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Abstract. We axiomatise and study operations for relational domain
and antidomain on semigroups and monoids. We relate this approach
with previous axiomatisations for semirings, partial transformation semi-
groups and dynamic predicate logic.

1 Introduction

We axiomatise and study the(anti)domain and (anti)range operation on semi-
groups and monoids, generalising the concept of domain monoid in [JS08], and
those of (anti)domain and (anti)range for semirings [DS08a] and a family of near-
semirings [DS08b]. Our study of the antidomain operation is strongly based on
Hollenberg’s axioms [Hol97] which surely deserve more attention.

Our interest in these structures is threefold: First, they play a crucial role
in the study of free algebras with (anti)domain operations, for representability
results with respect to functions and relations, and for algebraising multimodal
logics. Second, they form a basis for comparing and consolidating axiomatisations
for categories, semigroups and Kleene algebras. Third, they provide a simple
flexible basis for automated theorem proving in program and system verification.

Various expansions of semigroups with unary operations have been studied in
semigroup theory (cf. [Sch70,JaS01,JaS04]), mostly motivated by the semigroups
of partial transformations. Our primary model of interest is the algebra Rel(X)
of binary relations R on a set X with composition and unary (anti)domain and
(anti)range operations given as subidentity relations. These are defined by

d(R) = {(u, u) ∈ X2 : (u, v) ∈ R for some v ∈ X},
a(R) = {(u, u) ∈ X2 : (u, v) /∈ R for all v ∈ X},
r(R) = {(v, v) ∈ X2 : (u, v) ∈ R for some u ∈ X},
r′(R) = {(v, v) ∈ X2 : (u, v) /∈ R for all u ∈ X}.

The algebra Rel(X) is a standard semantic model for the input-output relation of
nondeterministic programs and specifications, and the domain/range operations
can be used to define pre- and postconditions and modal (program) operators



on a state space. The (anti)domain and (anti)range operations induce a suitable
test algebra—a state space—on the set of subidentity relations.

In the calculus of relations, partial and total functions, injections and surjec-
tions arise as special relations. Previous work in semigroup theory and category
theory has investigated domain and antidomain predominantly in the context of
(partial) functions. In the same way, domain axiomatisations for functions are
specialisations of domain axiomatisations for relations. Therefore, the following
subalgebras of Rel(X) are of interest:

PT (X), the algebra of partial transformations (i.e. partial functions) on X;
PI (X), the algebra of partial injections on X;
T (X), the algebra of transformations (i.e. total functions) on X;
S (X), the algebra of permutations on X.

The first one corresponds to models of deterministic programs. The second
and fourth case also consider a unary operation R−1 of converse. The domain and
range operations are then definable as d(R) = R;R−1∩ idX and r(R) = R−1;R∩
idX . For each of these algebras it is natural to study the class of all algebras
that can be embedded in them. Depending on the choice of unary operations in
the signature, one obtains the class of groups, semigroups, inverse semigroups,
and twisted domain semigroups (axiomatisations can be found below).

Many results in this paper have been obtained by automated theorem proving
and automated model generation, using the tools Prover9 and Mace4 [McC07].
Instead of presenting these proofs we add input templates for domain semigroups
and antidomain monoids to the paper and encourage the reader to replay our
arguments with these tools. They are easy to install and use.

2 Motivation and Overview

We are interested in algebras where elements represent actions or computations
of some system and where operations model the control flow in the system. Mul-
tiplication, for instance, could represent the sequential or parallel composition
of actions and addition could represent nondeterministic choice. Special actions
like multiplicative units could model ineffective actions—sometimes called skip—
and additive units could model abortive actions. Examples of such algebras are
semigroups or monoids that model sequential composition, and semirings that
model sequential composition and nondeterministic choice. Concrete models of
such algebras are partial and total functions, binary relations, languages, sets of
paths in graphs or sets of traces.

In this context, a domain operation yields enabledness conditions for actions,
that is, the domain d(x) of an action x abstractly models those states from which
the action x can be executed. Analogously, the antidomain a(x) models those
states from which the action x cannot be executed.

The starting point of the current investigation is a previous axiomatisation of
domain and antidomain operations for semirings (S, +, ·, 0, 1), in which a domain
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domain antidomain

LC-semigroups LC-monoids closable SP-semigroups

( ( (

d-semigroups d-monoids a-monoids

( ( (

twisted d-semigroups twisted d-monoids twisted a-monoids

Table 1. Family of domain semigroups

operation is a map d : S → S that satisfies

x = d(x) · x, d(x · y) = d(x · d(y)), d(x) + 1 = 1,

d(0) = 0, d(x + y) = d(x) + d(y).

It can be shown that the domain algebra induced by this operation—the set
d(S)—is a distributive lattice and that each domain semiring is automatically
idempotent, that is, x + x = x holds for all x ∈ S. If the semiring elements
represent actions of some system, then d(S) represents the states from which
actions are enabled. Distributive lattices are suitable statespaces, but Boolean
algebras are perhaps even better. To induce a Boolean domain algebra it is
convenient to axiomatise a notion of antidomain (the Boolean complement of
domain) as a map a : S → S that satisfies

a(x) · x = 0, a(x · y) = a(x · a(a(y))), a(a(x)) + a(x) = 1.

Also antidomain semirings are automatically idempotent. Domain operations
can be obtained in antidomain semirings by defining d(x) = a(a(x)). These
definitions can readily be adapted to some weaker cases of semirings—so-called
near-semirings—in which some of the semiring axioms are dropped [DS08b].

A natural generalisation is to investigate how these axioms can be adapted
when the operation of addition is dropped and the domain algebras induced are
still meant to yield useful state spaces. We consider a whole family of domain and
antidomain axiomatisations for semigroups and monoids which is presented in
Table 1 as an overview. Precise definitions are given in subsequent sections. In the
case of domain, the weakest axiomatisations are so-called left-closure semigroups
and monoids (LC-semigroups/monoids) (cf. [JaS01]). The domain algebras of
these structures are meet-semilattices, but some natural properties of domain do
not hold in this class. Domain semigroups and monoids (d-semigroups/monoids)
capture some of the properties of domain for binary relations, while twisted d-
semigroups/monoids capture precisely the quasiequational properties of domain
for partial functions. In the case of antidomain, closable semilattice pseudo-
complemented semigroups (closable SP-semigroups) were introduced in [JaS04].
Their axioms induce domain algebras that are Boolean algebras, but again some
natural properties of antidomain do not hold. Antidomain monoids (a-monoids)
capture all the equational properties of antidomain for binary relations, while
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twisted a-monoids capture some of the properties of antidomain for partial func-
tions. A more thorough investigation of the whole family is the subject of this
paper.

3 Domain Semigroups

Our aim is to axiomatise domain and antidomain operations on semigroups
and monoids that capture the fact that some computations may or may not be
enabled from some set of states. We model the state space implicitly or internally
through the images induced by the domain operations.

We consider semigroups (S, ·) with an associative multiplication, usually left
implicit, and monoids with a left and right multiplicative unit 1.

A domain semigroup, or d-semigroup, is a semigroup (S, ·) extended by a
domain operation d : S → S that satisfies the following axioms.

(D1) d(x)x = x
(D2) d(xy) = d(xd(y))
(D3) d(d(x)y) = d(x)d(y)
(D4) d(x)d(y) = d(y)d(x)

A monoid that satisfies these axioms is called a domain monoid or d-monoid.
It is easy to check that the axioms (D1)-(D4) hold in Rel(X) and, in fact,

in all domain semirings. The axiom (D2) has been called locality axiom in the
context of domain semirings. In semigroup theory, it has previously been called
left-congruence condition [JaS01].

The axioms (D1)-(D4) are irredundant in the classes of d-semigroups and
d-monoids: Mace4 found models that satisfy the semigroup or monoid axiom
and three of the domain axioms, but not the fourth one, for each combination
of domain axioms.

The class of right closure semigroups is defined in [JaS01]. The intended
models are functions under composition. We present a dual set of axioms for
relational composition.

A left closure semigroup, or LC-semigroup, is a semigroup that satisfies the
following axioms.

(D1) d(x)x = x
(L2) d(d(x)) = d(x)
(L3) d(x)d(xy) = d(xy)
(D4) d(x)d(y) = d(y)d(x)

Analogously, an LC-monoid is an LC-semigroup that is also a monoid.
Again, it can be shown that the domain axioms of LC-semigroups and LC-

monoids are irredundant.

Lemma 1. The class of d-semigroups is strictly contained in the class of LC-
semigroups.
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Prover9 has shown that the axioms (L2) and (L3) follow from the domain axioms
(D1), (D3) and (D4). Mace4 presented a four-element LC-semigroup in which
(D3) does not hold. It is easy to prove the same result for classes of monoids.

Lemma 2. d-semigroups are LC-semigroups that satisfy the locality axiom.

A domain element of an LC-semigroup, domain semigroup or the correspond-
ing monoid S is an element of d(S) = {d(x) : x ∈ S}. The next lemma presents
a very useful characterisation of domain elements.

Lemma 3. The domain elements of an LC-semigroup are precisely the fixed
points of the domain operation.

Proof. If x ∈ d(S), then x = d(y) for some y ∈ S and d(x) = d(d(y)) = d(y) = x
by (L2). If x ∈ S satisfies d(x) = x, then x ∈ d(S) by definition. ut

This fixed point characterisation of domain elements in LC-semigroups, which
a fortiori holds in domain semirings, is a key to checking closure properties of
domain elements and describing the algebra of domain elements. It allows us to
express the fact that x is a domain element within the language as d(x) = x.

Lemma 4.

(a) For any LC-semigroup S, the set d(S) is a meet-subsemilattice of S. If S
has a right unit 1, then d(1) = 1 is the top element of d(S).

(b) Every meet-semilattice is a domain semigroup if d(x) = x is imposed, and
similarly every meet-semilattice with a top element is a domain monoid.

Proof. (a) To show that domain elements are closed under composition, we use
the fixed point lemma to verify that d(d(x)d(y)) = d(x)d(y). Hence, by (D4),
d(S) is a commutative subsemigroup. Moreover d(x)d(x) = d(x) holds, which
implies that d(S) is a subsemilattice. If x1 = x holds in S, then d(1) = d(1)1 = 1
by (D1). The semilattice-order is defined, as usual, by d(x) ≤ d(y)⇔ d(x)d(y) =
d(x). Thus d(x) ≤ 1 immediately follows from the monoidal right unit axiom.

(b) This fact is well known for LC-semigroups [JaS01]. In the case of d-
semigroups we must verify that (D1)-(D4), with d(s) = s for each element s,
hold in every semilattice, which is trivial. ut

Because of these algebraic properties we call d(S) the domain algebra of S.
It can be shown [JaS01] that the semilattice-order on the domain algebra can
be extended to a partial order—called the fundamental order—on the whole
LC-semigroup by

x ≤ y ⇔ x = d(x)y.

On partial functions, the dual of the fundamental order is called the refine-
ment order.

Lemma 5. In any LC-semigroup the fundamental order coincides with the
semilattice-order on the domain algebra, and is preserved by multiplication on
the right.
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Note that preservation by multiplication on the left need not hold even on d-
semigroups. This reflects the situation in Rel(X), whereas for partial functions
the fundamental order coincides with inclusion and is preserved by multiplication
on both sides.

It seems interesting to compare the fundamental order ≤ with the usual
natural order on domain semirings, which is defined as x v y ⇔ x + y = y.

Lemma 6. The ordering ≤ is contained in v of domain semirings, but not
necessarily equal.

Proof. Prover9 has shown that x = d(x)y ⇒ x + y = y holds in all domain
semirings; Mace4 has found a three-element counterexample for the converse
implication. ut

We also note that the usual relational demonic refinement ordering can be
defined in this framework:

x refines y iff d(y) ≤ d(x) and d(y)x ≤ y.

We now outline a calculus of domain semigroups and we study some prop-
erties of their domain algebras. To formulate statements as strongly as possible
from a logical point of view, we state positive properties for LC-semigroups and
negative ones for domain semigroups. Automated theorem proving easily verifies
the following basic laws.

Lemma 7. Let S be an LC-semigroup and let x, y ∈ S. Then

(a) d(xy) ≤ d(x).
(b) d(x)y ≤ y, but not necessarily yd(x) ≤ y.
(c) x ≤ d(x) ⇔ x = d(x).
(d) x ≤ 1⇔ x = d(x) if 1 is a right unit.
(e) x ≤ y ⇒ d(x) ≤ d(y).
(f) x ≤ px⇔ d(x) ≤ p and x = px⇔ d(x) ≤ p hold for all p ∈ d(S).

Case (d) implies that, in d-monoids, the set of all domain elements is precisely the
set of all subidentities. This is in contrast to the situation in domain semirings,
where the domain elements can form a strict subset. There is no contradiction,
since the subidentities on domain semigroups are taken with respect to≤ whereas
the subidentities on domain semirings are taken with respect to v, which may
admit more subidentities than ≤.

Case (f) captures a natural property of domain, namely

d(x) = inf{p ∈ d(S) : x ≤ px}.

Hence d(x) = inf{p ∈ d(S) : x = px} since all domain elements are left subiden-
tities by (b). Accordingly, d(x) is the least element in d(S) which left preserves
x, and the least domain element satisfying (D1). The assumption in (f) that
p ∈ d(S) cannot be much relaxed. The property fails if p is just a subidentity or
an idempotent subidentity.
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Lemma 8.

(a) Every monoid can be expanded to a d-monoid.
(b) Some semigroups cannot be expanded to d-semigroups.
(c) Domain algebras of d-monoids need not be unique.

Proof. (a) The map d(x) = 1 for all x ∈ S satisfies (D1) to (D4).
(b) The semigroup of positive integers under addition has no idempotents.

Hence there are no candidates for membership in the domain algebra, and it is
impossible to define a domain operation.

(c) The two d-monoids defined by

· 0 1
0 0 0
1 0 1

with domain operations d1(x) = x and d2(x) = 1 prove the claim. ut

An expansion of idempotent semirings to d-semirings is not always possible.
There is a three-element counterexample.

An interesting question is whether the axiomatisation of d-monoids captures
all the properties of the domain operation of binary relations. A d-monoid is
called representable if it can be embedded in Rel(X) for some set X such that
·, d and 1 correspond to composition, relational domain and idX . By Schein’s
fundamental theorem for relation algebras [Sch70] the class of representable d-
monoids is a quasivariety.

Proposition 9. The following quasiidentity fails in a 4-element d-monoid but
holds in Rel(X):

xy = d(x) and yx = x and d(y) = 1 imply x = d(x).

Proof. Finding the counterexample for d-monoids is easy with Mace4. To prove
that the result holds for binary relations, consider x, y ∈ Rel(X) and (a, b) ∈ x.
Then d(y) = 1 implies (b, c) ∈ y for some c. It follows from xy = d(x) that c = a,
hence (b, a) ∈ y. Now yx = x implies that (b, b) ∈ x. Finally xy = d(x) yields
(b, a) ∈ d(x), whence b = a. Since (a, b) is arbitrary it follows that x = d(x). ut

Corollary 10. The quasivariety of representable d-monoids is not a variety.

4 Twisted Domain Semigroups

Partial functions under composition satisfy another equational property called
the twisted law in [JaS01]:

xd(y) = d(xy)x.

This identity fails in Rel(X) if we take x to be any relation that is not deter-
ministic. However it is satisfied if composition is the relational demonic compo-
sition (defined below in the section on antidomain). A d-semigroup/monoid or
LC-semigroup/monoid is twisted if it satisfies the twisted law. The next lemma
follows easily by automated theorem proving and counterexample search.
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Lemma 11. The classes of twisted LC-semigroups and twisted d-semigroups
coincide, and they are strictly contained in the class of d-semigroups.

The results of this section characterise part of the spectrum between LC-semi-
groups and twisted semigroups. LC-semigroups, on the one hand, yield a uniform
basis for characterising domain operations for relations and functions, but they
do not capture locality, which holds in relational models. Twisted semigroups,
on the other hand, satisfy locality, but capture only deterministic relations, that
is, partial functions. Domain semigroups are located between these two extremes
and capture relations better than LC-semigroups.

The domain semigroup axioms, but not the twisted axiom (Mace4 presented a
five element counterexample) hold in all domain semirings, hence domain semi-
groups are a natural generalisation of domain semirings. Partial functions, of
course, are not closed under union hence do not form a semiring.

We have seen in Section 3 that the fundamental order ≤ is preserved by
multiplication on the right. If the twisted identity d(zx)z = zd(x) is imposed on
an LC-semigroup then it is preserved by multiplication on the left as well since
x ≤ y implies x = d(x)y, hence d(zx)zy = zd(x)y = zx, i.e. zx ≤ zy.

Various representation theorems have been proved for families of semigroups
with respect to partial functions. For example, every group is embedded in the
symmetric group S (X) of all permutations of a set X. Similarly, every semigroup
is embedded in the transformation semigroup T (X) of all functions on a set X.
Inverse semigroups are semigroups with a unary operation −1 that satisfies the
identities x−1−1 = x, xx−1x = x and xx−1yy−1 = yy−1xx−1. It is a standard
result of semigroup theory (independently due to Vagner 1952 and Preston 1954)
that every inverse semigroup is embedded in the symmetric inverse semigroup
PI(X) of all partial injections on X. We recall below a fourth instance of such
an embedding due to Trokhimenko [Tro73] (cf. [JaS0a]). We present a concise
variant of the proof for the domain setting because it uses a general construction
that should be of interest for the RelMiCS/AKA community.

Theorem 12. [Tro73,JaS01] Every twisted d-semigroup can be embedded in a
partial transformation semigroup. If the semigroup has a unit, it is mapped to
the identity function.

Proof. Let S be a twisted d-semigroup and consider the partial transformation
semigroup PT (S). For a ∈ S define

• Da = {xd(a) : x ∈ S} = {y ∈ S : yd(a) = y},
• fa : Da → S by fa(x) = xa, and
• h : S → PT (S) by h(a) = fa.

The map h is called the Cayley embedding and it remains to check that

(a) d(fa) = fd(a),
(b) fa;fb = fab, and
(c) h is injective.
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By definition, d(fa) = {(xd(a), xd(a)) : x ∈ S}, whereas fd(a) is defined on
Dd(a) = {xd(d(a)) : x ∈ S} by fd(a)(x) = xd(a). Since d(d(a)) = d(a) and
xd(a)d(a) = xd(a), it follows that (a) holds.

To see that (b) holds, note that (fa;fb)(x) = fb(fa(x)) = xab = fab(x), so it
suffices to show that both functions have the same domain. Note that under the
assumption of the twisted law we have x = xd(y)⇔ d(x) = d(xy).

Now x is in the domain of fa;fb if and only if x ∈ Da and xa ∈ Db, which
means xd(a) = x and xad(b) = xa. This can be expressed by d(x) = d(xa) and
d(xa) = d(xab). Hence d(x) = d(xab), and by the above equivalence we obtain
xd(ab) = x, which shows that x is in the domain of fab. Conversely, if xd(ab) = x
then d(x) = d(xd(ab)) = d(xd(ab)d(a)) = d(xd(a)) = d(xa) by (L3), (D4) and
(D2), and likewise d(xa) = d(xd(ab)a) = d(xd(ab)d(a)) = d(xd(ab)) = d(xab).

So h is a d-semigroup homomorphism, and it is injective since if fa = fb then
x = xd(a) is equivalent to x = xd(b). It follows that d(a) = d(a)d(b) = d(b),
whence a = d(a)a = fa(d(a)) = fb(d(a)) = d(a)b = d(b)b = b.

Finally, if S has a unit it follows immediately from the definitions that D1 = S
and therefore h(1) = f1 = idS . ut

Corollary 13. Every commutative d-semigroup is twisted, and can be embedded
in a partial transformation semigroup.

5 Domain-Range Semigroups

A range operation can be defined on arbitrary semigroups by exploiting semi-
group duality (with respect to opposition).

A domain-range semigroup, or dr-semigroup for short, is a semigroup with
two unary operations d and r that satisfy the following axioms.

(D1) d(x)x = x (R1) xr(x) = x
(D2) d(xy) = d(xd(y)) (R2) r(xy) = r(r(x)y)
(D3) d(d(x)y) = d(x)d(y) (R3) r(xr(y)) = r(x)r(y)
(D4) d(x)d(y) = d(y)d(x) (R4) r(x)r(y) = r(y)r(x)
(D5) d(r(x)) = r(x) (R5) r(d(x)) = d(x)

Mace4 can show that the axioms (D5) and (R5) are not implied by the other
axioms. This means that without these axioms, the domain algebra and the
range algebra can be different. By the fixed point lemma for domain and its
dual, the axioms (D5) and (R5) enforce that the domain algebra and the range
algebra coincide, and both these axioms are needed for this result. (D4) and
(R4) can be merged into the equivalent identity d(x)r(y) = r(y)d(x).

By duality, it is clear that the identity x = yr(x) also induces an ordering
on S, but Mace4 can show that the order induced by domain and that by range
need not coincide.

Again, the main examples of dr-semigroups are Rel(X) and PT (X). Inverse
semigroups are also examples if we define d(x) = xx−1, r(x) = x−1x. In fact
the twisted law holds for d, and its dual holds for r. The above representation
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theorem of Trokhimenko reduces to the Vagner-Preston representation theorem
for inverse semigroups. However the twisted law does not hold for r in arbi-
trary partial transformation semigroups (simply because not all functions are
injective).

Schweizer and Sklar [SS67] have provided an axomatisation for abstract func-
tion systems, using the following domain and range axioms.

d(x)x = x d(xd(y)) = d(xy) d(r(x)) = r(x) d(x)r(y) = r(y)d(x)
xr(x) = x r(r(x)y) = r(xy) r(d(x)) = d(x) xd(y) = d(xy)x

Schein has shown that adding the quasiidentity

xy = xz ⇒ r(x)y = r(x)z

axiomatises precisely the quasivariety of dr-semigroups of partial transformations
(cf. [Sch70]). Prover9 easily shows that the first set of axioms without Schein’s
quasi-identity implies the axioms (D3) and (R3).

An interesting question is whether every dr-semigroup can be embedded into
Rel(X) for some set X. We leave it open.

6 Antidomain

We have seen in Section 2 that domain semirings admit a very compact ax-
iomatisation that induces a Boolean domain algebra. It is based on a notion of
antidomain from which domain can be obtained. In this setting, antidomain is
a more fundamental notion than domain.

This section shows how this approach can be generalised to the semigroup or
monoid case. We use the abbreviation x′ = a(x) for the antidomain operation,
and define an antidomain monoid, or a-monoid, (S, ·, 1,′ ) as a monoid (S, ·, 1)
that satisfies

(A1) x′x = 0
(A2) x0 = 0
(A3) x′y′ = y′x′

(A4) x′′x = x
(A5) x′ = (xy)′(xy′)′

(A6) (xy)′x = (xy)′xy′.

This axiomatisation is essentially due to Hollenberg [Hol97]. The one presented
here is slightly more compact, and axiom (A5) is new, though essentially dual
to one of Huntington’s axioms for Boolean algebras. The axioms (A5) and (A6)
might deserve further explanation. Intuitively, an expression (xy)′ can be under-
stood as a modal box operator [x]y′, and it describes the set of states from which
each x-step must lead to a state from which y is not enabled. Under this inter-
pretation, an intuitive reading of (A5) is x′ = ([x]y′) · ([x]y′′). This is a special
case of the multiplicativity law [x](p ·q) = ([x]p) ·([x]q) for boxes, since x′ = [x]0.
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(A6) can be rewritten as ([x]y′)x = ([x]y′)xy′, which says that executing x from
those states from which each x-step must lead into y′, leads into y′.

We write S′ for the set {x′ : x ∈ S} of all antidomain elements of S. The
constants 0 and 1 can be omitted from the language if we replace (A3) by x′x =
y′y, (A2) by xx′x = x′x, and the monoid unit laws by x(x′x)′ = x (the left-unit
law can be deduced from these axioms). In this sense the terminology antidomain
semigroup is appropriate. However we prefer to use the more readable notation
that makes the constants explicit. We can also define

x + y = (x′y′)′

as an abbreviation. Mace4 can show that the antidomain axioms are irredundant.

Lemma 14.

(a) A monoid is trivial if it can be extended by an antidomain operation that has
a fixed point.

(b) The map d(x) = x′′ is a domain operation.
(c) The antidomain elements of an a-monoid are the fixed points of domain.

The fixed point lemma in (c) is again a powerful tool for analysing the structure
of antidomain elements.

Proposition 15. Let S be an a-monoid. Then (S′, +, ·, ′, 0, 1) is a Boolean sub-
algebra.

Proof. We automatically verified the following properties. First, antidomain el-
ements are are closed under addition and multiplication: (x′ + y′)′′ = x′ + y′

and (x′y′)′′ = x′y′. Closure under antidomain is trivial. Second, Huntington’s
axioms for Boolean algebras hold: x + y = y + x, (x + y) + z = x + (y + z), and
x′ = (x + y)′ + (x + y′)′. Finally, x′x′′ = 0 = x′′x′ and x′ + x′′ = 1. ut

In fact, Lemma 14 and Proposition 15 follow already from the antidomain axioms
without (A6).

In Boolean domain semirings, the domain algebra is uniquely determined. It
is the maximal Boolean subalgebra of the subalgebra of subidentities.

Lemma 16. The antidomain algebra of an a-monoid need not be unique.

Mace4 presented a five-element model with two different antidomain operations.
Another interesting observation is that using antidomain, demonic composi-

tion � can be defined (it is associative in the presence of the twisted law):

x � y = (xy′)′xy.

The following lemma collects some further properties of antidomain. Note that
≤ is the fundamental order which on the subidentities coincides with the lattice
order.

Lemma 17. Let S be an a-monoid. For all x, y, z ∈ S, the following laws hold.

11



(a) 0x = 0
(b) (xy′′)′ = (xy)′
(c) (x′y)′′ = x′y′′

(d) x ≤ 1 implies xy = 0⇔ x ≤ y′

(e) x ≤ 1⇔ x′′ = x.
(f) x′ ≤ (xy)′
(g) xy = 0⇔ xy′′ = 0

As in the case of d-monoids, by Schein’s fundamental theorem, the class of
representable a-monoids forms a quasivariety. Hollenberg has shown the follow-
ing two additional results for a-monoids.

Theorem 18. [Hol97]

(a) The variety of a-monoids and the variety generated by all representable a-
monoids are the same.

(b) The quasivariety of representable a-monoids is not a variety.

Hollenberg’s counterexample for (b) is a 5-element Heyting algebra which fails
the quasiidentity x′′y = x′′ ∧ x′y = x′ ⇒ y = 1 that holds in all representable a-
monoids. Since each Heyting algebra is a commutative a-monoid, it is twisted by
Corollary 13. Consequently, in contrast to the case of d-monoids, the antidomain
operation need not be represented correctly by the Cayley map. This indicates
why the construction from Theorem 12 cannot even be adapted to twisted a-
monoids. The question whether the quasivariety of representable a-monoids is
finitely axiomatisable is open.

A weaker axiomatisation of an antidomain operation for semigroups is ob-
tained as a subvariety of semilattice pseudo-complemented semigroups defined
in [JaS04]. Recall that a pseudo-complement on a meet-semilattice is a unary
operation ′ that satisfies

xy = 0 ⇔ y ≤ x′.

In the variety of semilattices with a unary operation, this formula is equivalent
to the identities x′x = 0, x0′ = x and x(xy)′ = xy′. The following result is
proved in [Fri62].

Theorem 19. For any pseudocomplemented meet-semilattice S, the set B(S) =
{x′′ : x ∈ S} is a Boolean algebra with operations x′, xy and x′′ + y′′ = (x′y′)′.

A semilattice pseudo-complemented semigroup or SP-semigroup is a semi-
group that satisfies the following identities.

(A1) x′x = 0
(S2) x0′ = x
(A3) x′y′ = y′x′

(S4) x′(x′y)′ = x′y′

In any SP-semigroup S the set B(S) = {x′′ : x ∈ S} is a meet-subsemilattice
that is pseudo-complemented by the antidomain operation. As in Theorem 19,
the set B(S) is a Boolean algebra with join given by x′′ + y′′ = (x′′′y′′′)′.

An SP-semigroup is called closable in [JaS04] if (A4), that is, x′′x = x, holds.

12



Lemma 20.

(a) Every closable SP-semigroup is a d-semigroup with d(x) = x′′.
(b) A closable SP-semigroup is an a-monoid if and only if (A2) and (A6) hold.

Therefore, (A5) could be replaced by (S4) in the a-monoid axioms.
The proper superclass of a-monoids defined by (A1)-(A5) is interesting in its

own right. Note that (A6) holds in every antidomain semiring, since

(xy)′x = (xy)′x(y′ + y′′) = (xy)′xy′ + (xy′′)′xy′′ = (xy)′xy′ + 0 = (xy)′xy′.

Modal box and diamond operators can be defined already in this weaker setting.
Let 〈x〉p = (xp)′′ and let [x]p = (xp′)′, where p = p′′. Then the diamond

operator is strict and additive and the box operator is costrict and multiplicative:

〈x〉0 = 0, 〈x〉(p + q) = 〈x〉p + 〈x〉q, [x]1 = 1, [x](p · q) = ([x]p) · ([x]q).

Also [x]p = (〈x〉p′)′ and 〈x〉p = ([x]p′)′. This definition of modal operators is not
possible in the weaker setting of closable SP-semigroups. Hence SP-semigroups
have Boolean domain algebras, but are too weak to obtain Boolean algebras with
operators.

Modal algebras allow one to define a notion of determinism as 〈x〉p ≤ [x]p.
We therefore call an a-monoid deterministic if it satisfies

(xy′′)′′ ≤ (xy′)′.

Proposition 21. An a-monoid is deterministic if and only if it is twisted.

Note that the twisted law implies (A6), but not every a-monoid is twisted or
deterministic, and determinism does not imply (A6).

Finally, a notion of antirange can be axiomatised dually to that of antido-
main. Because the antidomain and the antirange algebra automatically coincide,
they need no further linking. In this setting, forward box and diamond operators
|x] and |x〉 can be defined from antidomain, and backward operators [x| and 〈x|
from antirange. We have the following laws.

demodalisation |x〉p ≤ q ⇔ q′xp = 0 and 〈x|p ≤ q ⇔ pxq′ = 0
conjugation (|x〉p)q = 0⇔ p(〈x|q) = 0
Galois connections |x〉p ≤ q ⇔ p ≤ [x|q and 〈x|p ≤ q ⇔ p ≤ |x]q

In this setting, (A6) and its dual for antirange become derivable. For instance,
(A6) is just the cancellation law 〈x|x]p ≤ p of the Galois connection. Note
that because of the Galois connection, diamond operators are even completely
additive, and box operators are completely multiplicative. In conclusion, monoids
with antidomain and antirange allow us to define and calculate with modal
operators.
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7 Templates for Prover9 and Mace4

op(400, infix, ";").
op(500, infix, "+").
op(300, postfix, "’").

formulas(assumptions). % domain semigroups

x;(y;z)=(x;y);z.
d(x);x=x.
d(x;y)=d(x;d(y)).
d(d(x);y)=d(x);d(y).
d(x);d(y)=d(y);d(x).

x<=y <-> x=d(x);y.

end_of_list.

formulas(assumptions). % antidomain monoid

x;(y;z)=(x;y);z.
x;1=x.
x’;x=0.
x;0=0.
x’;y’=y’;x’.
x’’;x=x.
x’=(x;y)’;(x;y’)’.
(x;y)’;x=((x;y)’;x);y’.

x<=y <-> x=x’’;y.

end_of_list.

formulas(goals). % insert goal here

end_of_list.

8 Conclusion

We have axiomatised operations for relational domain and antidomain for semi-
groups and monoids, studied the structure of the domain algebras, developed
the basic calculi, and compared these algebras with previous axiomatisations.
Our approach continues and also generalises previous work on axiomatisations
of domain for semirings and Kleene algebras. It forms the basis for further inves-
tigations, for instance, representation theorems, free algebras and other domain
algebras.
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Partial and total functions and deterministic programs are central to com-
puter science applications, while relations and nondeterminism are important for
specifications and for modelling more general computing systems. But the alge-
braic background that has been developed in semigroup theory over the last fifty
years does not seem to be widely known and, to our knowledge, no link between
functional and relational domain axiomatisations has so far been provided.

Besides closing this gap, a benefit of the abstract algebraic approach is also
that the analysis of functions and relations with (anti)domain can—to a large
extent—be automated. This allowed us to condense the paper and focus on the
conceptual development.

We would like to thank Robin Hirsch, Marcel Jackson and Szabolcs Mikulás for
interesting discussions. Special thanks to Tadeusz Litak for the very interesting
pointer to Marco Hollenberg’s work.
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