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Introduction

A semiring is of the form (A, +, 0, ·, 1) such that

(A, +, 0) is a commutative monoid

(A, ·, 1) is a monoid

· distributes over all finite joins from the left and right
i.e. x(y + z) = xy + xz , (x + y)z = xz + yz and x0 = 0x = 0

A semiring is idempotent if x + x = x

IS is the variety of idempotent semirings

Lemma

An idempotent semiring is a (join-)semilattice with 0 as bottom element,

with x ≤ y given by x + y = y (since + is assoc, commu and idempotent)

and x ≤ y =⇒ wxz ≤ wyz (since w(x + y)z = wxz + wyz)
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Examples

Examples of semirings are:

Rings

(N, +, 0, ·, 1)

. . .

Examples of idempotent semirings are:

Reducts of relation algebras (A, +, 0, ; , 1)

Reducts of Kleene algebras (A, +, 0, ·, 1)

Reducts of residuated lattices (A,∧,⊥, ·, 1)

(R ∪ {−∞}, max,−∞, +, 0)

Bounded distributive lattices (A,∨, 0,∧, 1)

. . .

P. Jipsen, G. Struth (Chapman U Sheffield) Free Domain Semirings April 9, 2008 4 / 1



Free monoids and semirings

Let X be a set of variables (or generators)

The free monoid over X is X ∗ =
⋃

n∈N

X n with 1 = empty sequence and · as

concatenation

By distributivity, every term t in the signature of semirings can be written
as a finite join of terms of the free monoid X ∗

Example: x(y + xz)(x + 1) = xyx + xxzx + xy + xxz

⇒ the free idempotent semiring over X , denoted by FIS(X ), is isomorphic
to the set Pfin(X

∗) of all finite subsets of words over X

Here U + V = U ∪ V and U · V = {uv : u ∈ U, v ∈ V }
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Decidability

⇒ the equational theory of idempotent semirings is decidable:

Given terms s, t, use distributivity to write terms in normal form

However, the quasiequational theory (= strict universal Horn theory) is
undecidable because:

The word problem for semigroups is undecidable (Post)

Every semiring is a semigroup under the operation “·”

Every semigroup S is a “·”-subreduct of its powerset semiring P(Se)
(where Se the monoid extension of S)

⇒ the class of “·”-subreducts of semirings is the class of all
semigroups
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Domain monoids

A domain monoid is an algebra (M, ·, 1, d) such that

(M, ·, 1) is a monoid and d : M → M is a function that satisfies

(D1) d(x)x = x

(D2) d(xd(y)) = d(xy)

(D3) d(d(x)y) = d(x)d(y)

(D4) d(x)d(y) = d(y)d(x)

The varieties of domain monoids is denoted by DM

Lemma

d(1) = 1 [take x = 1 in (D1)]
d(d(x)) = d(x) [take x = 1 in (D2)]
d(x)d(x) = d(x) [take y = x in (D3)]

⇒ d(M) = {d(x) : x ∈ M} is a meet semilattice with 1 = top element
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Domain semirings

A domain semiring is an algebra (A, +, 0, ·, 1, d) such that

(A, +, 0, ·, 1) is a semiring

(A, ·, 1, d) is a domain monoid and

the following additional axioms hold [Desharnais, Struth 2008]

d(x + y) = d(x) + d(y), d(0) = 0 and d(x) + 1 = 1

⇒ xd(x) + x = x ⇒ x + x = x

⇒ Every domain semiring is an idempotent semiring

The varieties of domain semirings is denoted by DS
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Examples of domain semirings

Examples of domain semirings are e.g.

reducts of relation algebras with d(x) = (x ;x`) ∧ 1
,

reducts of Kleene algebras with domain

Models of domain semirings in CS:

Idempotent semirings formed by sets of traces of a program (which are
alternating sequences of state and action symbols) with domain defined by
starting states of traces

Idempotent semirings formed by sets of paths in a graph with domain
defined by sets of starting states

Applications of domain semirings and Kleene algebras with domain have
been studied intensively
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Applications of domain semirings

The domain operation models enabledness conditions for actions in
programs and transition systems

The domain operation can easily be extended into a modal diamond
operator that acts on the underlying algebra of domain elements [Möller,
Struth 2006]

Links the algebraic approach with more traditional logics of programs such
as dynamic, temporal and Hoare logics

Some standard semantics of programs, including the weakest precondition
and weakest liberal precondition semantics, can be modeled in this setting

Applications can be found in RelMiCS conference proceedings
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Domain semirings

Domain semirings were originally introduced in a two-sorted setting

The domain operation maps arbitrary semiring elements to a special
Boolean subalgebra [Desharnais, Möller, Struth 2006]

Arbitrary semiring elements model actions of a program or transition
system

The elements of the Boolean subalgebra model the states of that system

Here we use the simpler and more general one-sorted approach of
[Desharnais, Struth 2008]
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Studying free domain semirings

The free domain semiring is interesting for applications:

Identifies exactly those terms of domain semirings that have the same
denotation in all domain semirings

Allows the definition of efficient proof and decision procedures

The domain axioms of domain semirings are the same as for relation
algebras and for Kleene algebras with domain

Both relation algebras and Kleene algebras have rich and complex
(quasi)equational theories

Rather study the simpler equational theory of domain semirings

P. Jipsen, G. Struth (Chapman U Sheffield) Free Domain Semirings April 9, 2008 12 / 1



Outline of results

Aim: give an explicit description of free domain semirings FDS(X )

First describe free domain monoid FDM(X )

Then show that these elements are the join irreducibles of FDS(X )

⇒ FDS(X ) is isomorphic to the set of finite antichains in the poset
of join irreducibles

Show FDS(X ) is representable by a concrete algebra of binary
relations, with relational domain as operations

⇒ DS = HSP{Relational domain semirings}

Finally show any distributive lattice with ni -ary operators occurs as
domain elements of some domain semiring with ni − 1-ary operators
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One-generated domain terms

(D1) d(x)x = x (D2) d(xd(y)) = d(xy) (D3) d(d(x)y) = d(x)d(y)

As usual, we define x0 = 1 and xn+1 = xnx

Lemma

In a domain monoid, if m ≤ n then

d(xm)xn = xn and d(xm)d(xn) = d(xn)

Proof.

Assuming m ≤ n, we write xn = xmxn−m, and using (D1) we have

d(xm)xn = d(xm)xmxn−m = xmxn−m = xn

Now (D3) implies d(xm)d(xn) = d(d(xm)xn) = d(xn)
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Expanded normal forms

On elements of the form d(x j), the order is induced by the
meet-semilattice structure: d(x j) ≤ d(xk) iff j ≥ k , hence these elements
form a chain

For concatenations of basic terms, rewrite them in expanded normal form:

d(x j0)xd(x j1)xd(x j2)x · · · xd(x jm)

where each of the jk ≥ max{1 + jk+1, 2 + jk+2, . . . ,m − k + jm}

E.g. xd(x3)x2d(x2) = ...
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Decreasing sequences of numbers

For brevity denote such a term by the sequence (j0, j1, j2, . . . , jm)

Note that this is always a strictly decreasing sequence of nonnegative
integers

Let P = (P,≤) be the set of all such sequences, ordered by reverse
pointwise order

Thus sequences of different length are not comparable, and the maximal
elements of this poset are

(0), (1, 0), (2, 1, 0), . . .

corresponding to the terms

d(1) = 1, d(x)xd(1) = x , d(x2)xd(x)xd(1) = x2
, . . .
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The poset of join-irreducibles below 1 and x

d(x5)

d(x4)

d(x3)

d(x2)

d(x1)

1 = d(x0)

(5)

(4)

(3)

(2)

(1)

(0)

.

.

.

x

d(x2)x

d(x3)x

d(x4)x

d(x5)x

d(x6)x

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

d(x6)xd(x)

d(x6)xd(x2)

d(x6)xd(x3)

d(x6)xd(x4)

xd(x5)

(6, 1)

(6, 2)

(6, 3)

(6, 4)

(6, 5)

(5, 4) = xd(x4)

(4, 3) = xd(x3)

(3, 2) = xd(x2)

(2, 1) = xd(x)

(5, 3) = d(x5)xd(x3)

(4, 2) = d(x4)xd(x2)

(3, 1) = d(x3)xd(x)
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The poset of join-irreducibles below x
2

x2 = (2, 1, 0)

(3, 1, 0)

(4, 1, 0)

(5, 1, 0)

(6, 1, 0)
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(6, 2, 0)

(6, 3, 0)

(6, 4, 0)

(6, 5, 0)
.

.

.
.

.

.
.

.

.
.

.

.

(6, 4, 3)

(5, 3, 2)

(4, 2, 1)

(3, 2, 1)

(4, 3, 2)

(5, 4, 3)
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The product of two decreasing sequences

A multiplication is defined on P by the following “ripple product”

(j0, j1, j2, . . . , jm) · (k0, k1, k2, . . . , kn) = (j ′0, j
′

1, j
′

2, . . . , j
′

m, k1, k2, . . . , kn)

where j ′m = max(jm, k0) and j ′i = max(ji , j
′

i+1 + 1) for i = m − 1, . . . , 2, 1, 0

For example, (7, 3, 2) · (4, 3, 1) = (7, 5, 4, 3, 1), while
(4, 3, 1) · (7, 3, 2) = (9, 8, 7, 3, 2)

Can show that this is the result of multiplying the corresponding expanded
normal forms and rewriting result in expanded normal form

It is tedious but not difficult to check that this operation is associative
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Domain and partial order

The domain of a sequence (j0, j1, j2, . . . , jm) is the length-one sequence (j0)

This corresponds to the domain term d(x j0)

Let A(P) be the set of finite antichains of P

A partial order is defined on A(P) by a ≤ b iff ↓a ⊆ ↓b

The multiplication is extended to antichains by using the complex product
(i.e. U · V = {uv : u ∈ U, v ∈ V }) and by removing all non-maximal
elements
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Representation Theorem

The first result shows that the one-generated free domain semiring can be
represented in terms of antichains of decreasing integer sequences

Theorem

The join irreducibles of FDS(x) form a poset that is isomorphic to P and
FDS(x) is isomorphic to A(P)

Proof.

(outline) By distributivity, each domain semiring term t(x) can be written
as a finite join of expanded normal form terms

Hence any join irreducible element of FDS(x) can be represented by an
expanded normal form term

To show that P is the poset of these join irreducible, it suffices to show
that all expanded normal forms are join irreducible, and that two expanded
normal form terms can be distinguished in some domain monoid (details in
proceedings)
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Example term and relation for j = (4, 3, 1)

j = (4, 3, 1)

tj(x) = d(x4)xd(x3)xd(x)
(s) (f )

Xj = {arrows}
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Represention of semirings by binary relations

First note that for free idempotent semirings this is always possible
[Bredihin, Schein 1978]

For a set X of generators, a concrete construction can be obtained by
considering the complex algebra of the free group FGrp(X )

This is always a representable relation algebra, with the elements of the
group as disjoint relations

Since the free monoid X ∗ is a subset of the free group, the finite unions of
the relations corresponding to singleton words give a relational
representation of the free idempotent semiring with X as set of generators
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Represention of semirings by binary relations

However, not all idempotent semirings can be represented by ∪, ◦
semirings of relations

[Andreka 1988, 1991] showed that the class of algebras of relations, closed
under ∪, ◦, though definable by quasiequations, is not finitely axiomatisable

Hence it is strictly smaller than the finitely based variety of idempotent
semirings

Similarly the class of algebras of relations closed under ∪, ∅, ◦, id, d , where
d(R) = R;R` ∩ id, is a non-finitely axiomatisable quasivariety, but not a
variety

P. Jipsen, G. Struth (Chapman U Sheffield) Free Domain Semirings April 9, 2008 24 / 1



Represention of semirings by binary relations

Theorem

The one-generated free domain semiring can be represented by a domain
semiring of binary relations

Proof.

(outline) To see that FDS(x) can be represented by a collection of binary
relations, with operations of union, composition and domain, it suffices to
construct a relation X on a set U such that s(X ) 6= t(X ) in the relation
domain semiring P(U × U) for any distinct pair of elements of FDS(x)

This is done similarly to the proof of the preceding theorem, by taking X
to be the union (over disjoint base sets) of all the relations Xj

corresponding to the sequences j ∈ P
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n-generated case (briefly)

So far our analysis has considered the one-generated free domain semiring

The n-generated case is more complex, but has recently also been handled

A normal form is given by d(t0)y1d(t1)y2 . . . d(tn−1)ynd(tn) where ti are
reduced terms

Normal form is given by a reduced tree

Relational representation similar to the one-generated case

Future research is also aiming to describe the structure of free domain
semirings in the presence of additional axioms

[Desharnais, Struth 2008] show that the domain algebras d(S) induced by
the domain axioms can be turned into (co-)Heyting algebras or Boolean
algebras by imposing further constraints
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Anti-domain

In particular, adding the three axioms

a(x)x = 0, a(xy) ≤ a(xa(a(y))) and a(a(x)) + a(x) = 1

for an antidomain function a : S → S to the semiring axioms and defining
domain as d(x) = a(a(x)) suffices to ensure d(S) is a Boolean algebra

⇒ recover all theorems of the original two-sorted axiomatisation of
[Desharnais, Möller, Struth 2006]

Based on these results, in particular the structure of the free Boolean
domain semirings certainly deserve further investigation
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Boolean domain semirings generalize Jónsson-Tarski BAOs

|x〉p = d(xp) is a modal operator on d(A)

In general f is an operator if
f (. . . , x + y , . . .) = f (. . . , x , . . .) + f (. . . , y , . . .) and f (. . . , 0, . . .) = 0

BAO = BA with operators B = (B, +, 0, ·, 1,−, (fi )i∈I )

BDSO = Boolean DS with operators A = (A, +, 0, ·, 1, a, (gi )i∈I )

Define d(A) = (a(a(A)), +, 0, ·, 1, a, (|gi 〉)i∈I ) where

|gi 〉(p0, . . . , pn) = a(a(gi (p0, . . . , pn−1) · pn))

Theorem

For any BAO B there exists a Boolean DSO A such that B = d(A)
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Domain semirings generalize Gehrke-Jónsson DLOs

DLO = bnd distributive lattices with operators B = (B, +, 0, ·, 1,−, (fi)i∈I )

DSO = domain semirings with operators A = (A, +, 0, ·, 1, d , (gi )i∈I )

Define d(A) = (d(A), +, 0, ·, 1, d , (|gi 〉)i∈I ) where

|gi 〉(p0, . . . , pn) = d(gi (p0, . . . , pn−1) · pn)

Theorem

For any DLO B there exists a DSO A such that B = d(A)

A is constructed from the relational domain semiring on the
join-irreducibles of the canonical extension of B

Conclusion: Domain semirings give a simple unisorted extension of the
static propositional framework to the dynamic framework of sequences
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[J. Desharnais, B. Möller, G. Struth 2006] Kleene algebra with domain, ACM
Transactions on Computational Logic, Vol 7, No 4, 2006, 798–833.

[J. Desharnais, G. Struth 2008] Modal Semirings Revisited, Research Report
CS-08-01, Department of Computer Science, The University of Sheffield, 2008.

[W. McCune 2007] Prover9, www.prover9.org
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