
The Consequence Relation in the Logic

of Commutative GBL-Algebras

is PSPACE-complete

Simone Bova, Franco Montagna

Department of Mathematics and Computer Science
University of Siena, Italy

{bova,montagna}@unisi.it

March 11, 2008

Abstract
Commutative, integral and bounded GBL-algebras form a subvariety

of residuated lattices which provides the algebraic semantics of an inter-
esting common fragment of intuitionistic logic and of several fuzzy logics.

It is known that both the equational theory and the quasiequational
theory of commutative GBL-algebras are decidable (in contrast to the
noncommutative case), but their complexity has not been studied yet. In
this paper, we prove that both theories are in PSPACE, and that the
quasiequational theory is PSPACE-hard.

1 Introduction

This paper deals with the computational complexity of a propositional logic,
called GBLewf , which is a common fragment of intuitionistic logic and of several
fuzzy logics. The equivalent algebraic semantics for GBLewf is given by an
intensively studied variety of residuated lattices, namely commutative, integral
and bounded GBL-algebras [JM06]. In this section, we introduce the system
GBLewf and we discuss its logical motivations.

Basic fuzzy logic BL was introduced by Hájek in [Háj98]. This logic can be
regarded both as a common fragment of the three main fuzzy logics, �ukasiewicz,
Gödel and product logics, as well as the logic of all continuous t-norms and their
residua. A continuous t-norm ∗ is a binary continuous and weakly increasing op-
eration on the real interval [0, 1] which makes it a commutative ordered monoid
with neutral element 1. The residual →∗ of a continuous t-norm ∗ is uniquely
determined by the condition x ∗ y ≤ z if and only if x ≤ y →∗ z. It turns out
that if we interpret (multiplicative) conjunction, �, as a continuous t-norm, and
implication, →, as its residuum, the set of all formulas which are evaluated to 1
forms a logic, L∗, which extends BL. Moreover, BL is precisely the intersection
of all logics L∗ when ∗ ranges over all continuous t-norms [CEGT00]. Note
that additive conjunction and disjunction are also de�nable in BL by putting
φ ∧ ψ 
 φ� (φ→ ψ), and φ ∨ ψ 
 ((φ→ ψ)→ ψ) ∧ ((ψ → φ)→ φ).
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The intriguing observation is that neither BL extends intuitionistic logic IL,
nor IL extends BL. Indeed, on the one hand, BL has the prelinearity axiom,

(φ→ ψ) ∨ (ψ → φ),

which is not provable in IL; and on the other hand, IL proves the contraction
axiom,

φ→ (φ� φ),

which is not provable in BL. It is known that the minimal logic containing both
BL and IL is Gödel logic (that is IL plus the prelinearity axiom). The question
arises whether there exists an interesting common fragment of BL and IL.

A possible candidate is the logic FLew, that is, full Lambek logic plus weak-
ening and exchange, corresponding to IL without contraction [GJKO07]. How-
ever, there is a principle which is common to IL and to BL and is not provable
in FLew, namely the divisibility axiom:

(φ ∧ ψ)→ (φ� (φ→ ψ)).

This principle has a nice interpretation in terms of resources: φ ∧ ψ gives you
access to φ or to ψ up to your choice, and φ→ ψ is the weakest resource which
added to φ gives you ψ. Thus the axiom says that your system is �exible: if
you have a choice between φ and ψ, then you may get φ plus φ → ψ, so that
you may always turn to ψ if you like. This observation naturally leads to the
logic GBLewf (in words, generalized basic logic plus exchange, weakening and
falsum), which is basically FLew plus the divisibility axiom, or even BL without
prelinearity (in the latter case, ∨ is no longer de�nable in terms of � and →
and must be axiomatized as a primitive symbol).

Summarizing the discussion above, the axiomatic calculus of GBLewf is
de�ned by the axiom schemata (A1)-(A13) and the modus ponens inference
rule (R1), as follows:

(A1) φ→ φ

(A2) (φ→ ψ)→ ((ψ → χ)→ (φ→ χ))

(A3) (φ� ψ)→ (ψ � φ)

(A4) (φ� ψ)→ φ

(A5) (φ→ (ψ → χ))→ ((φ� ψ)→ χ))

(A6) ((φ� ψ)→ χ)→ (φ→ (ψ → χ))

(A7) (φ� (φ→ ψ))→ (φ ∧ ψ)

(A8) (φ ∧ ψ)→ (φ� (φ→ ψ))

(A9) (φ ∧ ψ)→ (ψ ∧ φ)

(A10) φ→ (φ ∨ ψ)

(A11) ψ → (φ ∨ ψ)

(A12) ((φ→ ψ) ∧ (χ→ ψ))→ ((φ ∨ χ)→ ψ)
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(A13) ⊥ → φ

(R1) φ, φ→ ψ `GBLewf
ψ

It turns out that GBLewf is strongly algebraizable in the sense of Blok and
Pigozzi [BP89]. Its equivalent algebraic semantics is the variety of commutative,
integral and bounded GBL-algebras (see Section 2.1 for formal de�nitions).
As a general fact, if an algebraic variety, V, forms the algebraic semantic of a
propositional logic, L, in the sense of Blok and Pigozzi, then algebraic properties
have a natural logical counterpart and viceversa. Indeed, the free (n-generated)
algebra in the variety V is isomorphic to the Lindenbaum-Tarski algebra (of the
n-variate fragment) of the logic L. In particular, the quasiequational theory of
the variety V is equivalent to the consequence relation of the logic L. In the
following, we adopt the algebraic view to describe the computational complexity
of the consequence relation of the logic GBLewf (and related logics) in terms
of the computational complexity of the quasiequational theory in the variety of
commutative, integral and bounded GBL-algebras.

Varieties of GBL-algebras have been studied in [GT05, JM06, JM]. In [JM],
it is shown that the quasiequational theory in the variety of GBL-algebras is
undecidable, but, by contrast, quasiequations are decidable in the subvarieties
of commutative GBL-algebras, commutative and integral GBL-algebras, and
commutative integral and bounded GBL-algebras. In [BF00], the authors in-
vestigated the variety of hoops, corresponding to the fragment of commutative
and integral GBL-algebras without ⊥ and ∨, proving that quasiequations are
decidable. However, the aforementioned papers do not contain results about
the computational complexity of quasiequations in the decidable subvarieties of
GBL-algebras. As we alluded at the beginning of this introduction, the com-
plexity of subvarieties of commutative GBL-algebras, and of the corresponding
propositional logics, will be the main topic of this paper.

We mentioned that the logic of commutative, integral and bounded GBL-
algebras, GBLewf , is a common fragment of IL and BL. The computational
complexity of IL and BL is known: intuitionistic validity (and consequence,
via the deduction theorem) is PSPACE-complete [Sta79], whereas validity and
consequence inBL is coNP-complete [BHMV01], as in the classical case, despite
the lack of the deduction theorem in its general form. We remark that, starting
from Mundici's seminal work on �ukasiewicz logic [Mun87], techniques based
on the functional representation of free algebras have been applied for showing
coNP-completeness of validity and consequence in fundamental schematic ex-
tensions of BL, namely Gödel logic and product logic. A survey of this uniform
approach was given in [AGH05].

Here, we give a partial complexity characterization of GBLewf . We show
that the quasiequational theory of commutative, integral and bounded GBL-
algebras (hence, the consequence problem of GBLewf ) is PSPACE-complete
(Theorem 2). In particular, the equational theory of commutative, integral
and bounded GBL-algebras (hence, the validity problem of GBLewf ) is in
PSPACE, but our reduction does not generalize. We conjecture that the va-
lidity problem of GBLewf is hard for PSPACE.

The paper is organized as follows. In Section 2, we present the algebraic
background and the combinatorial key to our problem. In Section 3, we prove
our main complexity result. In Section 4, we describe some consequences of the
main result.
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2 Algebraic Background

This section is devoted to the presentation of the algebraic background of our
complexity result. In Section 2.1, we introduce some basic de�nitions and
facts. In Section 2.2, we introduce an algebraic construction, called poset sum,
that provides a complete semantics for quasiequations in commutative bounded
GBL-algebras. In Section 2.3, we prove that, as regards to the validity of
quasiequations in commutative bounded GBL-algebras, poset sums reduce to
�nite combinatorial constructions.

2.1 GBL-Algebras and Quasiequations

Let (�,→,∨,∧, e) be a functional signature of type (2, 2, 2, 2, 0). A commutative
residuated lattice is a system L = (L,�,→,∨,∧, e) such that:

(i) (L,�, e) is a commutative monoid;

(ii) (L,∨,∧) is a lattice;

(iii) x� y ≤ z if and only if y ≤ x→ z (that is, residuation holds).

A commutative residuated lattice is said to be integral if e is its top element
(in this case, as is customary, we use > instead of e in the signature), divisible
if and only if x ≤ y implies y � (y → x) = x, and bounded if and only if it
has a bottom element m and the signature has an additional constant symbol
⊥ which is interpreted as m.

A commutative GBL-algebra is a divisible commutative residuated lattice.
A BL-algebra is a commutative, integral and bounded GBL-algebra satisfying
prelinearity, that is, (x → y) ∨ (y → x) = >. An MV -algebra is a BL-algebra
satisfying involutiveness of ¬, that is, ¬¬x = x, where ¬x 
 x → ⊥. A
Heyting algebra is a commutative, integral and bounded GBL-algebra satisfying
idempotency of �, that is, x� x = x ∧ x = x.

A lattice ordered Abelian group is a system G = (G,�,−1 ,∨,∧, e) such that
(G,�,−1 , e) is an Abelian group, (G,∨,∧) is a lattice, and x�(y∨z) = (x�y)∨
(x�z) (that is, � distributes over ∨). Note that a lattice ordered Abelian group
is a residuated lattice with respect to �,∨,∧, e by putting x→ y 
 x−1�y. It is
known that every commutative GBL-algebra is isomorphic to a direct product of
an integral GBL-algebra and a lattice ordered Abelian group [GT05]. Therefore,
since every bounded lattice ordered Abelian group is trivial, it follows that every
bounded commutative GBL-algebra is integral.

Summarizing the previous discussion, in the sequel a system A = (A,�,→
,∨,∧,⊥,>) over the signature L1 
 (�,→,∨,∧,⊥,>) of type (2, 2, 2, 2, 0, 0)
is called a commutative bounded GBL-algebra if: (A,�,>) is a commutative
monoid; (A,∨,∧,>,⊥) is a bounded lattice; x� y ≤ z if and only if y ≤ x→ z
(that is, residuation holds); and x ≤ y implies y � (y → x) = x (that is,
divisibility holds).

As already mentioned, in this paper we investigate the computational com-
plexity of the problem of deciding if a quasiequation is valid in the variety of
commutative bounded GBL-algebras. Let V = {yj : j ∈ N} be the set of
variables and ◦ ∈ L1 \ {>,⊥}. A term t (over L1) is either ⊥, > or yj for
some j ∈ N, or has the form (t1 ◦ t2), where t1 and t2 are terms over L1. Let

4



A be a commutative bounded GBL-algebra with domain A. As is customary,
a term t(y1, . . . , yl) with variables among y1, . . . , yl determines an l-ary opera-
tion tA(y1, . . . , yl) on A. With respect to pairs of terms t and s, the equation
t = s holds in A under the assignment y1 7→ a1, . . . , yl 7→ al of the variables
onto elements a1, . . . , al of A if and only if tA(a1, . . . , al) = sA(a1, . . . , al). A
quasiequation is an entailment statement of the form:

(t1 = s1 and . . . and tm = sm) implies (t = s),

where m ≥ 0 and ti, si, t, s are terms (i = 1, . . . ,m). In a commutative residu-
ated lattice, any statement of the form above is equivalent to the statement:

(u1 ∧ e = e and . . . and um ∧ e = e) implies (u ∧ e = e), (1)

where ui 
 (ti → si) ∧ (si → ti) for i = 1, . . . ,m and u 
 (t → s) ∧ (s → t).
If, in addition, the commutative residuated lattice is integral, then the neutral
element coincides with the top element and is denoted by >, so that ui is
equivalent to ui ∧ > (i = 1, . . . ,m) and u is equivalent to u ∧ >. Then, the
statement above is equivalent to the statement:

(u1 = > and . . . and um = >) implies (u = >). (2)

Both quasiequations (1) and (2) will be denoted by ({u1, . . . , um}, {u}) and from
the context it will be clear which of (1) or (2) we are referring to. We say that a
term t with variables among y1, . . . , yl is valid in a commutative bounded GBL-
algebra A with domain A under the assignment y1 7→ a1, . . . , yl 7→ al of the
variables onto elements a1, . . . , al of A, if tA(a1, . . . , al) = >. A quasiequation
({t1, . . . , tm}, {t}) with variables among y1, . . . , yl is valid in A if and only if,
for every assignment of the variables y1, . . . , yl onto elements of A, if t1, . . . , tm
are valid under the assignment, then also t is. The quasiequational theory of
commutative bounded GBL-algebras contains all and only the quasiequations
valid in all the commutative bounded GBL-algebras.

Formally, we will study the complexity of the following decision problem,
where E is a quasiequation and 〈·〉 is a reasonably compact binary encoding of
quasiequations:

GBL-CB-QEQ = {〈E〉 : E is valid in all commutative bounded GBL-algebras}.

We mentioned in the previous section that the logical counterpart of this alge-
braic question is the problem of deciding if a �xed formula φ is derivable in the
axiomatic calculus (A1)-(A13) of GBLewf from a �xed �nite set of formulae
φ1, . . . , φm, that is, if the �nite consequence relation

φ1, . . . , φm `GBLewf
φ

holds or not.
Let t be a term. Abusing notation, |S| denotes the cardinality of S if S is a

�nite set and the length of S if S is a binary string. The number of occurrences
of symbols �, →, ∨, and ∧ in t, op(t), is de�ned inductively, as follows: if
t ∈ {⊥,>} ∪ V , then op(t) = 0; if t = (t1 ◦ t2), then op(t) = op(t1) + op(t2) + 1.
The set of variables occurring in t, var(t), is de�ned inductively as follows:
if t ∈ {⊥,>}, var(t) = ∅; if t = yj ∈ V , var(t) = {yj}; if t = (t1 ◦ t2),
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var(t) = var(t1)∪var(t2). So, |var(t)| is the number of distinct variables occurring
in t. As is customary, for every term t, we assume a binary encoding 〈t〉 ∈ {0, 1}∗
of t of length polynomial in |var(t)|+ op(t). Thus, since |var(t)| ≤ op(t) + 1,

|〈t〉| ≤ e(op(t)), (3)

for a suitable polynomial e : N → N. Moreover, on the basis of a reason-
ably compact binary encoding for sets and tuples, for any quasiequation E =
({t1, . . . , tm}, {t}), the binary encoding 〈E〉 ∈ {0, 1}∗ of E has size polynomially
bounded in the size of the terms t1, . . . , tm, t, that is,

|〈E〉| ≤ e′(|〈t〉|+
∑

1≤i≤m

|〈ti〉|), (4)

for a suitable polynomial e′ : N→ N.
The set of subterms of t, subt(t), is de�ned inductively, as follows: if t ∈

{⊥,>} ∪ V , then subt(t) = {t}; if t = (t1 ◦ t2), subt(t) = {t} ∪ subt(t1) ∪
subt(t2). If T = {t1, . . . , tm} is a �nite set of terms, then var(T ) 


⋃m
i=1 var(ti),

and subt(T ) 

⋃m

i=1 subt(ti). If E = ({t1, . . . , tm}, {t}) is a quasiequation,
then var(E) 
 var({t1, . . . , tm}) ∪ var({t}), and subt(E) 
 subt({t1, . . . , tm}) ∪
subt({t}).

2.2 Poset Sums and Finite Countermodels

For any �xed integer N ≥ 1, [N + 1] 
 {0, 1/N, . . . , (N − 1)/N, 1}. The basic
building block of our construction is the following.

De�nition 1 (Standard MV -Chain, N-Finite MV -Chain). Let N ≥ 1 be
a �xed integer and let S ∈ {[0, 1], [N + 1]}. Then, the MV -chain SMV is the
algebra of signature L1 de�ned as follows:

(i) The domain of SMV is S.

(ii) The realization of L in SMV is the following (◦S realizes in SMV the
symbol ◦ in L, and x1, x2 ∈ S):

(ii.i) ⊥S = 0;
(ii.ii) >S = 1;

(ii.iii) x1 �S x2 = max{0, x1 + x2 − 1};
(ii.iv) x1 ∨S x2 = max{x1, x2};
(ii.v) x1 ∧S x2 = min{x1, x2};

(ii.vi) x1 →S x2 = min{1,−x1 + x2 + 1}.

We call [0, 1]MV standard MV -chain, and [N + 1]MV N -�nite MV -chain.

Let S ∈ {[0, 1], [N + 1]}, t be a term such that var(t) ⊆ {y1, . . . , yl}, and
h = (x1, . . . , xl) ∈ Sl. Then, th denotes the value in SMV of the term t under
the assignment yj 7→ xj for j = 1, . . . , l, that is: if t = yj , th = xj ; if t = ⊥,
th = ⊥S ; if t = >, th = >S ; if t = (t1 ◦ t2), (t1)h, (t2)h ∈ S, th = (t1)h ◦S (t2)h.

Let b : N→ N be the polynomial de�ned by:

b(n) 
 3n3. (5)

For any function f : Dn → R and any S ⊆ Dn, f � S denotes the restriction of
f to S.
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Lemma 1. Let T be a �nite set of terms such that maxt∈T |〈t〉| = n, var(T ) ⊆
{y1, . . . , yl} and subt(T ) = {s1, . . . , sm}, and let a be any point in [0, 1]l. If
(s1)aC1 (s2)aC2 · · ·Cm−1 (sm)a, where (C1, . . . ,Cm−1) ∈ {=, <}m−1, then there
exist M ≤ 2b(n) and b ∈ [M + 1]l such that (s1)b C1 (s2)b C2 · · ·Cm−1 (sm)b.

Proof. The lemma is an application of [CDM99, Proposition 3.3.1 and Proposi-
tion 9.3.3]. AMcNaughton function over [0, 1]l is a continuous l-variate function
over [0, 1] such that there are l-variate linear polynomials p1, . . . , pk with integer
coe�cients (the components of f) such that, for every a ∈ [0, 1]l, there exists
j ∈ {1, . . . , k} such that f(a) = pj(a). By McNaughton's theorem [McN51],
for every term t with var(t) ⊆ {y1, . . . , yl}, the function f : [0, 1]l → [0, 1] such
that, for every a ∈ [0, 1]l, f(a) = ta is a McNaughton function (we say that f
corresponds to t).

Let fs be the l-variate McNaughton function over [0, 1] corresponding to the
subterm s ∈ subt(T ), let ps,1, . . . , ps,ks

be the components of fs, and suppose
that

{q1, . . . , qk} =
⋃

s∈subt(T )

{ps,1, . . . , ps,ks}.

For every permutation π of {1, . . . , k}, let:

Pπ 
 {a ∈ [0, 1]l : qπ(1)(a) ≥ qπ(2)(a) ≥ · · · ≥ qπ(k)(a)}, (6)

C 
 {Pπ : Pπ is l-dimensional}. (7)

Along the lines of [CDM99, Proposition 3.3.1], we observe that C is a �nite set
of l-dimensional polyhedra with rational vertices (that is, for every P ∈ C, there
exist a �nite VP ⊆ (Q∩ [0, 1])l such that P = conv VP ). Moreover, triangulating
nonsimplicial polyhedra [Ewa96], C can be manufactured to a �nite set S of
l-dimensional simplexes with rational vertices (recall that an l-dimensional sim-
plex is the convex hull of l + 1 vertices), having the following three properties:
(i) [0, 1]l =

⋃
S∈S S; (ii) any two simplexes in S intersect in a common face

(as is customary, we let ∅ be the (−1)-dimensional face); (iii) for each simplex
S ∈ S and s ∈ subt(T ), there exists j ∈ {1, . . . , k} such that fs � S = qj .

Now, let a be any point in [0, 1]l, and suppose that (s1)a C1 (s2)a C2

· · · Cm−1 (sm)a, where subt(T ) = {s1, s2, . . . , sm} and (C1, . . . ,Cm−1) ∈ {=
, <}m−1. By (i)-(ii) above, there exists a face F of some simplex S ∈ S such
that F is the face of S of minimal dimension containing a. Recalling that
a face of simplex is a simplex, we display the rational vertices of F as v1 =
(c1,1/d1, . . . , c1,l/d1), . . . , vr = (cr,1/dr, . . . , cr,l/dr), where 1 ≤ r ≤ l + 1 and
c1,1, . . . , c1,l, d1, . . . , cr,1, . . . , cr,l, dr ∈ Z with 0 ≤ c1,1 ≤ d1, . . . , 0 ≤ c1,l ≤ d1,
. . . , 0 ≤ cr,1 ≤ dr, . . . , 0 ≤ cr,l ≤ dr. Let:

b �

(
c1,1 + · · ·+ cr,1

d1 + · · ·+ dr
, . . . ,

c1,l + · · ·+ cr,l

d1 + · · ·+ dr

)
,

that is, let b be the Farey mediant of v1, . . . , vr. Observe that b ∈ (Q∩[0, 1])l∩F .
We claim that b satis�es the statement of the lemma. Indeed, the following

two facts hold. Fact 1: For every i 6= j ∈ {1, . . . ,m} and C ∈ {<,=}, if
(si)a C (sj)a, then (si)b C (sj)b. The case m = 1 is obvious. For m > 1, let
i = 1 and j = 2 without loss of generality. Now, �rst suppose that (s1)a = (s2)a.
By (iii), (s1)a = fs1(a) = qj1(a) for some j1 ∈ {1, . . . , k}, and (s2)a = fs2(a) =
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qj2(a) for some j2 ∈ {1, . . . , k}, thus qj1(a) = qj2(a). So, observing that a,b ∈ F
and F ∈ S is of minimal dimension such that a ∈ F , by (6), qj1(b) = qj2(b).
Now, by (iii), (s1)b = fs1(b) = qk1(b) for some k1 ∈ {1, . . . , k}, and (s2)b =
fs2(b) = qk2(b) for some k2 ∈ {1, . . . , k}. But, since fs1 and fs2 are linear
over F , if fs1(a) = qj1(a) and fs1(b) = qk1(b), then qj1 = qk1 over F , and
if fs2(a) = qj2(a) and fs2(b) = qk2(b), then qj2 = qk2 over F . Summarizing,
(s1)b = qk1(b) = qj1(b) = qj2(b) = qk2(b) = (s2)b, and this case is settled.
The argument for proving that (s1)a < (s2)a implies (s1)b < (s2)b is similar.
Fact 2: b ∈ [M + 1]l for some M ≤ 2b(n). Indeed, observing that, for each
subterm s ∈ subt(T ), |〈s〉| ≤ |〈t〉|, by [CDM99, Proposition 9.3.3] we have that
d1, . . . , dr ≤ 24|〈t〉|2 . Therefore,

d1 + · · ·+ dr ≤ r · 24|〈t〉|2 ≤ (l + 1) · 24|〈t〉|2 ≤ n24n2
.

But n24n2 ≤ 2b(n) for every n > 1, thus there is M ≤ 2b(n) such that b ∈
[M + 1]l.

A poset is a pair (P,≤P ) where P is a set and ≤P is binary, re�exive,
antisymmetric and transitive relation over P . For any poset (P,≤P ) and any
pair (p1, p2) ∈ P 2, we say that p1 and p2 are comparable if p1 ≤P p2 or p2 ≤P p1

(incomparable otherwise). We write p1 6=P p2 for distinct elements p1, p2 ∈ P ,
and p1 <P p2, if p1 ≤P p2 and p1 6=P p2. A poset (P,≤P ) is a chain if each pair
of distinct points in P is comparable. For instance, ([0, 1],≤) and ([N + 1],≤)
are chains, where ≤ denotes the order over the reals. We say that p2 covers p1

if p1 <P p2 and there is no q ∈ P such that p1 <P q and q <P p2. Any poset
(P,≤P ) corresponds to a directed acyclic graph (dag) P = (P,EP ), called the
cover graph of (P,≤P ), where EP = {(p1, p2) ∈ P 2 | p2 covers p1}. We say that
p1 reaches p2 if there exists a path from p1 to p2 in P.

The following object provides the combinatorial sieve to our problem [JM06].
Let L2 
 (=,≤, <) be a relational signature of type (2, 2, 2), and let L 

(L1,L2).

De�nition 2 (Poset Sum). Let P = (P,EP ) be the cover graph of a poset
(P,≤P ) and let (Cp)p∈P be a sequence of standard MV -chains. The (dual)
poset sum A over the skeleton P and the summands (Cp)p∈P is the algebra of
signature L de�ned as follows (if ◦ ∈ L, then ◦p and ◦A are respectively for the
realizations in Cp and A of the symbol ◦):

(i) The domain, A, of A is the set of all maps h on P such that:

(i.i) for all p ∈ P , h(p) ∈ Cp;

(i.ii) for all p ∈ P , if h(p) < >p, then ⊥q = h(q) for all q ∈ P such that
q <P p, and (thus), if ⊥p < h(p), then h(q) = >q for all q ∈ P such
that q >P p.

(ii) The realization of L in A is the following. For every p ∈ P and h1, h2 ∈ A:

(ii.i) ⊥A(p) = ⊥p;

(ii.ii) >A(p) = >p;

(ii.iii) (h1 �A h2)(p) = h1(p)�p h2(p);

(ii.iv) (h1 ∨A h2)(p) = h1(p) ∨p h2(p);
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(ii.v) (h1 ∧A h2)(p) = h1(p) ∧p h2(p);

(ii.vi) The realization of → in A is the following:

(ii.vi.i) (h1 →A h2)(p) = h1(p)→p h2(p), if h1(q) ≤ h2(q) for all q ∈ P
such that p <P q;

(ii.vi.ii) (h1 →A h2)(p) = ⊥p, otherwise;

(ii.vii) h1 =A h2 if and only if h1(p) = h2(p) for all p ∈ P ;
(ii.viii) h1 ≤A h2 if and only if h1(p) ≤ h2(p) for all p ∈ P ;
(ii.ix) h1 <A h2 if and only h1 ≤A h2 and h1(p) < h2(p) for some p ∈ P .

If P is �nite, then the poset sum A is called �nite. If, for all p ∈ P , Cp is an
M -�nite MV -chain for some M ≤ N , the poset sum A is called N -bounded.

Let t be a term, A be a poset sum with skeleton P = (P,EP ) and domain
A, h = (h1, . . . , hl) ∈ Al, p ∈ P and S ∈ {[0, 1], [M + 1]} be the domain of
Cp. Then, th,p denotes the value in Cp of the term t under the assignment
yj 7→ hj(p) of the variables onto S, j = 1, . . . , l. We insist that, if t = t1 → t2
and there exists p <P q such that (t2)h,q < (t1)h,q, then th,p = ⊥p independent
of the values (t1)h,p, (t2)h,p ∈ S.

De�nition 3 (Quasiequation Validity). Let t be a term such that var(t) ⊆
{y1, . . . , yl}, let A be a poset sum with skeleton P = (P,EP ) and domain A, and
let h = (h1, . . . , hl) ∈ Al. Then: t is valid in A under h if, for every p ∈ P ,
th,p = >p, and we write A,h |= t = >; otherwise, if there exists p ∈ P such
that th,p < >p, we say that t fails in A under h (with respect to p), and we
write A,h |6= t = >.

Let E = ({t1, . . . , tm}, {t}) be a quasiequation. A poset sum A models E, or
E is valid in A (written A |= E), if and only if the following statement holds:
for every h = (h1, . . . , hl) ∈ Al, if A,h |= tk = > for all k ∈ {1, . . . ,m}, then
A,h |= t = >. If A does not model E, we say that A falsi�es E, or that A
is a countermodel to E, or that E fails in A (written A |6= E). In this case,
if h ∈ Al and p ∈ P are such that A,h |= tk = > for all k ∈ {1, . . . ,m}, but
th,p < 1, we say that E fails in A with respect to h and p.

Our main result relies on a sharpening of the following characterization
[JM06].

Theorem 1 (Jipsen and Montagna). Let E be a quasiequation. Then, 〈E〉 /∈
GBL-CB-QEQ if and only if there exists a �nite poset sum A such that A |6= E.

In the next section, we will sharpen the previous statement, proving that if
E fails in a commutative bounded GBL-algebra, then E already fails in a �nite
poset sum with skeleton and summands explicitly bounded in the size of E.

2.3 Countermodel Bounds

In this section, we prove that if a quasiequation E of size n fails in a �nite
poset sum, then E fails in a �nite poset sum having a tree of height polynomial
in n and cardinality exponential in n as skeleton, and chains of cardinality
exponential in n as summands. Observing that the converse clearly holds, this
sharpens the statement of Theorem 1.
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For sake of conciseness, we �rst �x some specialized terminology and notation
relative to �nite poset sums. Let E be a quasiequation, t be a term in subt(E),
A be a �nite poset sum speci�ed as in De�nition 2, h = (h1, . . . , hl) ∈ Al and
p ∈ P .

If ⊥p < th,p, we say that t is hibernated in A with respect to h and p. Notice
that if t is hibernated in A with respect to p and h, then every q ∈ P such that
p <P q satis�es the constraint th,q = >q. We write subt(E)(h,p,>) ⊆ subt(E) for
the set of subterms of E hibernated in A with respect to h and p. If t has the
form t1 → t2 and every node q such that p <P q satis�es the constraint (t1)h,q ≤
(t2)h,q, we say that t is evaluated pointwise in A with respect to p and h;
otherwise, if there is a node q such that p <P q satisfying the constraint (t1)h,q >
(t2)h,q, we say that t is not evaluated pointwise. We write subt(E)→ ⊆ subt(E)
for the set of subterms of the form w1 → w2, subt(E)(→,h,p,∀) ⊆ subt(E)→ for the
set of implicative subterms evaluated pointwise inA with respect to h and p, and
subt(E)(→,h,p,∃) ⊆ subt(E)→ for the set of implicative subterms not evaluated
pointwise in A with respect to h and p. We call subt(E)(→,h,p,∃) the set of
existential constraints on p (in A, with respect to h), and subt(E)(→,h,p,∀) ∪
subt(E)(h,p,>) the set of universal constraints on p (in A, with respect to h).

Let v = v1 → v2 be any existential constraint on p. We say that p generates
an existential constraint (on v with respect to h). Let r be any node in P
reachable from p. If there is no node q ∈ P such that p <P q <P r satisfying
(v1)h,q > (v2)h,q, then we say that r inherits the existential constraint on v. If
r is a maximal element in P such that p <P r and (v1)h,r > (v2)h,r, then we
say that r �xes the existential constraint on v (generated by p).

Now, let u be any universal constraint on p. We say that p propagates a
universal constraint (on v with respect to h). If r ∈ P and p <P r, we say that
r inherits and propagates the universal constraint on v.

Adopting the above terminology and notation, we provide explicit bounds
on the size of �nite countermodels to quasiequations. Let q : N → N be the
polynomial de�ned by:

q(n) 
 n2. (8)

Lemma 2. Let E = ({t1, . . . , tm}, {t}) be a quasiequation of size n, and let
A be a �nite poset sum with skeleton P = (P,EP ) where E fails. Then, there
exists a �nite 2b(n)-bounded poset sum B where E fails, such that the skeleton
of B is a rooted tree T = (T,ET ), of height at most n and cardinality at most
2q(n).

Proof. Let var(E) = {y1, . . . , yl}, let A be the domain of A, and let h =
(h1, . . . , hl) ∈ Al and p ∈ P be such that E fails in A with respect to h and
p. We prove that there exists a poset sum B satisfying the statement of the
lemma.

The skeleton T = (T,ET ) of B is a rooted tree, de�ned as follows. The
root of T is a node v(p) corresponding to the node p ∈ P . Recall that, if
subt(E)(→,h,p,∃) is not empty, then the node p ∈ P generates (in A) existential
constraints on each term in subt(E)(→,h,p,∃). Let v(q) be a node in T , corre-
sponding to the node q ∈ P . There are two cases. Case 1: subt(E)(→,h,q,∃) = ∅.
In this case, v(q) is a leaf of T. Case 2: subt(E)(→,h,q,∃) 6= ∅. In this case,
the only edges leaving v(q) in T are (v(q), v(r1)), . . . , (v(q), v(rk)) ∈ ET , where
v(r1), . . . , v(rk) ∈ T are nodes of T, corresponding to nodes r1, . . . , rk ∈ P
respectively, satisfying the following:
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(T1) for i = 1, . . . , k, ri is reachable from q in P;

(T2) for i = 1, . . . , k, there exists s ∈ subt(E)(→,h,q,∃) such that ri is the only
node in {r1, . . . , rk} that �xes s;

(T3) the union of the terms �xed by r1, the terms �xed by r2, . . . , and the
terms �xed by rk, is exactly subt(E)(→,h,q,∃).

We remark that r1, . . . , rk are pairwise distinct by (T2), but there may be dis-
tinct nodes in T corresponding to the same node in P . The intuition underlying
conditions (T1)-(T3) is that the covers of v(q) are exactly those nodes that are
necessary and su�cient, by (T2) and (T3) respectively, to �x all the existential
constraints pending on v(q). Notice that nodes r1, . . . , rk satisfying (T1)-(T3)
exist in P. Indeed, A respects De�nition 2, so that there exists a collection
W of nodes w1, . . . , wo >P q satisfying (T3); on the basis of W , compute a
collection W ′ satisfying (T2) inductively, as follows: W0 
 W ; for 1 ≤ j ≤ o:
Wj 
 Wj−1 \ {wj} if all the terms �xed by wj are already �xed by a node in
Wj−1 \ {wj}, otherwise Wj 
 Wj−1; W ′ 
 Wo.

Claim 1. T has height at most n and cardinality at most 2q(n).

Proof. First, we observe that every leaf of T has depth at most n. Indeed, let
q ∈ P be such that no edge leaving v(q) is in ET (that is, v(q) is a leaf of
T), and suppose, for contradiction, that v(q) has depth greater than n in T.
W.l.o.g., let the depth of v(q) be equal to n + 1. Then, there exists in T a
path (v(p) = v(r0), v(r1), . . . , v(rn), v(rn+1) = v(q)) from v(p) to v(q) of length
n + 1. Each edge (ri, ri+1), 0 ≤ i < n, corresponds to the fact that ri+1 �xes
some s ∈ subt(E)(→,ri,h,∃), and, since there are at most |subt(E)| ≤ n distinct
subterms, there must be a subterm s �xed twice, once by ri and next by rj , for
some 0 ≤ i < j ≤ n+1. This, by de�nition, observed that ri <P rj , contradicts
the assumption that ri �xes s. Thus, any leaf of T has depth ≤ n, so T has
height at most n.

Second, we observe that every internal node of T has degree at most n.
Indeed, let q ∈ P and suppose that the edges leaving v(q) in ET are exactly
(v(q), v(r1)), . . . , (v(q), v(rk)). By construction, subt(E)(→,q,h,∃) 6= ∅ and, for
all i = 1, . . . , k, there exists s ∈ subt(E)(→,q,q,∃) such that ri is the only node in
{r1, . . . , rk} that �xes s. But, since there are at most |subt(E)| ≤ n subterms
in subt(E)(→,q,h,∃), there are at most n edges in T leaving v(q) (that is, k ≤ n).
Therefore, the cardinality |T | of T is bounded above by the number of nodes of
a complete n-ary tree of height n (a rooted tree in which all leaves have depth
n and all internal nodes have degree n), that is, |T | ≤ nn+1 ≤ n2n log2 n. Since,
n2n log2 n ≤ 2q(n) for every n ≥ 1, the cardinality of T at most 2q(n).

This settles the claim.

The previous claim addressed the skeleton of B. Now we handle the sum-
mands of B.

Claim 2. For every v(q) ∈ T , there exists Mv(q) ≤ 2b(n) such that, letting

B 

⊕

v(q)∈T

[Mv(q) + 1]MV ,

E fails in B.

11



Proof. Let A′ be the poset sum having T as skeleton and standard MV -chains
[0, 1]MV as summands.

First observe that E fails in A′ with respect to the (root) node v(p) ∈ T ,
corresponding to p ∈ P , and the assignment h′ = (h′1, . . . , h

′
l) ∈ (A′)l such that

h′1(v(q)) = h1(q), . . . , h′l(v(q)) = hl(q), where v(q) is a node in T and q is
the node in P such that v(q) corresponds to q. This observation holds since,
by (T1)-(T3), uh,q = uh′,v(q) for every q ∈ P and every u ∈ subt(E), where
v(q) is any node in T corresponding to the node q in P . Then, we have that
A′,h′ |= ti = > for i = 1, . . . ,m but, since E fails in A with respect to h and p,

th′,v(p) < >v(p) = (t1)h′,v(p) = · · · = (tm)h′,v(p).

Let v(q) be a node of T, q be the node of P such that v(q) corresponds to
q, let subt(E) = {s1, . . . , sr} be the subterms of E (by de�nition t, t1, . . . , tm ∈
subt(E)), and let (C1, . . . ,Cr) ∈ {<,=}r be such that the chain,

(s1)h′,v(q) C1 · · ·Cr−1 (sr)h′,v(q) Cr >v(q), (9)

holds inA′. The idea is the following. On the basis of h′ ∈ (A′)l, we compute an
integer Mv(q) ≤ 2b(n) and an assignment (k1(v(q)), . . . , kl(v(q))) ∈ [Mv(q) + 1]l

that respects (9). Eventually we obtain k = (k1, . . . , kl) ∈ Bl such that E fails
in B with respect to k. We examine two cases.

Case 1: Suppose that all the subterms of E of the form u1 → u2 are
evaluated pointwise in A′ with respect to h′ and v(q). Then, letting a 

(h′1(v(q)), . . . , h

′
l(v(q))) ∈ [0, 1]l, we have

(s1)a C1 · · ·Cr−1 (sr)a Cr >[0,1].

Noting that, by (3) and (4), maxu∈subt(E) |〈u〉| ≤ n, by Lemma 1, there exist
Mv(q) ≤ 2b(n) and b = (b1, . . . , bl) ∈ [Mv(q) + 1]l such that

(s1)b C1 · · ·Cr−1 (sr)b Cr >[Mv(q)+1].

Letting k1(v(q)) 
 b1, . . . , kl(v(q)) 
 bl, we have that

(s1)k,v(q) C1 · · ·Cr−1 (sr)k,v(q) Cr >v(q),

holds in the poset sumB having as its (v(q))th summand theMV -chain [Mv(q)+
1]MV . In particular, uk,v(q) = >v(q) for every u ∈ {t1, . . . , tm}, and tk,v(q) <
>v(q) if v(q) = v(p). This settles the �rst case.

Case 2: Now suppose the contrary, and let W = {w1, . . . , wk} be the sub-
terms of E of the form u1 → u2 not evaluated pointwise in A′ with respect to
h′ and v(q), and suppose that op(w1) ≥ · · · ≥ op(wk). By De�nition 2(ii.vi.ii),
wh′,v(q) = ⊥v(q) for every w ∈ W . For every s ∈ subt(E), let s′ be the term
obtained by substituting sequentially �rst w1 with ⊥ in s, then w2 with ⊥ in
s[w1 ← ⊥], . . . , �nally wk with ⊥ in s[w1 ← ⊥, . . . , wk−1 ← ⊥]. Observe that
sh′,v(q) = (s′)h′,v(q) in A

′, therefore we have that

(s′1)h′,v(q) C1 · · ·Cr−1 (s′r)h′,v(q) Cr >v(q),

holds in A′. Then, letting a 
 (h′1(v(q)), . . . , h
′
l(v(q))) ∈ [0, 1]l, we have

(s′1)a C1 · · ·Cr−1 (s′r)a Cr >[0,1].
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Noting that, by (3) and (4), maxu∈subt(E) |〈u′〉| ≤ n, by Lemma 1 there exist
Mv(q) ≤ 2b(n) and b = (b1, . . . , bl) ∈ [Mv(q) + 1]l such that

(s′1)b C1 · · ·Cr−1 (s′r)b Cr >[Mv(q)+1].

Letting k1(v(q)) 
 b1, . . . , kl(v(q)) 
 bl, we have that

(s′1)k,v(q) C1 · · ·Cr−1 (s′r)k,v(q) Cr >v(q),

holds in the poset sumB having as its (v(q))th summand theMV -chain [Mv(q)+
1]MV . In particular, u′k,v(q) = >v(q) for every u ∈ {t1, . . . , tm}, and t′k,v(q) <

>v(q) if v(q) = v(p). But, for every s ∈ subt(E), s′k,v(q) = sk,v(q) in B. This
settles the second case.

By the previous two cases, we have that for every v(q) ∈ T there exists an
integer Mv(q) ≤ 2b(n) and an assignment (k1(v(q)), . . . , kl(v(q))) ∈ [Mv(q) + 1]l

that respects (9). Thus, since we observed in the beginning that E fails in
A′ with respect to the root v(p) ∈ T and the assignment h′ = (h′1, . . . , h

′
l) ∈

(A′)l, we conclude that E fails in B with respect to the root v(p) ∈ T and the
assignment k = (k1, . . . , kl) ∈ Bl described above.

Since B is 2b(n)-bounded by construction, this settles the claim.

By the previous two claims, B is in fact the required poset sum, and the
lemma is proved.

In the next section, we will prove that, given a quasiequation E of size n, if
E fails in some commutative bounded GBL-algebra, then it is possible to guess
a countermodel B to E determined as in the statement of Lemma 2, using a
polynomial amount of memory space.

3 Quasiequations Complexity

This section is devoted to the presentation of our main complexity result.
The algorithm we present below decides the complement of the problem

GBL-CB-QEQ, written GBL-CB-QEQ, that is, on input a quasiequation E, the
output is 1 if and only if E is not valid. Intuitively, the algorithm guesses a
countermodel to E, such that there is a succeeding guess if and only if E is not
valid. The model of computation we adopt is the following.

De�nition 4. An online (nondeterministic) Turing machine, is a deterministic
Turing machine having a two-way read-only input tape, a two-way read-write
work tape, and a unidirectional read-only guess tape. The content of the guess
tape is selected nondeterministically. The machine accepts the input string x
if there exists a guess string y such that, when the machine starts working with
x on the input tape and y on the guess tape, it eventually enters an accepting
state.

So, in this model of computation, only the the space used on the work tape
is metered. It is known that, with respect to decision problems, online Turing
machines are (time and) space equivalent to standard nondeterministic Turing
machines with a two-way read-only input tape and a two-way read-write work
tape.
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De�nition 5. A decision problem X is in NPSPACE if there exists an online
Turing machine M such that, for any binary input string x:

(i) there exists a binary guess string y such that M accepts working on (x, y)
if and only if x ∈ X;

(ii) for any guess string y, M(x, y) uses an amount of space bounded above by
a polynomial in |x|.

The present section is organized as follows. In Section 3.1, we describe
the algorithm, called GuessCountermodel, and we prove that the algorithm
decides the problem GBL-CB-QEQ (Lemma 3) and works in polynomial space
(Lemma 4). Thus, GBL-CB-QEQ ∈ PSPACE. In Section 3.2 we prove that
GBL-CB-QEQ is hard for PSPACE (Lemma 5). Our main result follows:

Theorem 2. GBL-CB-QEQ is PSPACE-complete.

For background on algorithms and complexity we refer to [CLRS01] and
[Pap94].

3.1 Upper Bound

In this section, we describe a polynomial-space decision algorithm for the prob-
lem GBL-CB-QEQ: on input a quasiequation E of size n, the algorithm outputs
1 if and only if E is not valid, using an amount of memory space polynomial in
n.

Recall that, by Lemma 2, if the quasiequation E = ({t1, . . . , tm}, {t}) of
size n over variables {y1, . . . , yl} is not valid, there exists a �nite 2b(n)-bounded
poset sum B having as skeleton a (rooted) tree T = (T,ET ), of height at most
n and cardinality at most 2q(n), such that E fails in B with respect to some
k = (k1, . . . , kl) ∈ Bl and the root r of T . In the nondeterministic framework
of De�nition 4, it is possible to guess B and k, and check that E fails in B
with respect to k and r. But, since we aim to a polynomial space algorithm, in
light of De�nition 5(ii) it is not possible to store in memory the whole of the
structure B or the whole of the assignment k, because these objects have size
exponential in n. Nevertheless, we will show that it is possible to guess B and
k iteratively, using an amount of memory space polynomial in n. The idea is
the following (some details, here omitted in the interest of readability, will be
made explicit by the pseudocode).

Initialization (Step b = 1): The algorithm creates a node x, and then
guesses the following information: �rst, a positive integer Mx ≤ 2b(n) (intu-
itively, the cardinality of the MV -chain corresponding to x); second, a tuple
x = (x1, . . . , xl) ∈ [Mx +1]l (intuitively, the assignment y1 7→ x1, . . . , yl 7→ xl of
variables in var(E) over the MV -chain corresponding to x); third, a pair Sx =
(Sx,∀, Sx,∃) where Sx,∀, Sx,∃ ⊆ subt(E) (intuitively, Sx,∀ is subt(E)(→,h,p,∀) ∪
subt(E)(h,p,>) and Sx,∃ is subt(E)(→,h,p,∃), so that Sx contains universal and
existential constraints on node x with respect to x). At this stage, the algo-
rithm checks if the assignment x is sound, that is, if x extends to a valuation
of the subterms in subt(E) such that tx < >[Mu+1] = 1 = (t1)x = · · · = (tm)x
holds. If x is not sound, the algorithm outputs 0. Otherwise, the algorithm
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stores Sx in memory, so that the allocation amounts to the list (Sx). Intu-
itively, the algorithm memorizes that every node reachable from x must satisfy
all the universal constraints on x, and possibly may satisfy some existential con-
straint on x. The node x is distinguished as the only node with no parent, so
we call it root. At step b + 1, (x) will be referenced as the current path, x as
the current node, and Sx as the pendings on x.

Iteration (Step 2 ≤ b ≤ 2q(n)+1−1): If b = 2q(n)+1−1, the algorithm outputs
0. Otherwise, let (x, . . . , w, v) be the current path, v be the current node, with
parent w (the case where v is the root is treated as an exception), and let Sv

be the pendings on v. There are two cases. Case 1: Sv,∃ 6= ∅. In this case, the
algorithm creates a new node u, having v as parent, and guesses the following
information (as above): Mu ≤ 2b(n), u ∈ [Mu + 1]l, and Su = (Su,∀, Su,∃).
At step b + 1, (u, . . . , w, v, u), u, and Su respectively, will be referenced as
the current path, node and pendings. At this stage, the algorithm checks if
the assignment u is sound, that is, if u satis�es all the inherited universal
constraints and, in addition, at least one inherited existential constraint. If
u is not sound, the algorithm outputs 0. At the implementation level, the
soundness of u reduces to satis�ability of a certain �nite set of linear equality
and inequality constraints, as speci�ed in detail in the pesudocode. For instance,
if (t1)u = · · · = (tm)u = >[Mu+1] = 1 does not hold, the algorithm outputs
0. If u is sound, the algorithm updates Sx, . . . , Sw by removing every term
s = s1 → s2 ∈ Sv corresponding to an existential constraint that is satis�ed by
u under u (that is, such that (s2)u < (s1)u holds); then the algorithm stores Su,
so that the allocation amounts to (Sx, . . . , Sw, Sv, Su), and eventually executes
the (b + 1)th step. Case 2: Sv,∃ = ∅. If v is the root, the algorithm outputs
1. Otherwise, the algorithm backtracks to w (at step b + 1, (x, . . . , w), w, Sw

respectively will be referenced as the current path, node and pendings) and
executes the (b+ 1)th step.

The intuition underlying the process is the following. If E is not valid, we
know that E fails in a poset sum B speci�ed as in Lemma 2. Let k be the
assignment such that E fails in B under k. The described algorithm is intended
to simulate a preorder traversal of T, starting the visit from the root r (and
storing only the path from the last visited node to r). For every visited node v,
the algorithm is intended to guess the assignment k � v 
 (k1(v), . . . , kl(v)) ∈
[2b(n) + 1]l. Clearly, the assignment k � r satis�es the constraint tk�r < 1 =
(t1)k�r = · · · = (tm)k�r with respect to the root node r, and the assignment
k � v satis�es the constraint 1 = (t1)k�v = · · · = (tm)k�v with respect to every
node v 6=T r. Moreover, for every node v ∈ T , the assignment k � v satis�es
the universal constraints inherited by v and also, if v generates an existential
constraint for a term s1 → s2, then there is a node w ∈ T covering v (recall
(T2) above) such that k � w satis�es (s1)k�w > (s2)k�r. The traversal of T
terminates in at most 2q(n)+1 − 1 steps (in fact, such a number of steps su�ces
to traverse a complete n-ary tree of height n), the last visited node is the root r
of T, and condition Sr,∃ = ∅ holds. Thus, the algorithm outputs 1. Conversely,
if the algorithm outputs 1, then there is a successfull sequence of guesses that,
modulo details to be speci�ed, corresponds to a poset sum B and an assignment
k as above such that E fails in B with respect to k and the root r of T.
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The pseudocode listed below, modularized into a main procedure, Guess-
Countermodel, and two subprocedures,GuessAssignment andGuessNode,
speci�es the described algorithm in detail.

GuessCountermodel(〈({t1, . . . , tm}, {t})〉)
1 S ← (s1, . . . , sn) B si ∈ subt({t1, . . . , tm, t}) ∪ {>} for i = 1, . . . , n,
2 B ← ((V1 ← ∅, V1,∃ ← ∅, V1,∀ ← ∅), . . . , (Vn ← ∅, Vn,∃ ← ∅, Vn,∀ ← ∅))
3 for i← 1 to n
4 if (si ∈ {t1, . . . , tm})
5 V1 ← V1 ∪ {xi = 1}
6 else if (si = t)
7 V1 ← V1 ∪ {xi < 1}
8 endif
9 endfor
10 b← 0 B traversal step counter
11 j ← 1, d← 1 B visiting node at distance j − 1 from the root, backtracking if d = 0
12 repeat
13 b← b + 1
14 if (d = 0 and Vj,∃ = ∅)
15 j ← j − 1, d← 0
16 else if (d = 0 and Vj,∃ 6= ∅)
17 j ← j + 1, d← 1
18 if (j > n)
19 output 0
20 else
21 output GuessNode(j, B)
22 endif
23 else if (d = 1)
24 if not(GuessAssignment(j, B))
25 output 0
26 else if(Vj,∃ = ∅)
27 j ← j − 1, d← 0
28 else if(Vj,∃ 6= ∅)
29 j ← j + 1, d← 1
30 if (j > n)
31 output 0
32 else
33 output GuessNode(j, B)
34 endif
35 endif
36 endif
37 until (j = 0 or b = 2q(n)+1 − 1)
38 if(j = 0) B traversal terminated
39 output 1
40 else B step counter out of bound
41 output 0
42 endif

GuessAssignment(j, B)

1 guess Mj ≤ 2b(n), (g1, . . . , gn) ∈ [Mj + 1]n

2 for i← 1 to n
3 if(si = ⊥)
4 Vj ← Vj ∪ {xi = 0}
5 else if(si = >)
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6 Vj ← Vj ∪ {xi = 1}
7 else if(si = si1 ∧ si2)
8 if(gi1 ≤ gi2)
9 Vj ← Vj ∪ {xi = xi1}
10 else if(gi2 ≤ gi1)
11 Vj ← Vj ∪ {xi = xi2}
12 endif
13 else if(si = si1 ∨ si2)
14 if(gi1 ≤ gi2)
15 Vj ← Vj ∪ {xi = xi2}
16 else if(gi2 ≤ gi1)
17 Vj ← Vj ∪ {xi = xi1}
18 endif
19 else if(si = si1 � si2)
20 if(gi1 + gi2 ≤ 1)
21 Vj ← Vj ∪ {xi = 0}
22 else if(gi1 = gi2 = 1)
23 Vj ← Vj ∪ {xi = 1}
24 else if(1 < gi1 + gi2)
25 Vj ← Vj ∪ {xi = xi1 + xi2 − 1}
26 endif
27 else if(si = si1 → si2)
28 if(gi = 0)
29 if(gi1 = 1 and gi2 = 0)
30 guess r ∈ {0, 1}
31 if(r = 0)
32 Vj ← Vj ∪ {xi2 = 0, xi1 = 1}
33 Vj,∀ ← Vj,∀ ∪ {xi1 ≤ xi2}
34 else
35 Vj,∃ ← Vj,∃ ∪ {xi2 < xi1}
36 endif
37 else
38 Vj,∃ ← Vj,∃ ∪ {xi2 < xi1}
39 endif
40 else if(0 < gi)
41 Vj,∀ ← Vj,∀ ∪ {xi1 ≤ xi2}
42 if(gi1 ≤ gi2)
43 Vj ← Vj ∪ {xi1 ≤ xi2}
44 else if(0 = gi2 < gi1 < 1)
45 Vj ← Vj ∪ {xi = 1− xi1}
46 else if(0 < gi2 < gi1 = 1)
47 Vj ← Vj ∪ {xi = xi2}
48 else if(0 < gi2 < gi1 < 1)
49 Vj ← Vj ∪ {xi = xi2 + 1− xi1}
50 endif
51 endif
52 endif
53 if(0 < gi)
54 Vj ← Vj ∪ {0 < xi}
55 Vj,∀ ← Vj,∀ ∪ {xi = 1}
56 endif
57 endfor
58 if(x1 7→ g1, . . . , xn 7→ gn satis�es Vj)
59 output true
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60 else
61 output false
62 endif

GuessNode(j, B)
1 guess F ⊆ Vj−1,∃, F 6= ∅
2 forall (i1, i2) ∈ {1, . . . , n}2
3 if(xi2 < xi1 ∈ F )
4 Vj ← Vj ∪ {0 < xi1 , xi2 < xi1 , xi2 < 1}
5 for k ← 1 to j − 1
6 Vk,∃ ← Vk,∃ \ F
7 endfor
8 endif
9 if(xi1 ≤ xi2 ∈ Vj−1,∀)
10 Vj ← Vj ∪ {xi1 ≤ xi2}
11 Vj,∀ ← Vj,∀ ∪ {xi1 ≤ xi2}
12 endif
13 if(xi1 = 1 ∈ Vj−1,∀)
14 Vj ← Vj ∪ {xi1 = 1}
15 Vj,∀ ← Vj,∀ ∪ {xi1 = 1}
16 endif
17 endforall

On Line 1 of GuessCountermodel, the input E = ({t1, . . . , tm}, {t}),
such that |〈E〉| = n and var(E) = {y1, . . . , yl}, is parsed into a tuple S of the
form (s1, . . . , sn), containing all the subterms of E. W.l.o.g. we assume that:
s1 = y1, . . . , sl = yl; op(sl+1) ≤ op(sl+2) ≤ · · · ≤ op(s|subt(E)|), breaking
ties lexicographically; s|subt(E)|+1 = · · · = sn = >. Recall that t1, . . . , tm, t ∈
subt(E), thus t1, . . . , tm, t are items of S.

The procedure GuessCountermodel maintains in memory a bounded
LIFO stack B of n items to store the nodes in the current path (Line 2, Lines 18-
19 and Lines 30-31). The jth item of B, j ≤ n, is a triple (Vj , Vj,∀, Vj,∃) of sets
of linear equality and inequality constraints over the variables x1, . . . , xn, rep-
resenting the node v at distance j − 1 from the root along the path currently
in memory, in the following sense. The set Vj represents the constraints that
an assignment g = (g1, . . . , gn) ∈ [Mj + 1]n (Mj ≤ 2b(n)) of variables x1, . . . , xn

onto [Mj + 1], corresponding to the node v, must satisfy, in order to verify the
following conditions:

(i) The assignment g is consistent with De�nition 2, that is, the assign-
ment y1 7→ g1, . . . , yl 7→ gl of var(E) over [Mj + 1] extends to a val-
uation of the subterms sl+1, . . . , s|subt(E)| ∈ subt(E) \ {y1, . . . , yl} such
that (sl+1)(g1,...,gl) = gl+1, . . . , (s|(E)|)(g1,...,gl) = g|subt(E)|. This con-
dition is checked by GuessAssignment, as follows: on Lines 2-57, for
every subterm s in S, Vj is enriched with constraints ensuring that x1 7→
g1, . . . , xn 7→ gn is a solution to Vj if and only if g is consistent with De�-
nition 2; �nally, on Line 58, the consistency of g is tested, outputting true
if and only if the outcome is positive. In addition, GuessAssignment
memorizes in Vj,∀ the universal constraints pending on v with respect to
(g1, . . . , gl) (Lines 33 and 41 and Line 55 respectively), and in Vj,∃ the
existential constraints pending on v with respect to (g1, . . . , gl) (Lines 35
and 38).
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(ii) If v is the root node of T (that is, j = 1), then the assignment g is such
that t(g1,...,gl) < 1 = (t1)(g1,...,gl) = · · · = (tm)(g1,...,gl) holds in v. This
condition is preliminary imposed over V1 by Lines 3-9 of GuessCoun-
termodel.

(iii) If v is an internal node of T (that is, j > 1), then all the inherited universal
constraints hold in v with respect to (g1, . . . , gl), and (g1, . . . , gl) satis�es a
nonempty set F of inherited existential constraint. The former condition is
imposed over Vj by Lines 10 and 14 of GuessNode(j, B). Note also that
Lines 11 and 15 memorize universal constraints on v. The latter condition
is imposed over Vj by Lines 1 and 3-4 of GuessNode(j, B). Note also
that Line 6 subtracts F from the sets of pending existential constraints
on nodes at distance ≤ j − 1 along the path currently in memory.

Overall, the procedure works as follows. At step b = 1 (Line 13), the al-
gorithm creates a node r from which to start the path, and guesses an as-
signment (g1, . . . , gl) ∈ [M1 + 1]l (M1 ≤ 2b(n)) to the variables in var(E) such
that (t)(g1,...,gl) < 1 = (t1)(g1,...,gl) = · · · = (tm)(g1,...,gl). In addition, the
algorithm memorizes the (universal and existential) constraints pending on r
with respect to (g1, . . . , gl). Now, let v be the current node at step b ≥ 1
(Line 13). There are two cases. Either v has pending existential requirements
(GuessCountermodel, Line 16, 28), or not (GuessCountermodel, Line 14,
26). Case 1: GuessNode creates a node u, successor of v, and guesses an assign-
ment corresponding to u such that u satis�es at least one existential constraint
pending on v. Every existential constraint satis�ed by u is removed from the
existential constraints pending on the ancestors of u (GuessNode, Line 1 and
Lines 3-7). In addition, u inherits all the universal constraints propagated by
its ancestors (Lines 9-12 and 13-16). The procedure iterates over u. Case 2:
The visit backtracks to the ancestor w of v. If w = r the algorithm terminates,
otherwise the procedure iterates over w. After at most 2q(n)+1 − 1 iterations of
the main loop, the procedure terminates (Line 37).

Notice that our decision algorithm can be easily translated into a search
algorithm, outputting a countermodel to E if E is not valid, without a�ecting
its space complexity. Indeed, in general a countermodel has size exponential in
n, but the memory storage for outputting is not metered.

In the next two sections, inspecting the pseudocode, we study the correctness
and complexity of our algorithm.

3.1.1 Correctness Lemma

In this section, we prove that our algorithm is correct, that is, the algorithm
terminates with output 1 if and only if the input quasiequation is not valid.

Lemma 3. GuessCountermodel(〈E〉) = 1 if and only if E is not valid.

Proof. The algorithm terminates, since the main procedure terminates after at
most 2q(n)+1 − 1 iterations (GuessCountermodel, Line 37) and each of the
two subprocedures terminates. Let n = |〈E〉|.

(⇐) Suppose that E is not valid. We prove that there exists a sequence
of guesses leading GuessCountermodel to output 1. Let B be a �nite
2b(n)-bounded poset, determined as in Lemma 2, where E fails, and let k =
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(k1, . . . , kl) ∈ Bl such that E fails inB with respect to k and r. By direct inspec-
tion of the pseudocode, it is immediate to realize that if the sequence of nodes
guessed by the algorithm one-to-one corresponds to the sequence of nodes visited
during a preorder traversal of T, and the assignment g = (g1, . . . , gn) guessed
over any node v, corresponding to the node u ∈ T , satis�es: g1 = (y1)k,u, . . . ,
gl = (yl)k,u, gl+1 = (sl+1)k,u, . . . , g|subt(E)| = (s|subt(E)|)k,u, g|subt(E)|+1 = 1,
. . . , gn = 1, then after at most 2q(n)+1 − 1 steps the main loop terminates with
j = 0 and the algorithm outputs 1 (GuessCountermodel, Line 39). Indeed,
2q(n)+1 − 1 steps su�ce to complete the preorder traversal of T, which is a tree
of cardinality at most 2q(n), and a preorder traversal of a rooted tree starts and
terminates on the root of the tree.

(⇒) Suppose that GuessCountermodel outputs 1 on input E. By di-
rect inspection of the pseudocode, it is immediate to realize that an execution
GuessCountermodel outputting 1 is equivalent to preorder traverse a �nite
tree T = (T,ET ) rooted at r, and to compute a tuple k = (k1, . . . , kl) of func-
tions (ki(u) ∈ [Mu +1] for every u ∈ T , where i = 1, . . . , l andMu ≤ 2b(n)) such
that, letting B be the 2b(n)-bounded poset sum with skeleton T, E fails in B
with respect to r and k. Then, E is not valid.

3.1.2 Space Bound

In this section, we prove that our algorithm allocates an amount of memory
bounded above by a polynomial of the size, n, of the input. To this aim, we
exploited Lemma 2 to reduce the search space to 2b(n)-bounded poset sums,
having as skeletons rooted trees of height at most n and cardinality at most
2q(n).

Lemma 4. GBL-CB-QEQ ∈ NPSPACE.

Proof. For any possible sequence of guesses, inspecting the pseudocode, we ob-
serve that memory space is allocated to store the following data structures: the
list S of the n subterms of the input terms t1, . . . , tm, t (GuessCountermodel,
Line 1); the list B, containing n triples (Vj , Vj,∀, Vj,∃), where Vj is a set of at
most 2n3 + 6n2 + 2n linear constraints over n variables, and Vj,∀, Vj,∃ are
sets of at most n2 linear constraints over n variables (GuessCountermodel,
Line 2); the step counter b, ranging over nonnegative integers ≤ 2q(n)+1 − 1
(GuessCountermodel, Line 10, 37); a constant number of counters/variables,
ranging over nonnegative integers ≤ n; the integer Mj ≤ 2b(n) and the tuple
(g1, . . . , gn) ∈ [Mj + 1] (GuessAssignment, Line 1); the random bit r (on
Line 30 of GuessAssignment); the set F , containing at most n2 linear con-
straints over n variables (GuessNode, Line 1). For any reasonably compact
encoding of the objects involved (integers, pairs, tuples, sets, etc.), each of
these data structures requires an amount of space polynomial in n to be stored,
therefore, an amount of space polynomial in n su�ces to store simultaneously
a constant number of the structures described. Moreover, all the subprocedures
invoked (for analyzing a term into subterms, checking if a term is member of a
�nite set of terms or is equal to another term, adding elements to sets, remov-
ing elements from �nite sets, checking if a linear constraint is satis�ed under a
variables assignment) receive in input the structures described above and work
in time polynomial in the input size, hence they can be executed in space poly-

20



nomial in n. Overall, an amount of space polynomial in n su�ces to execute
the algorithm.

Thus, the nondeterministic algorithmGuessCountermodel works in poly-
nomial space independent of the guesses made, satisfying clause (ii) of De�ni-
tion 5. Since, by Lemma 3, GuessCountermodel satis�es also clause (i) of
De�nition 5, we conclude that GBL-CB-QEQ ∈ NPSPACE.

Corollary 1. GBL-CB-QEQ ∈ PSPACE.

Proof. By Lemma 4, GBL-CB-QEQ is in coNPSPACE. But coNPSPACE =
NPSPACE and NPSPACE = PSPACE [Pap94].

3.2 Lower Bound

We conclude by showing that GBL-CB-QEQ is hard for PSPACE. This hardness
result provides evidence that, in the general case, if a quasiequation E is not in
GBL-CB-QEQ, any object witnessing failure must have size at least exponential
in the size of n.

Lemma 5. GBL-CB-QEQ is PSPACE-hard.

Proof. The problem INT-TAUT, of deciding if a propositional formula φ over
L1 \ {�} and {y1, . . . , yl} is intuitionistically provable (say, in the intuitionistic
natural deduction calculus), is PSPACE-complete [Sta79]. Hence, to prove
the lemma, we describe a polynomial-time reduction that receives in input an
instance 〈φ〉 of INT-TAUT and returns in output an instance 〈E〉 of GBL-CB-QEQ
such that 〈φ〉 ∈ INT-TAUT if and only if 〈E〉 ∈ GBL-CB-QEQ.

Every propositional formula φ over L1 \ {�} containing variables among
y1, . . . , yl corresponds to a term t over L1 \ {�} containing variables among
y1, . . . , yl, under the obvious mapping. For any algebra A over L1, having
domain A, we write tA for the l-variate operation over A corresponding to the
term t. Let Hl be the free l-generated Heyting algebra. Hl is isomorphic to
the Lindenbaum-Tarski algebra of intuitionistic propositional formulas over l
variables [Ras74]: thus, if t corresponds to φ, 〈φ〉 ∈ INT-TAUT if and only if
tHl = >Hl holds in Hl. Now, let φ(y1, . . . , yl) be any propositional formula over
L1 \ {�}, and let t be its corresponding algebraic term. Writing for short x2

instead of x� x, and x1 ↔ x2 instead of (x1 → x2) ∧ (x2 → x1), we put:

E 
 ({(y1 ↔ (y1)2) ∧ · · · ∧ (yl ↔ (yl)2)}, {t}),

and we claim that 〈φ〉 ∈ INT-TAUT if and only if 〈E〉 ∈ GBL-CB-QEQ. Clearly,
E is polynomial-time computable in the size of the input φ.

Suppose that 〈φ〉 ∈ INT-TAUT. Hence, tHl = >Hl holds in Hl, so that
tA = >A holds in every Heyting algebra A, by universal algebra [MMT81].
Now, we exploit the following key fact [JM06]: if B is a commutative and
bounded GBL-algebra, then the subalgebra A of B, formed by the idempotents
of B, is a Heyting algebra. Therefore, tA = >A holds in A. Therefore, since
the identity

((y1 ↔ (y1)2) ∧ · · · ∧ (yl ↔ (yl)2))B = >B (10)

holds in B if and only if all the variables in t are assigned over idempotent
elements of B, we have that, assuming (10), the identity tB = tA holds. Thus,
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since >A = >B, tB = >B holds in B. Thus, the quasiequation E is valid, 〈E〉 ∈
GBL-CB-QEQ. Conversely, suppose that 〈φ〉 /∈ INT-TAUT. Hence, tHl < >Hl

holds in Hl, that is, there exists an assignment a of the variables in Hl such
that tHl < >Hl under a. Now, by de�nition, Hl is a commutative bounded
GBL-algebra B satisfying the identity x1 � x2 = x1 ∧ x2. Thus, on the one
hand, the identity

((y1 ↔ (y1)2) ∧ · · · ∧ (yl ↔ (yl)2))B = >B

holds in B under any assignment, in particular under a. But, on the other
hand, tB < >B under a, so we conclude that the quasiequation E fails in B and
〈E〉 /∈ GBL-CB-QEQ.

4 Conclusion

A problem raised by this research is to give a lower bound on the complexity
of the equational theory of commutative bounded GBL-algebras, that is, the
problem of deciding quasiequations of the form (∅, {t}). In logical terms, this is
the problem of deciding validity in the logic GBLewf . We state the full result
as a conjecture.

Conjecture 1. The equational theory of commutative bounded GBL-algebras
is PSPACE-hard, hence PSPACE-complete.

Below, we consider a special subvariety of GBL-algebras for which we are
able to prove PSPACE-completeness for both equations and quasiequations.
This subvariety is that of k-potent commutative bounded GBL-algebras, that
is commutative bounded GBL-algebras satisfying xk+1 = xk, corresponding to
the logic GBLewf plus the k-contraction axiom (A14):

φ� · · · � φ︸ ︷︷ ︸
k times

→ φ� · · · � φ︸ ︷︷ ︸
k+1 times

.

Theorem 3. Both the quasiequational theory and the equational theory of k-
potent commutative bounded GBL-algebras are PSPACE-complete. Thus both
validity and consequence in GBLewf plus (A14) are PSPACE-complete.

Proof. For PSPACE containment, we use the fact that every k-potent GBL-
algebra is the poset sum of a family of MV -chains with cardinality ≤ k + 1
[JM07]. The algorithm is exactly the algorithm for deciding quasiequations in
commutative bounded GBL-algebras (in particular, the Mj guessed on Line 1
of GuessAssignment is bounded above by the constant k). For PSPACE
hardness, simply note that the idempotents of a k-potent commutative bounded
GBL-algebra are precisely the elements of the form xk. Thus let t[x ← xk]
denote the term obtained replacing each variable x by xk in the term t. Since
the idempotents of a GBLewf -algebra constitute a Heyting algebra, we have
that t = > holds in all Heyting algebras if and only if t[x ← xk] = > holds
in all k-potent commutative bounded GBL-algebras. This yields a reduction
from provability in intuitionistic logic IL to the validity of equations in k-potent
commutative bounded GBL-algebras, and the claim follows.
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We conclude this section presenting partial complexity results on the sub-
varieties of commutative and integral GBL-algebras, and commutative GBL-
algebras, corresponding respectively to the logic GBLew (that is, GBLewf mi-
nus axiom (A13)), and to the logic GBLe (that is, GBLewf minus axioms (A4),
(A13) and plus the rule: A,B `e a ∧ B). As regards to these subvarieties we
can prove PSPACE-completeness of the quasiequational theory, but again the
reduction technique does not generalize to the equational case.

Theorem 4. The following statements hold.

(i) The quasiequational theory of commutative and integral GBL-algebras is
PSPACE-complete. Thus consequence in GBLew is PSPACE-complete.

(ii) The quasiequational theory of commutative GBL-algebras is PSPACE-
complete. Thus consequence in GBLe is PSPACE-complete.

Proof. (i) For the upper bound part, �rst observe that from any commutative
integral GBL-algebra A we can obtain a commutative, integral and bounded
GBL-algebra B such that A is a subalgebra of B: just add a new element
⊥ and extend the operations letting, for every x, y ∈ A: x � ⊥ 
 ⊥; x ∧
⊥ 
 ⊥; x ∨ ⊥ 
 x; ⊥ → x 
 >; y → ⊥ 
 ⊥. It follows that for every
quasiequation E = ({t1, . . . , tm}, {t}) in the language of commutative GBL-
algebras we have that E is valid in all commutative integral GBL-algebras if
and only if E is valid in all commutative bounded GBL-algebras, thus proving
that the quasiequational theory of commutative integral GBL-algebras is in
PSPACE.

For the lower bound part, we reduce the quasiequational theory of com-
mutative bounded GBL-algebras to the quasiequational theory of commuta-
tive integral GBL-algebras. Let E = (T, {t}) be a quasiequation in the lan-
guage of commutative bounded GBL-algebras, where T = {t1, . . . , tm}. Let
x be a variable not occurring in var(E), and let t[⊥ ← x] denote the result
of substituting ⊥ by x in t, for every term t. For every set U of terms, let
U [⊥ ← x] 
 {u[⊥ ← x] : u ∈ U}. Let

S 
 {x→ s : s ∈ subt(E)[⊥ ← x]} ∪ {x→ x2},

where we note that if for some assignment a : var(E)∪{x} → A in a commutative
integral GBL-algebra A we have that sA(a) = > for every s ∈ S, then a(x) is an
idempotent element of A such that a(x) ≤ sA(a) holds for all s ∈ subt(E)[⊥ ←
x]. We claim that the quasiequation E is valid in all commutative bounded
GBL-algebras if and only if the quasiequation E′ de�ned as follows:

E′ 
 (T [⊥ ← x] ∪ S, {t}[⊥ ← x])

is valid in all commutative integral GBL-algebras. For the right to left direction,
just replace x by ⊥ in T [⊥ ← x]∪S and in {t}[⊥ ← x]. Let S[x← ⊥] denote the
result of replacing x by ⊥ in S. Then we get that the quasiequation (T ∪S[x←
⊥], {t}) is valid in all commutative bounded GBL-algebras. But S[x ← ⊥]
entirely consists of valid equations, therefore the quasi equation (T, {t}) is also
valid. For the other direction, suppose that E′ is not valid in some commutative
integral GBL-algebra A. Then there is an assignment a : var(E) ∪ {x} → A
such that uA(a) = > for all u ∈ T [⊥ ← x] ∪ S and tA(a) < >. Now it is easy
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to check that a(x) is an idempotent of A and the set of all elements greater
than or equal to a(x) is a subalgebra B of A which contains all elements of
the form sA(a) for s ∈ subt(E). Since a(x) is the bottom of B, we can safely
interpret ⊥ over a(x), thus getting an assignment into a commutative bounded
GBL-algebra which invalidates E.

(ii) We already mentioned that every commutative GBL-algebra decom-
poses as a direct product of a commutative and integral GBL-algebra and a
lattice ordered Abelian group [GT05]. It follows that a quasiequation holds
in all commutative GBL-algebras if and only if it holds in all commutative
and integral GBL-algebras and in all lattice ordered Abelian groups. Since the
quasiequational theory of lattice ordered Abelian groups is in coNP (coNP-
complete in fact, [Wei86]), it is in PSPACE. On the other hand, the quasiequa-
tional theory of commutative integral GBL-algebras is in PSPACE, therefore
we have shown PSPACE containment. As regards to PSPACE hardness, we
reduce the quasiequational theory of commutative integral GBL-algebras to the
quasiequational theory of commutative GBL-algebras. The reduction is based
on the following statement [MT].

Fact 1. Let A be a commutative GBL-algebra, with operations ·,∨,∧,→ and
neutral element e. Let A− 
 {a ∈ A : a ≤ e}. De�ne for x, y ∈ A− and for
◦ ∈ {·,∨,∧}, x ◦− y 
 x ◦ y. Moreover de�ne x →− y 
 (x → y) ∧ e.
Then A− = (A−, ·−,∨−,∧−,→−, e) is an integral GBL-algebra. Moreover A
is integral if and only if A− = A.

Now de�ne for every term t of commutative GBL-algebras, a term t− by
induction as follows: if t is a variable or a constant, then t− 
 t∧e; − commutes
with �,∨ and ∧; (s → u)− 
 (s− → u−) ∧ e. As usual, let tA and tA

−

denote the interpretation of t in A and in A− respectively, and let for every
quasiequation E = ({t1, . . . , tm} , t), EA and EA−

denote ({tA1 , . . . , tAm}, {tA})
and ({tA−

1 , . . . , tA
−

m }, {tA−}) respectively. Also, let E− denote the quasiequation
({t−1 , . . . , t−m}, {t−}).

Claim 3. Let t be a term with var(t) = k. The following statements hold.

(i) For all a1, . . . , ak ∈ A, (t−)A(a1, . . . , ak) ∈ A−.

(ii) For all a1, . . . , ak ∈ A−, (t−)A(a1, . . . , ak) = tA
−
(a1, . . . , ak).

(iii) A quasiequation E is valid in A− if and only if E− is valid in A.

Proof. (i) and (ii) are shown by a straightforward induction on the term t, and
(iii) follows from (ii).

Claim 4. A quasiequation E holds in all commutative integral GBL-algebras if
and only if E− holds in all commutative GBL-algebras.

Proof. If E fails in some commutative integral GBL-algebra A, then by part
(iii) of Claim 3, E− fails in A− = A, and therefore it fails in some commuta-
tive GBL-algebra. Conversely, if E− fails in some commutative GBL-algebra
A, then by part (iii) of Claim 3, E fails in A−, therefore it fails in some com-
mutative integral GBL-algebra.
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We conclude the proof of the theorem. Claim 4 shows that the set of
quasiequations valid in all commutative integral GBL-algebras is reducible in
polynomial time to the set of quasiequations which are valid in all commutative
GBL-algebras, therefore this last set is PSPACE-hard. We have already shown
that it is in PSPACE, therefore it is PSPACE-complete.
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