets of finite
subsets of P .

4 Contexts for idempotent semirings and domain
semirings

We now show how additional join-preserving operations on the semilattice are
represented on the context side. We use the example of domain semirings, but
it will be clear that the framework can handle semilattices with join-preserving
operations of any arity. Thus the categorical equivalence with algebraic contexts
is extended to a proper generalization of the duality for complete and atomic
Boolean algebras with operators and relational structures with bounded mor-
phisms.

Recall that an idempotent semiring is an algebra (L,+, 0, ·, 1) such that
(L,+, 0) is in JSLat0, (L, ·, 1) is a monoid, · is join-preserving in both argu-
ments, and 0x = 0 = x0. A domain semiring is of the form L = (L,+, 0, ·, 1, d)
such that (L,+, 0, ·, 1) is an idempotent semiring, d is join-preserving, d(0) = 0,

d(x) + 1 = 1

d(x)x = x and

d(xd(y)) = d(xy).

When confusion is unlikely, we usually refer to a domain semiring L simply by
the name of its underlying set L.

Let X be an algebraic context. To capture the operations of the domain
semiring on the semilattice K(X), we need a ternary relation ◦ ⊆ X3

−, a unary



relation E ⊆ X− and a binary relation D ⊆ X2
−. For A,B ⊆ X−, we define the

notation

A ◦B = {c ∈ X− : (a, b, c) ∈ ◦ for some a ∈ A, b ∈ B} and

D[A] = {b ∈ X− : aDb for some a ∈ A}.

For x, y ∈ X− we further abbreviate x ◦ y = {x} ◦ {y} and D(x) = D[{x}]. The
closure operation X↓X↑ is called a nucleus with respect to ◦ if for all A,B ⊆ X−
we have

(X↓X↑A) ◦ (X↓X↑B) ⊆ X↓X↑(A ◦B)

and a nucleus with respect to D if for all A ⊆ X− we have

D[X↓X↑A] ⊆ X↓X↑D[A].

The nucleus property ensures that the operations X↓X↑(A ◦B) and X↓X↑D[A]
are join-preserving in each argument. For example, the following calculation
shows that the first operation is join-preserving in the second argument (recall
that join

∑
is the closure of union):

X↓X↑(A ◦
∑
i

Bi) = X↓X↑(A ◦X↓X↑
⋃
i

Bi) ⊆ X↓X↑(A ◦
⋃
i

Bi)

= X↓X↑
⋃
i

(A ◦Bi) =
∑
i

(A ◦Bi) ⊆
∑
i

X↓X↑(A ◦Bi)

where the first ⊆ follows from the nucleus property, and the reverse inclusion
always holds.

The relations ◦ and D are called algebraic if for all A,B ∈ K(X) the opera-
tions X↓X↑(A ◦B) and X↓X↑D[A] are also in K(X).

An idempotent semiring context is of the form (X−, X+, X, ◦, E) such that
(X−, X+, X) is an algebraic context, ◦, E are an algebraic ternary and unary
relation on X−, the closure operator is a nucleus with respect to ◦, and for all
x, y, z ∈ X− we have

X↑((x ◦ y) ◦ z) = X↑(x ◦ (y ◦ z)) and

X↑(x ◦ E) = X↑{x} = X↑(E ◦ x).

A domain context is a structure X =(X−, X+, X, ◦, E,D) such that (X−, X+, X,
◦, E) is an idempotent semiring context, the closure operator is also a nucleus
with respect to D, and for all x, y ∈ X− we have

D(x) ⊆ X↓X↑E,

X↑(D(x) ◦ x) = X↑{x} and

X↑D[x ◦D(y)] = X↑D[x ◦ y]

corresponding to the axioms for the domain operation d. Note that the last 3 con-
ditions need only hold for all elements of X−, whereas the domain axioms would



have to be checked for all elements of the potentially much bigger semilattice of
compact sets.

Let X,Y be two domain contexts. A relation R ⊆ X− × Y+ is a domain
context morphism if it is compatible, algebraic, R↑(EX) = Y ↑(EY), and for all
A,B ∈ Cl−(X) we have

R↑(x ◦ y) = Y ↑(Y ↓R↑{x} ◦ Y ↓R↑{y}) and

R↑D(x) = Y ↑D[Y R↑{x}].

An idempotent semiring context morphism is defined likewise, but without the
last equation.

As with bounded morphisms (also called p-morphisms) in modal logic the
notion of domain context morphism can be written as a first-order formula with
variables ranging only over elements of the context. We have not done this here
since it is less compact and is no more efficient in implementations than the
given formulation.

The functor K from contexts to join-semilattices is extended to domain con-
texts by defining K(X) = (K(X),+, 0, ·, 1, d) where A + B = X↓X↑(A ∪ B),
0 = X↓X↑∅, A·B = X↓X↑(A◦B), 1 = X↓X↑E and d(A) = X↓X↑D[A]. Likewise
the functor C is extended to domain semirings by C(L) = (L, I(L),∈, ◦, {1}, D)
where ◦ = {(x, y, z) ∈ L3 : x · y = z} and D = {(x, y) ∈ L2 : d(x) = y}. With
these definitions one can check that K(X) is a domain semiring and C(L) is a
domain context. For example to check that X↓X↑ is a nucleus with respect to the
relation D, recall that the closure operator generates an ideal from a subset of L.
So D[X↓X↑A] = D[〈A〉] = {y : d(x) = y for some x ∈ 〈A〉} = {d(a1 + · · ·+ an) :
ai ∈ A,n ∈ N} = {d(a1) + · · ·+ d(an) : ai ∈ A,n ∈ N} ⊆ 〈D[A]〉 = X↓X↑D[A].
We are now ready to state the extended versions of the previous result.

Theorem 4. The category IS of idempotent semirings is equivalent to the cat-
egory ISCxt of idempotent semiring contexts. The adjoint functors are K :
ISCxt → IS and C : IS → ISCxt. On morphisms, K(R) = Y ↓R↑ : K(X) →
K(Y ) and C(h) = {(a,D) ∈ L× I(M) : h(a) ∈ D}.

Similarly the category DS of domain semirings is equivalent to the category
DSCxt of domain semiring contexts. The adjoint functors are K : DSCxt →
DS and C : DS→ DSCxt with the operation on morphisms as for idempotent
semirings.

With this result one can specify any domain semiring by a context, a subset, a
binary relation and a ternary relation on the first component of the context. For
example the first (semi)lattice in Figure 4 can be expanded into 5 nonisomorphic
domain semirings where 1 is the identity element. Using the context from the
figure with X− = {1, 2, 3}, in each case E = {1}, the binary relation D =
{(1, 1), (2, 1), (3, 1)}, and the 5 ternary relations are

◦1 2 3
2 {2} {2}
3 {2} {2}

◦2 2 3
2 {2} {2}
3 {2} {2, 3}

◦3 2 3
2 {2, 3} {2, 3}
3 {2, 3} {2}

◦4 2 3
2 {2, 3} {2, 3}
3 {2, 3} {2, 3}

◦5 2 3
2 X− X−
3 X− X−



where 1 ◦ x = x = x ◦ 1 for all x ∈ X−. Clearly this is more economical than
giving the multiplication tables for five 6-element monoids.

Given a semiring L, one can construct the semiring Mn(L) of all n×n matrices

with entries from L in the usual way. This object has |L|n2

many elements,
but for idempotent semirings the context Y of Mn(L) is much smaller since it
can be constructed from n2 disjoint copies of the idempotent semiring context
X = C(L) as follows. Let Y− = {(i, j, a) : a ∈ X−, i, j = 1, . . . , n} and define
(i, j, a)Y (i′, j′, a′) iff i 6= i′ or j 6= j′ or aXa′, E = {(i, i, a) : a ∈ E, i = 1, . . . , n},
and (i, j, a) ◦ (k, l, b) = {(i, l, c) : j = k and c ∈ a ◦ b}.

Kripke-style semantics, as provided for semilattice-expansions by algebraic
contexts, are also nicely related to completions. Instead of the functor K to the
category of semilattices, one can use the functor Cl− to the category of complete
semilattices. Indeed, the functor C followed by Cl− is simply the ideal completion
of semilattices, which also applies to idempotent semirings, domain semirings
and (domain) Kleene algebras. For example there is a Kleene ∗ induced on the
completion of a domain semiring by defining x∗ =

∑ω
i=0 x

i, where x0 = 1 and
xi+1 = xix for i ≥ 1. It is currently ongoing research to adapt the equivalence
with algebraic contexts so that it can represent a given Kleene ∗ directly on
contexts.

The equivalences with contexts (plus relations) can also be used to get insight
into constructions on the algebraic side. In particular, products and coproducts
in the algebraic categories are mapped to significantly different types of con-
structions on the context side. It remains to be seen whether this produces new
results about, for example, the structure of free objects on the algebraic side. In
the related area of residuated lattices the notion of residuated frame (= resid-
uated context) has already produced significant results about decidability and
finite embeddability [5]. Exploring connections with proof theory and coalgebras
are other promising directions.

5 Conclusion

Based on a duality by Moshier [12] between complete semilattices and contexts,
we have defined algebraic contexts and algebraic morphisms and proved an equiv-
alence between the category of semilattice and the category of algebraic contexts.
We then extended this equivalence to idempotent semirings and domain semir-
ings, thereby obtaining Kripke-style semantics for these two categories. The same
approach can be used to define categories of algebraic contexts with additional
relations that are equivalent to categories of idempotent semilattices with oper-
ations that are join-preserving in each argument, thus generalizing the duality
between complete and atomic Boolean algebras with operators and relational
Kripke structures.
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