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A Kleene algebra (A,∨, 0, ·, 1,∗ ) is an idempotent semiring

with 0, 1 and a Kleene ∗-operation . Specifically this means:

(A, ·, 1) is a monoid ,

(A,∨, 0) is a join-semilattice with bottom ,

multiplication distributes over all finite joins , i.e. x0 = 0 = 0x,

x(y ∨ z) = xy ∨ xz, (y ∨ z)x = yx ∨ zx, and

∗ is a unary operation that satisfies

(∗c) 1 ∨ x ∨ x∗x∗ = x∗

(∗l) xy ≤ y =⇒ x∗y = y

(∗r) yx ≤ y =⇒ yx∗ = y



The quasivariety of Kleene algebras is denoted by KA. It is not a

variety: e.g. there is a 4-element algebra that fails (∗l) but is a

homomorphic image of the Kleene algebra defined on the powerset

of a 1-generated free monoid (Conway’s leap).

A residuated Kleene algebra (A,∨, 0, ·, 1, \, /,∗ ) is a Kleene

algebra expanded with

residuals \, / of the multiplication, i.e. for all x, y, z ∈ A

(\) xy ≤ z ⇐⇒ y ≤ x\z and

(/) xy ≤ z ⇐⇒ x ≤ z/y.



Although we have added more quasiequations to KA, the class

RKA of all residuated Kleene algebras is a variety :

(\) is equivalent to y ≤ x\(xy ∨ z) and x(x\z) ≤ z

(/) is equivalent to the mirror images of these, and

(∗l) and (∗r) are equivalent to x∗ ≤ (x ∨ y)∗ and (y/y)∗ ≤ y/y.

Residuated Kleene algebras are also called action algebras by

Pratt [1990] and Kozen [1994].



Kleene algebras have a long history in Computer Science, with

applications in formal foundations of automata theory, regular

grammars, semantics of programming languages and other areas.

Elements in a Kleene algebra can be considered as specifications

or programs , with · as sequential composition, ∨ as

nondeterministic choice, and ∗ as iteration.

Residuals also have a natural interpretation: If we implement an

initial part p of a specification s, then px ≤ s implies x ≤ p\s, so

p\s is the specification for implementing the remaining part .



A non-commutative version of a result of Raftery and van Alten

[2004] gives another reason for adding residuals:

RKA is congruence distributive .

What does this mean, why is it important, and why is it true?

A congruence on an algebra A is an equivalence relation θ that

preserves the operations of A:

xiθyi (i = 1, . . . , n) implies f(x1, . . . , xn)θf(y1, . . . , yn).

The congruences on A form a (algebraic) lattice Con(A) with

θ ∧ ψ = θ ∩ ψ

θ ∨ ψ =
∞
⋃

i=1

(θ ◦ ψ)i



An algebra A is congruence distributive (CD) if Con(A) is a

distributive lattice , i.e. satisfies

θ ∧ (ψ ∨ ϕ) = (θ ∧ ψ) ∨ (θ ∧ ϕ)

A class of algebras is CD if each member is CD.

E.g. the variety of groups is not CD: Con(Z2 × Z2)

= Lattice of normal subgroups ∼= 〈01〉〈10〉

{00}

Z2 × Z2

〈11〉

The variety of lattices is CD (Funayama, Nakayama [1942])



To understand a variety V of algebras, we study its building blocks,

the subdirectly irreducible members Si(V).

An algebra A is subdirectly irreducible if Con(A) contains a

smallest nontrivial congruence.

By Birkhoff’s [1944] result, any algebra is a subalgebra of a product

of its subdirectly irreducible homomorphic images.

This is the universal algebra “equivalent” of the result that any

natural number is a product of its prime divisors.

So, if Si(V) = Si(W) then V = W .



Tarski [1946] proved that for any class of algebras, HSP (K) is the

smallest variety that contains K.

Here H , S, P stand for all homomorphic images , all

subalgebras , and all products of members of the class they are

applied to.

Jónsson’s Lemma [1967] implies that if HSP (K) is CD and of

finite type, then Si(HSP (K)) ⊆ HSPU (K).

Here PU (K) is the class of ultraproducts of members of K, i.e.

direct products
∏

i∈I Ai modulo a congruence θU where U is an

ultrafilter in the powerset P(I) and

aθUb iff {i ∈ I : ai = bi} ∈ U .



In particular, if all algebras in K have size ≤ n,

then PU (K) = K, so Si(HSP (K)) ⊆ HS(K),

hence all subdirectly irreducibles in HSP (K) −K have size < n.

This can fail for varieties without CD: E.g. let

D = 8-element dihedral group (i.e. symmmetries of a square),

Q = 8-element quaternion group (1, i, j, k and negatives, with

i2 = j2 = k2 = −1, ij = k,)

then Q ∈ Si(HSP (D)) and D ∈ Si(HSP (Q)).

With CD it is much easier to find the subdirectly irreducibles of a

variety.



KA is not CD:

ba

0

c

1
· 0 a b c 1

0 0 0 0 0 0

a 0 0 0 0 a

b 0 0 0 0 b

c 0 0 0 0 c

1 0 a b c 1

Figure 1: A non-congruence distributive Kleene algebra



ba

0

c

1

0|a|b|c|1

0|a|bc|1 0|b|ac|1

0|abc|10a|bc|1

0abc|1

0b|ac|1

0abc1

Figure 2: Con(A) labelled with congruence blocks



Note that bx ≤ b ⇐⇒ x ≤ 1, hence b\b = 1

cx ≤ b ⇐⇒ x ≤ c, hence c\b = c

so bθc =⇒ 1θc.

Therefore A with residuals has only two congruences.

We now give an outline of a noncommutative version of a result by

Raftery and van Alten [2004] that shows RKA is CD.

Instead of congruences, we use congruence filters:

F ⊆ A is a congruence filter if

(CF1) x, y ∈ F , u ∈ A implies 1, x∨ u, xy, u\xu, ux/u ∈ F

(CF2) x\z, y\z ∈ F implies z/x, (x ∨ y)\z ∈ F



Lemma 1. For any residuated semilattice A, Con(A) ∼= CF(A),

where F 7→ θF = {〈x, y〉 : x\y, y\x ∈ F} and

θ 7→ [↑ 1]θ = {x : ∃y(xθy ≥ 1)}.

The next result is adapted from Blok and Raftery [2004] Thm 14.11,

and shows that joins of filters are easier to compute with residuals.

Lemma 2. F ∨G = {a ∈ A : ∃b ∈ F with b\a ∨ a ∈ G} and

F ∧G = F ∩G

Theorem 3. van Alten and Raftery [2004]

Residuated join-semilattices are congruence distributive.

Proof. It suffices to show that for F,G,H ∈ CF(A) we have

(F ∨G) ∩ (F ∨H) ⊆ F ∨ (G ∩H).



Let a ∈ (F ∨G)∩ (F ∨H). By the preceding lemma, ∃b, c ∈ F

such that b\a ∨ a ∈ G and c\a ∨ a ∈ H .

By (CF1) b ≤ a/(b\a) implies a/(b\a) ∈ F ,

similarly a/(c\a) ∈ F and always a/a ∈ F ,

hence a/(b\a ∨ c\a ∨ a) ∈ F .

Let d = b\a ∨ c\a ∨ a, then a/d ∈ F , so d\a ∈ F by (CF2),

whence d\a ∨ a ∈ F .

Since d ≥ b\a ∨ a ∈ G, we have d ∈ G, and similarly d ∈ H .

Therefore d ∈ G ∩H and invoking the preceding lemma again we

get a ∈ F ∨ (G ∩H).



In fact Raftery shows that even the ∨, \, /-reducts are CD.

Since residuated Kleene algebras are expansions of residuated

join-semilattices, it follows that congruence lattices of RKAs are

sublattices of congruence lattices of residuated join-semilattices.

Therefore RKA is also CD.

So now we get a wealth of information about RKA from standard

results about CD varieties:

Theorem 4. If A ∈ RKA is finite, then

(1) Si(HSP (A)) has only finitely many members (up to

isomorphism), hence HSP (A) has only finitely many subvarieties

(Jónsson [1967]).

(2) HSP (A) has a finite equational basis (Baker [1972]).



(1) allows us to construct (a small part of) the lattice of subvarieties

of RKA from the bottom up.

Since residuated lattices are residuated join-semilattices, we can

adapt Jipsen and Tsinakis [2002] Thm 6.3 as follows:

Theorem 5. There are uncountably many minimal nontrivial

varieties of residuated join-semilattices and of residuated Kleene

algebras.



· > 1 d0 d1 d2 d3 . . . c3 c2 c1 c0 b a 0

> > > d0 d1 d2 d3 . . . c3 c2 c1 c0 b a 0

1 > e d0 d1 d2 d3 . . . c3 c2 c1 c0 b a 0

d0 d0 d0 b b b b . . . b b b 0 0 0 0

d1 d1 d1 b b b b . . . b b 0 0 0 0 0

d2 d2 d2 b b b b . . . b 0 0 0 0 0 0

d3 d3 d3 b b b b . . . 0 0 0 0 0 0 0
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c3 c3 c3 b b s2 a . . . 0 0 0 0 0 0 0

c2 c2 c2 b s1 a 0 . . . 0 0 0 0 0 0 0

c1 c1 c1 s0 a 0 0 . . . 0 0 0 0 0 0 0

c0 c0 c0 a 0 0 0 . . . 0 0 0 0 0 0 0

b b b 0 0 0 0 . . . 0 0 0 0 0 0 0

a a a 0 0 0 0 . . . 0 0 0 0 0 0 0

0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0



Other results about residuated lattices also apply. E.g. every

join-semilattice is embedded in a cancellative residuated Kleene

algebra.

The number of finite Kleene algebras of size n is the same as

the number of residuated lattices of size n:

No. of elements 1 2 3 4 5 6 7

No. of algebras 1 1 3 20 149 1488 18554



Residuated Kleene algebras from `-groups and relations

What is the connection between Kleene algebras and relation

algebras?

Input-output relations of programs can be viewed as elements in

either framework.

What can be said about relational residuated Kleene algebras ,

i.e. RKAs obtained from collections of binary relations closed under

composition, union, iteration and residuals?

The element 1 must be a unit for composition but need not

correspond to the identity relation.

Examples of such Kleene algebras can be constructed from

lattice-ordered groups as follows:



Let (A,∨,∧, ·,−1 , 1) be an `-group, i.e. (A,∨,∧) is a lattice,

(A, ·,−1 , 1) is a group, and · distributes over ∨.

This forces the lattice to be distributive.

Instead of using −1, we can view `-groups as residuated structures

with x\y = x−1y and x/y = xy−1.

By Holland’s [1972] Embedding Theorem, every `-group is

embedded in an `-group of order-automorphisms of a linear order.

Theorem 6. Every `-group is isomorphic to a relational residuated

(join-semi)lattice.



Proof. Let G = 〈Aut(Ω),∨,∧, ◦, idΩ, \, /〉 be the `-group of

order-automorphisms of a linear order Ω.

Note that ∨,∧ are calculated pointwise.

By Holland’s embedding theorem , it suffices to embed G into a

residuated lattice of relations on Ω.

For g ∈ G, let Rg = {(u, v) : u ≤ g(v)}.

Rg ∪Rh = Rg∨h since

(u, v) ∈ Rg ∪Rh

⇐⇒ u ≤ g(v) or u ≤ h(v)

⇐⇒ u ≤ max{g(v), h(v)} = (g ∨ h)(v)

⇐⇒ (u, v) ∈ Rg∨h



Rg ◦Rh = Rg◦h since

(u, v) ∈ Rg ◦Rh

⇐⇒ ∃w [(u,w) ∈ Rg and (w, v) ∈ Rh]

⇐⇒ ∃w [u ≤ g(w) and w ≤ h(v)]

⇐⇒ u ≤ g(h(v)) (w = h(v) for ⇐=)

⇐⇒ (u, v) ∈ Rg◦h



Rg\Rh = Rg\h since

(u, v) ∈ Rg\Rh

⇐⇒ Rg ◦ {(u, v)} ⊆ Rh

⇐⇒ ∀w [(w, u) ∈ Rg =⇒ (w, v) ∈ Rh]

⇐⇒ ∀w [w ≤ g(u) =⇒ w ≤ h(v)]

⇐⇒ g(u) ≤ h(v)

⇐⇒ u ≤ g−1(h(v)) = (g\h)(v)

⇐⇒ (u, v) ∈ Rg\h



Rg/Rh = Rg/h is similar.

Finally, Rid = {(u, v) : u ≤ v} = “≤” is an identity element

since

Rg ◦Rid = Rg◦id = Rg = Rid ◦Rg .

Therefore {Rg : g ∈ G} is a residuated lattice of relations that is

isomorphic to G.

To ensure that 0 and ∗ are defined, we add a bottom and top

element to the residuated join-semilattice reduct of the `-group.



All nontrivial `-groups are infinite, but examples of finite RKAs of

relations can be obtained if we restrict to intervals containing 1.

Further examples are constructed by stacking algebras on top of

eachother (ordinal sums) or by constructing matrix algebras.

A generalized ordinal sum construction is the following:

Let P be a poset, and let Ai (i ∈ P ) be a family of RKAs. The

poset sum is defined as
⊕

i∈P Ai = {a ∈
∏

i∈P : i < j =⇒ ai = > or aj = 0}.

Here > denotes the largest element of Ai (if it exists).

This subset of the product is closed under ∨ and ·.



We define two auxillary operations on the poset sum:

(a↓)i =







0 if aj < > for some j < i

ai otherwise

(a↑)i =







> if aj > 0 for some j > i

ai otherwise

Then \⊕, /⊕, 1⊕ can be defined on the poset sum as follows:

a\⊕b = (a\b)↓

a/⊕b = (a/b)↓

1⊕ = 1↑

Theorem 7. The class of relational RKAs is closed under poset

sums.



In fact, for a particular subvariety of RKAs, this construction

describes all the finite members.

Divisible join-semilattices are residuated join-semilattices that

satisfy the following identities:

x = (x/(x ∨ y))(x ∨ y)

x = (x ∨ y)((x ∨ y)\x)

Theorem 8. All finite divisible join-semilattices are commutative,

and can be constructed by poset sums of finite MV-chains.

In fact, there is a 1-1 correspondence between finite divisible

join-semilattices and finite posets labelled with natural numbers.

This result is useful for constructing and counting finite divisible

Kleene algebras.


