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Boolean algebras and Sets
The category caBA of complete and atomic Boolean algebras and
complete homomorphisms

is dual to the category Set of sets and functions:

On objects B(X ) = P(X ) and G (P(X )) = X

X P(X )

On morphisms, for g : X → Y and h : P(Y )→ P(X )

B(g)(S) = g−1[S ] and G (h)(x) is the unique y s. t. x ∈ h({y})

This works because g−1 preserves
⋂

and
⋃



Adding complete operators and relations

caBAOτ is the category of caBAs with completely
join-preserving operations of type τ : F → ω

Each f ∈ F has arity τ(f )

The objects are A = (A,
∧
,
∨
,′ , {f A : f ∈ F})

The morphisms are complete homomorphisms
i.e., h : A→ B preserves all joins, meets, complement, and
h(f A(a1, . . . , an) = f B(h(a1), . . . , h(an))

A central duality of algebraic logic is that caBAOτ ≡∂ RSτ

RSτ = category of relational (Kripke) structures
X = (X , {FX : F ∈ F}) where FX ⊆ X τ(F )+1.

But what are the morphisms in RSτ?



Bounded morphisms

A relation FX ⊆ X n+1 de�nes an operation f : P(X )n → P(X ) by
f (S1, . . . , Sn) = FX[S1, . . . , Sn] = {z : (x1, . . . , xn, z) ∈ FX for
some xi ∈ Si}

Then f is a
⋃
-preserving operation on B(X)

From f we can recover FX by

(x1, . . . , xn, z) ∈ FX ⇐⇒ z ∈ f ({x1}, . . . , {xn})

For a function g : X → Y to be a morphism we want
g−1[FY[S1, . . . , Sn]] = FX[g−1[S1], . . . , g−1[Sn]]

Since F [ ] and g−1[ ] are
⋃
-preserving it su�ces to check for

Si = {yi}



Want g−1[FY[{y1}, . . . , {yn}]] = FX[g−1[{y1}], . . . , g−1[{yn}]]

x ∈ g−1[FY[{y1}, . . . , {yn}]] i� x ∈ FX[g−1[{y1}], . . . , g−1[{yn}]]

g(x) ∈ FY[{y1}, . . . , {yn}] i� ∃xi ∈ g−1[{yi}]((x1, . . . , xn,x) ∈ FX)

(y1, . . . , yn, g(x)) ∈ FY i� ∃xi (g(xi ) = yi and (x1, . . . , xn, x) ∈ FX)

g is a bounded morphism if it satis�es the above for all F ∈ F

Back: (x1, . . . , xn,x) ∈ FX ⇒ (g(x1), . . . , g(xn), g(x)) ∈ FY and

Forth: (y1, . . . , yn, g(x)) ∈ FY ⇒ ∃xi ∈ X such that g(xi ) = yi
and (x1, . . . , xn, x) ∈ FX

Aim: extend this duality to semilattices with operators, including
domain semirings



Formal Concept Analysis

A context is a structure X = (X0,X1,X ) such that

X0, X1 are sets and X ⊆ X0 × X1

The incidence relation X determines two functions
X ↑ : P(X0)→ P(X1) and X ↓ : P(X1)→ P(X0) by

X ↑A = {b : ∀a ∈ A aXb} and X ↓B = {a : ∀b ∈ B aXb}

Gives a Galois connection from P(X0) to P(X1), i.e.,
A ⊆ X ↓B ⇐⇒ B ⊆ X ↑A for all A ⊆ X0 and B ⊆ X1

Cl0(X ) = {X ↓X ↑A : A ⊆ X0} and Cl1(X ) = {X ↑X ↓B : B ⊆ X1}
are dually isomorphic complete lattices with intersection as
meet and Galois-closure of union as join



Background

Contexts are due to Birkho�; studied in Formal Concept Analysis

Let L be a (bounded)
∧
-semilattice

The Dedekind-MacNeille context is DM(L) = (L, L,≤)

Cl0(DM(L)) is the MacNeille completion L̄ of L

For a �nite
∧
-semilattice can take (X0,X1,≤) where X0 are the

join-irreducibles and X1 are the meet-irreducibles

For complete perfect lattices a duality with contexts is in [Dunn
Gehrke Palmigiano 2005] and [Gehrke 2006]

For complete semilattices it is due to [Moshier 2011]

For complete residuated lattices this is joint work with
N. Galatos



Complete lattices with complete homomorphisms form a category

What are the appropriate morphisms for contexts?

For a context X = (X0,X1,X ) the relation X is an identity
morphism that induces the identity map X ↓X ↑ on the closed sets

A context morphism R : X→ Y = (Y0,Y1,Y ) is a relation
R ⊆ X0 × Y1 such that R↑X ↓X ↑ = R↑ = Y ↑Y ↓R↑ (R is
compatible)

Lemma

If R is compatible then R↓Y ↑ : Cl0(Y )→ Cl0(X ) preserves
∧

X1 Y1

X0

X

OO
R

>>

Y0

Y

OO



Cxt ≡∂ Complete meet semilattices

Theorem [Moshier 2011]: (i) The collection Cxt of all contexts
with compatible relations as morphisms is a category

Composition X1 Y1 Z1

X0

X

OO
R

>>

Y0

Y

OO
S

>>

Z0

Z

OO so xR;Sy i� x ∈ R↓Y ↑S↓{y}

(ii) The category Cxt is dually equivalent to the category INF of
complete semilattices with completely meet-preserving
homomorphisms

The adjoint functors are Cl0 : Cxt→ INF and DM : INF→ Cxt

On morphisms, Cl0(R) = R↓Y ↑ : Cl0(Y )→ Cl0(X ) and for an

INF morphism h : L→ M, DM(h) = {(x , y) ∈ M × L : x ≤ h(y)}



Lattice compatible morphisms

Lemma. (i) R : X → Y is a monomorphism in Cxt i�
R↓R↑ = X ↓X ↑

(ii) R : X → Y is an epimorphism in Cxt i� R↑R↓ = Y ↑Y ↓

(iii) R : X → Y is an isomorphism in Cxt i� it is both mono and

epi i� R↓R↑X ↓ = X ↓ and R↑R↓Y ↑ = Y ↑

Every morphism has itself as epi-mono factorization
X1 Y1 Y1

X0

X

OO
R

>>

X0

R

OO
R

>>

Y0

Y

OO



Example: Boolean contexts

Let S be any set, and consider the context S = (S , S , 6=)

For any subset A of S we have 6=↑A = S \ A, so
6=↓ 6=↑A = S \ (S \ A) = A

Hence Cl0(S) = (P(S),
⋂

)

The duality between INF and Cxt restricts to a duality of complete
and atomic Boolean algebras with

∧
-preserving functions and the

category Rel of sets and binary relations

E.g. if S = {0, 1} and T = {0, 1, 2} then there are 22·3 = 64 binary
relations from S to T



Example: Boolean contexts

Therefore there are 64 morphisms from context S to
T = (T ,T , 6=), corresponding to 64

∧
-preserving maps from an

8-element Boolean algebra to a 4-element Boolean algebra

Here is one such relation morphism R and its corresponding
Boolean homomorphism

R

S T
R↓ 6=↑

P(T ) P(S)



Previous duality can be presented by sets, but for semilattices in
general, contexts are required

Note that complete
∧
-semilattices are complete lattices since the∨

A =
∧
{b : a ≤ b for all a ∈ A}

If a lattice L is also perfect (e.g. �nite), then we can obtain a
smallest context by taking (J∞(L),M∞(L),≤),

where J∞(L) is the set of completely join irreducible elements and
M∞(L) is the set of completely meet irreducible elements of L
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Algebraic contexts

A family {Ai : i ∈ I} of sets is directed if for all i , j ∈ I there
exists k ∈ I such that Ai ∪ Aj ⊆ Ak

For a context X , the closure operator X ↓X ↑ is algebraic if the
closure of any subset is the union of the closures of its �nite subsets

Equivalently if for any directed family of sets {Ai ⊆ X0 : i ∈ I} we
have X ↓X ↑

⋃
i Ai =

⋃
i X
↓X ↑Ai

The compact sets of a context X are K (X ) = {X ↓X ↑A : A is a
�nite subset of X0}



Algebraic context morphisms

For algebraic contexts X ,Y , an algebraic morphism R : X → Y is
a context morphism such that R↓Y ↑ preserves directed unions

I.e., for any directed family {Ai ⊆ X0 : i ∈ I} we have
R↓Y ↑

⋃
i Ai =

⋃
i R
↓Y ↑Ai

This property holds for identity morphisms and is preserved by
composition

Hence algebraic contexts form a subcategory of Cxt denoted by
ACxt

All �nite contexts are algebraic, and in this case K (X ) = Cl0(X )



Join semilattices with bottom

A semilattice (L,+) is an algebra where + is associative,
commutative and idempotent (x + x = x)

+ is a join operation if we de�ne x ≤ y i� x + y = y

0 is a bottom element if x + 0 = x

JSLat0 is the category of join-semilattices with bottom element 0
and join-preserving homomorphisms that preserve 0, i.e.
h(x + y) = h(x) + h(y) and h(0) = 0



The context of a join semilattice

An ideal of a join-semilattice L is a subset D of L such that for all
x , y ∈ D, x + y ∈ D and for all z ∈ L if z ≤ x then z ∈ D

The set of ideals of L is denoted by I (L)

Given a join-semilattice L, the ideal context of L is
C (L) = (L, I (L),∈)

The closure operator ∈↓∈↑ generates ideals from subsets of L

Since every ideal is the union of its �nitely generated subideals,
C (L) is an algebraic context.



Theorem. The category JSLat0 is equivalent to ACxt.

The adjoint functors are
K : ACxt→ JSLat0, C : JSLat0 → ACxt

For a context morphism
R : X → Y , K (R) = Y ↓R↑ : K (X )→ K (Y ) and

for a JSLat0 morphism
h : L→ M, C (h) = {(a,D) ∈ L× I (M) : h(a) ∈ D}.

Proof (outline): Up to isomorphism C and K are inverses on
objects of the category:

For L in JSLat0 and A ⊆ L, the closure ∈↓∈↑ A = 〈A〉 is the ideal
generated by A

For a �nite subset A, this ideal is always principal hence K (C (L)) is
the set of principal ideals of L



JSLat0 ≡ ACxt continued

Any ideal is the union of the principal ideals it contains

Therefore C (L) is algebraic and the map a 7→ ↓ a = {b ∈ L : b ≤ a}
is an isomorphism from L to K (C (L)) ordered by inclusion

Now let X be an algebraic context and consider A,B ∈ K (X )

Then A + B = X ↓X ↑A0 + X ↓X ↑B0 = X ↓X ↑(A0 ∪ B0) for some
�nite A0 ⊆ A and B0 ⊆ B

Hence K (X ) is a semilattice, and the least element is X ↓X ↑∅

We need to prove that (K (X ), I (K (X )),∈) is isomorphic to X



JSLat0 ≡ ACxt continued

De�ne R : X0 → I (K (X )) by xRD ⇐⇒ X ↓X ↑{x} ∈ D

R is an isomorphism since R is compatible, R↓R↑X ↓ = X ↓ and
R↑R↓∈↑ =∈↑

Note also that each of these equations holds for all subsets if it is
valid for singleton subsets

E.g. X ↓X ↑R↓ = R↓: Let D be an ideal of K (X )

Then R↓{D} = {x ∈ X0 : X ↓X ↑{x} ∈ D} = {x ∈ X0 : x ∈ A for
some A ∈ D} =

⋃
D

Since D is a directed set and X is an algebraic context,
X ↓X ↑

⋃
D =

⋃
A∈D X ↓X ↑A =

⋃
D �



In 1974 Hofmann-Mislove-Stralka proved a duality between
join-semilattices and algebraic lattices with maps that preserve all
meets and directed joins

However, the category of algebraic contexts is much �bigger� than
the category of algebraic lattices

There are many contexts of di�erent sizes that correspond to the
same algebraic lattice, e.g., (B,B,≤) and (At(B),At(B), 6=)

So there is more freedom constructing contexts

For many semilattices one can obtain contexts that are
logarithmically smaller



Domain semirings
How are join-preserving operations on a semilattice represented on
the context side?

We use the example of domain semirings, but it will be clear that
the framework can handle semilattices with join-preserving
operations of any arity

The equivalence with algebraic contexts is extended to a proper
generalization of the duality for caBAτ and RSτ

Recall that an idempotent semiring is an algebra (L,+, 0, ·, 1)
such that (L,+, 0) is in JSLat0, (L, ·, 1) is a monoid, · is
join-preserving in both arguments, and 0x = 0 = x0

A domain semiring is of the form L = (L,+, 0, ·, 1, d) such that
(L,+, 0, ·, 1) is an idempotent semiring, d is join-preserving,
d(0) = 0, d(x) + 1 = 1, d(x)x = x and d(xd(y)) = d(xy)

When confusion is unlikely, we usually refer to a domain semiring L
simply by the name of its underlying set L



Contexts with relations

Let X be an algebraic context

To capture the operations of the domain semiring on the
semilattice K (X ), we need

a ternary relation ◦ ⊆ X 3
−, a unary relation E ⊆ X− and a binary

relation D ⊆ X 2
−

For A,B ⊆ X−, we de�ne

A ◦ B = {c ∈ X− : (a, b, c) ∈ ◦ for some a ∈ A, b ∈ B} and

D[A] = {b ∈ X− : aDb for some a ∈ A}

For x , y ∈ X− we further abbreviate x ◦ y = {x} ◦ {y} and
D(x) = D[{x}]



Nuclear closure operators
The closure operation X ↓X ↑ is called a nucleus with respect to ◦ if
for all A,B ⊆ X− we have

(X ↓X ↑A) ◦ (X ↓X ↑B) ⊆ X ↓X ↑(A ◦ B)

and a nucleus with respect to D if for all A ⊆ X− we have

D[X ↓X ↑A] ⊆ X ↓X ↑D[A]

The nucleus property ensures that X ↓X ↑(A ◦B) and X ↓X ↑D[A] are
join-preserving in each argument

For example:

X ↓X ↑(A ◦
∑
i

Bi ) = X ↓X ↑(A ◦ X ↓X ↑
⋃
i

Bi ) ⊆ X ↓X ↑(A ◦
⋃
i

Bi )

= X ↓X ↑
⋃
i

(A ◦ Bi ) =
∑
i

(A ◦ Bi ) ⊆
∑
i

X ↓X ↑(A ◦ Bi )

where the �rst ⊆ follows from the nucleus property, and the reverse
inclusion always holds



Idempotent Semiring Contexts

The relations ◦ and D are called algebraic if for all A,B ∈ K (X )
the operations X ↓X ↑(A ◦ B) and X ↓X ↑D[A] are also in K (X )

An idempotent semiring context is of the form (X0,X1,X , ◦,E )
such that

(X0,X1,X ) is an algebraic context,

◦,E are an algebraic ternary and unary relation on X0,

the closure operator is a nucleus with respect to ◦, and for all
x , y , z ∈ X0 we have

X ↑((x ◦ y) ◦ z) = X ↑(x ◦ (y ◦ z)) and

X ↑(x ◦ E ) = X ↑{x} = X ↑(E ◦ x).



Domain Contexts

A domain context is a structure X =(X0,X1,X , ◦,E ,D) such that

(X0,X1,X , ◦,E ) is an idempotent semiring context,

the closure operator is also a nucleus with respect to D, and for all
x , y ∈ X0 we have

D(x) ⊆ X ↓X ↑E ,

X ↑(D(x) ◦ x) = X ↑{x} and

X ↑D[x ◦ D(y)] = X ↑D[x ◦ y ]

Note that the last 3 conditions need only hold for all elements of
X0, whereas the domain axioms would have to be checked for all
elements of the potentially much bigger semilattice of compact sets



Morphisms for domain contexts

Let X,Y be two domain contexts

A relation R ⊆ X0 × Y1 is a domain context morphism if it is
compatible, algebraic, R↑(EX) = Y ↑(EY), and for all A,B ∈
Cl0(X) we have

R↑(x ◦ y) = Y ↑(Y ↓R↑{x} ◦ Y ↓R↑{y}) and

R↑D(x) = Y ↑D[Y ↓R↑{x}]

An idempotent semiring context morphism is de�ned likewise,
but without the last equation

As with bounded morphisms (also called p-morphisms) in modal
logic the notion of domain context morphism can be written as a
�rst-order formula with variables ranging only over elements of the
context



The functor K extends to domain contexts by
K (X) = (K (X ),+, 0, ·, 1, d) where

A + B = X ↓X ↑(A ∪ B), 0 = X ↓X ↑∅, A · B = X ↓X ↑(A ◦ B),
1 = X ↓X ↑E and d(A) = X ↓X ↑D[A]

The functor C extends to domain semirings by
C (L) = (L, I (L),∈, ◦, {1},D) where

◦ = {(x , y , z) ∈ L3 : x ·y = z} and D = {(x , y) ∈ L2 : d(x) = y}

Then K (X) is a domain semiring and C (L) is a domain context

E.g. to check that X ↓X ↑ is a nucleus with respect to D, recall that
the closure operator generates an ideal from a subset of L

So D[X ↓X ↑A] = D[〈A〉] = {y : d(x) = y for some x ∈ 〈A〉}

= {d(a1 + · · ·+ an) : ai ∈ A, n ∈ N} = {d(a1) + · · ·+ d(an) : ai ∈
A, n ∈ N} ⊆ 〈D[A]〉 = X ↓X ↑D[A]



Categorical equivalences

Theorem: The category IS of idempotent semirings is equivalent
to the category ISCxt of idempotent semiring contexts

The adjoint functors are K : ISCxt→ IS and C : IS→ ISCxt

On morphisms, K (R) = Y ↓R↑ : K (X )→ K (Y ) and
C (h) = {(a,D) ∈ L× I (M) : h(a) ∈ D}

Theorem: Similarly the category DS of domain semirings is
equivalent to the category DSCxt of domain semiring contexts

The adjoint functors are K : DSCxt→ DS and C : DS→ DSCxt
with the operation on morphisms as for idempotent semirings



Applications
De�ning a domain semiring by a context, a subset, a binary relation
and a ternary relation on the �rst component of the context

E.g. the (semi)lattice 1 2 3

1 2 3 4
1

4

32

can be expanded into 5
nonisomorphic domain semirings where 1 is the identity element

In each case E = {1}, the binary relation
D = {(1, 1), (2, 1), (3, 1)}, and the 5 ternary relations are

◦1 2 3

2 {2}{2}
3 {2}{2}

◦2 2 3

2 {2} {2}
3 {2}{2, 3}

◦3 2 3

2 {2, 3}{2, 3}
3 {2, 3} {2}

◦4 2 3

2 {2, 3}{2, 3}
3 {2, 3}{2, 3}

◦5 2 3

2 X0X0

3 X0X0

where 1 ◦ x = x = x ◦ 1 for all x ∈ X0

Clearly this is more economical than giving the multiplication tables
for �ve 6-element monoids



Idempotent Matrix Semirings

Given a semiring L, let Mn(L) be the semiring of all n × n matrices
with entries from L

This object has |L|n2 many elements, but for idempotent semirings
the context Y of Mn(L) is much smaller since it can be constructed
from n2 disjoint copies of the idempotent semiring context
X = C (L) as follows:

Let Y0 = {(i , j , a) : a ∈ X0, i , j = 1, . . . , n} and
Y1 = {(i , j , a) : a ∈ X1, i , j = 1, . . . , n}

De�ne (i , j , a)Y (i ′, j ′, a′) ⇐⇒ i 6= i ′ or j 6= j ′ or aXa′

E = {(i , i , a) : a ∈ E , i = 1, . . . , n}, and

(i , j , a) ◦ (k , l , b) = {(i , l , c) : j = k and c ∈ a ◦ b}

Then (Y0,Y1,Y , ◦,E ) is the context of the matrix semiring over L



Conclusion and further research
Join semilattices with bottom are categorically equivalent to
algebraic contexts

Kripke frames of idempotent semirings and domain semirings are
given by contexts with additional relations

They are similar to atom structures as a tool for constructions and
analysis of relation algebras

Can the Kleene-* or ω-operation be represented on the context of
an idempotent semiring?

What are the Kripke frames for idempotent semiring with an
embedded Boolean test algebra?

Connect the contexts to the coalgebraic view of idempotent
semirings
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