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Introduction

A groupoid is a set A with a binary operation · : A×A→ A

If A is finite, say = {a1, . . . ,an}, then a groupoid can be defined by its
operation table

· a1 a2 · · · an
a1
a2
...
an

← fill out with (some of) a1, . . . ,an any way you like
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Introduction
What do we know about 2-element groupoids?
How many are there? 16 Up to isomorphism? 10

· 0 1
0
1

C 0 1
0 0 0
1 0 0

· 0 1
0 0 0
1 0 1

← 0 1
0 0 0
1 1 0

π1 0 1
0 0 0
1 1 1

→ 0 1
0 0 1
1 0 0

xy = zw
assoc.
comm.
idem.

implic.
reduct
of BA

xy = x
(Lz sg)

implic.
reduct
of BA

π2 0 1
0 0 1
1 0 1

+ 0 1
0 0 1
1 1 0

| 0 1
0 1 0
1 0 0

π̄2 0 1
0 1 0
1 1 0

π̄1 0 1
0 1 1
1 0 0

xy = y
(Rz sg)

assoc.
x + x = 0
x +0 = x

BA
axioms

xy = yy
x2x2 = x

xy = xx
x2x2 = x

Give axioms for the varieties they generate
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Introduction

In fact, quite a bit is known about 2-element algebras

Post lattice (from Schölzel 2010)
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Introduction

A partial groupoid is a set A with a partial binary operation · : A×A A

If A = {a1, . . . ,an}, then a partial groupoid can be defined by a partially
filled out operation table

· a1 a2 · · · an
a1
a2
...
an

Convention: every (total) algebra is a partial algebra
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What do we know about 2-element partial groupoids?
How many are there? 81−16 = 65 Up to isomorphism? 45−10 = 35
·1 0 1
0 0 0
1 0

·2 0 1
0 0 0
1 1

·3 0 1
0 0 0
1 0

·4 0 1
0 0 0
1 1

·5 0 1
0 0 0
1

·6 0 1
0 0 1
1 0

·7 0 1
0 0 1
1 1

·8 0 1
0 0 1
1 0

·9 0 1
0 0 1
1 1

·10 0 1
0 0 1
1

·11 0 1
0 0
1 0 0

·12 0 1
0 0
1 0

·13 0 1
0 0
1 1 0

·14 0 1
0 0
1 1

·15 0 1
0 0
1 0

·16 0 1
0 0
1 1

·17 0 1
0 0
1

·18 0 1
0 1 0
1 0

·19 0 1
0 1 0
1 1

·20 0 1
0 1 0
1 0

·21 0 1
0 1 0
1

·22 0 1
0 1 1
1 0

·23 0 1
0 1 1
1 1

·24 0 1
0 1 1
1 0

·25 0 1
0 1 1
1

·26 0 1
0 1
1 0

·27 0 1
0 1
1 1

·28 0 1
0 1
1 0

·29 0 1
0 1
1

·30 0 1
0 0
1 0

·31 0 1
0 0
1 1

·32 0 1
0 0
1

·33 0 1
0 1
1 0

·34 0 1
0 1
1

·35 0 1
0
1
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Remove all partial projection groupoids
Leaves 21 non-relational partial groupoids
·1 0 1
0 0 0
1 0

·3 0 1
0 0 0
1 0

·7 0 1
0 0 1
1 1

·8 0 1
0 0 1
1 0

·11 0 1
0 0
1 0 0

·13 0 1
0 0
1 1 0

·15 0 1
0 0
1 0

·18 0 1
0 1 0
1 0

·19 0 1
0 1 0
1 1

·20 0 1
0 1 0
1 0

·21 0 1
0 1 0
1

·22 0 1
0 1 1
1 0

·23 0 1
0 1 1
1 1

·24 0 1
0 1 1
1 0

·25 0 1
0 1 1
1

·26 0 1
0 1
1 0

·27 0 1
0 1
1 1

·28 0 1
0 1
1 0

·29 0 1
0 1
1

·30 0 1
0 0
1 0

·31 0 1
0 0
1 1
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Remove partial groupoids that are isom. to opposite
Leaves 16 non-dually-isomorphic partial groupoids
·1 0 1
0 0 0
1 0

·3 0 1
0 0 0
1 0

·7 0 1
0 0 1
1 1

·8 0 1
0 0 1
1 0

·15 0 1
0 0
1 0

·18 0 1
0 1 0
1 0

·19 0 1
0 1 0
1 1

·20 0 1
0 1 0
1 0

·21 0 1
0 1 0
1

·23 0 1
0 1 1
1 1

·25 0 1
0 1 1
1

·27 0 1
0 1
1 1

·28 0 1
0 1
1 0

·29 0 1
0 1
1

·30 0 1
0 0
1 0

·31 0 1
0 0
1 1
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Axioms for the ISP classes they generate?

Which of these generate a finitely axiomatizable ISP class?
Natural duality theory applies to partial algebras (Davey [2006])
Which of these partial groupoids are dualizable?
For this talk: want the operation to have an identity element 0
Two total groupoids: 2-element semilattice and 2-element group
∨ 0 1
0 0 1
1 1 1

+2 0 1
0 0 1
1 1 0

How many partial groupoids with an identity element are there?

P1 =

+ 0 1
0 0 1
1 1

Is ISP(P1) finitely axiomatizable? Dualizable?
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Subalgebras, products, homomorphisms
A partial algebra A = 〈A,FA〉 is a set A and a collection of partial
operation FA on A
Every partial algebra can be extended to a total algebra Ã by adding
one element ∞ /∈ A

f̃ (x1, . . . ,xn) =

{
f (x1, . . . ,xn) if f (x1, . . . ,xn)is defined (i.e., exists)
∞ otherwise

dom(f ) = {(x1, . . . ,xn) | f (x1, . . . ,xn) exists}
B⊆ A is a (partial) subalgebra if B is closed under the partial
operations of A
∏i∈I Ai is the product; operations are defined pointwise; exist iff they
exist in all coords
Note that Ã× B̃ 6= Ã×B
h : A→ B is a homomorphism if
h(f (x1, . . . ,xn)) = f (h(x1), . . . ,h(xn)) for all (x1, . . . ,xn) ∈ dom(f )

HSP is defined using these operations
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Identities and quasiidentities
The signature of a partial algebra is a set F of (partial) function
symbols, each with an associated finite arity

The interpretation of f in a partial algebra A is denoted f A

Terms and formulas are defined as usual

A term t(a1, . . . ,an) is defined iff all subterms are defined

An identity s(x1, . . . ,xn) = t(x1, . . . ,xn) holds in a partial algebra A if for all
x1, . . . ,xn ∈ A either both sides are undefined, or they are defined and
equal

A quasiidentity s1 = t1& · · ·&sn = tn =⇒ s = t holds in A if for all
assignments that make the premises defined and equal, s, t are defined
and equal
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Why bother with partial operations?

Boole originally considered union undefined for overlapping sets
In a field, the multiplicative inverse is a partial operation
In quantum logic, effect algebras are partial algebras
Kripke frames of ordered algebras are partial algebras
Products of partial algebras are cartesian (not true with Ã)
Natural duality now allows partial operations and relations on both
sides
Partial algebras include all relational structures in an algebraic way

R ⊆ An corresponds to fR(x1, . . . ,xn) =

{
x1 if (x1, . . . ,xn) ∈ R
undef otherwise

Note: fR is the restricted projection π1�R
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Why bother with partial operations?

The main reason: Computer Science
Consider the memory of a computer: a list of cells with values in
them
(m0,m1, . . . ,mi , . . .) or more generally:
a function m : L→ V from a set L of locations to V of values
As a program runs, it is allocated some of these cells
The part of memory used is called a heap h, where h : L V is a
partial function
If several programs run concurrently, they use separate heaps

Peter Jipsen — Chapman University — December 17, 2015



Cancellative commutative partial monoids
A cancellative commutative partial monoid is of the form (A,+,0)
where + : A×A A is
x + y = y + x (commutative)
(x + y) + z = x + (y + z) (associative)
x +0 = x (0 is the identity)
x + z = y + z =⇒ x = y (cancellative)
Calcagno, O’Hearn, Yang [2007] call them separation algebras
Typical model: PL,V = { all heaps (= partial functions L to V ) } and

h+k =

{
h∪k if dom(h)∩dom(k) = /0
undef. otherwise

E.g., if L = {0,1} and V = {0,1} we have
A = {uu,u0,u1,0u,1u,00,01,10,11} where h = ab is the heap that
satisfies h(0) = a, h(1) = b; h(x) = u means undefined
Define heap algebras = S({PL,V | L,V are sets}). Note that
0 = uu
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Heap algebra examples

P2,2 =
+ uu u0 u1 0u 1u 00 01 10 11
uu uu u0 u1 0u 1u 00 01 10 11
u0 u0 00 10
u1 u1 01 11
0u 0u 00 01
1u 1u 10 11
00 00
01 01
10 10
11 11

0u

uu

11

u1

01

0u

00

u0

10

1u

Define x ≤ y if x + z = y for some z (the natural order)
Can you find another (smaller) example? Guess what! P1 = P1,1

P1 =

+ 0 1
0 0 1
1 1

=
0

1
P1,n =

· · ·3 n1

0

2
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Heap algebras = ISP(P1)

Products of P1 are Boolean lattice reducts with x + y = x ∨y if x ∧y = 0

What do the (partial) subalgebras of products of P1 look like?

Theorem
The class of heap algebras is ISP(P1)

Proof.
PL,V ∼= (V ∪{u})L where u /∈ V

1 P1,V is a subalgebra of (P1)V

2 Observe that PL,V = (P1,V )L
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Subquasivarieties of canc. comm. partial monoids

Let CCpM = quasivariety of cancellative commutative partial monoids

CCpM is larger than ISP(P1) since Z2 is a CCpM

P1 is positive, i.e., satisfies x + y = 0 =⇒ x = 0, which fails in Z2

A generalized effect algebra is a positive CCpM

Fact
x ≤ y is a partial order in generalized effect algebras

Effect algebras come from quantum logic, Foulis and Bennett [1994]

Effect algebras are generalized EA that have unary ′ such that x + x ′ = 0′
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Generalized Orthogalgebras
Addition in P1 is orthogonal, i.e., x + x = x + x =⇒ x = 0

Unit interval with truncated + is a non-orthogonal pos. CCpM: 1
2 + 1

2 = 1

Lemma: Orthogonal CCpMs are positive.
Proof: If x + y = 0 then x + (x + y) is defined, so (x + x) + y is defined,
hence x + x = x + x so we get x = 0

Orthogonal CCpMs are also known as generalized orthoalgebras

P1 is coherent, i.e., if x + y , x + z and y + z are defined, so is (x + y) + z

Example of a non-coherent generalized orthoalgebra: Take an 8-element
BA and remove the top element

Coherent orthoalgebras are first-order equivalent to orthomodular posets
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Concrete generalized orthoalgebras

Let U be any set and define + on P(U) by

X +Y =

{
X ∪Y if X ∩Y = /0
undef. otherwise

Then (P(U),+, /0) is a coherent generalized orthoalgebra ∼= P1
|U|

A concrete generalized orthoalgebra is any partial algebra embedded in
this powerset algebra

Hence the class of concrete generalized orthoalgebras is ISP(P1)

But this is smaller than the class of coherent generalized orthoalgebras

Is it finitely axiomatizable?
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More quasiidentities
Lemma: The following quasiequations hold in P1 and are not
consequences of previous axioms:

1 x ≤ y + z & y ≤ x + z =⇒ x = y
2 w + x = y + z & w + y = u & x + z = v =⇒ x = y
Proof that 1. holds in P1: Suppose x ≤ y + z & y ≤ x + z but x 6= y .
By symmetry can assume x = 0, y = 1.
Then x ≤ y + z implies z = 0 (since y + z must be defined).
But now 1 = y ≤ x + z = 0+0 = 0 is a contradiction.
1. fails in this coherent generalized orthoalgebra:

z y vxu

0
where only u+ x ,y + z ,x + z ,y + v are defined
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Similarly 2. w + x = y + z & w + y = u & x + z = v =⇒ x = y holds in
P1: Suppose x = 0,y = 1.

w + x = y + z implies z = 0 and w = 1.

But now w + y = 1+1 is undefined, contradicting w + y = u.

Below is a coherent generalized orthoalgebra that satisfies 1. but fails 2.

0

w y zx
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Concrete GOAs are not finitely axiomatized

Theorem
ISP(P1) is not finitely axiomatizable.

Proof. Consider the following quasiidentities qn:

&n−1
i=0 (x2i + x2i+1 = x2i+2 + x2i+3) & &n−1

i=0 (x2i+1 + x2i+2 = yi ) =⇒ x0 = x2

where index addition is modulo 2n.

We also define an algebra Qn = {0,a0,a1, . . . ,a2n−1,b0,b1, . . . ,bn}

by 0+ x = 0 = x +0, a2i +a2i+1 = bn, and a2i+1 +a2i+2 = bi (index
addition mod 2n)

It is not difficult to check that this algebra is a coherent orthogonal CCpM
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Claim 1. For all n > 1 the formula qn holds in ISP(P1) but fails in Qn.

Proof.
Suppose the premises hold in P1 but x0 6= x2.
If x0 = 0 then x2 = 1, and since x1 + x2 is defined, it follows that x1 = 0.
However, this contradicts x0 + x1 = x2 + x3.
If x0 = 1 then x1 = 0 since x0 + x1 is defined, and x2 = 0 since we are
assuming x0 6= x2.
Now x0 + x1 = x2 + x3 implies x3 = 1, and since x3 + x4 is defined, we have
x4 = 0.
If n = 2 then x4 = x0 since indices are calculated modulo 4, but this
contradicts x0 = 1.
Assume we have shown x2i−1 = 1 and x2i = 0.
Then x2i−2 + x2i−1 = x2i + x2i+1 implies x2i+1 = 1, hence x2i+2 = 0.
By induction we have x2n = 0, which again contradicts x0 = 1.
To see that qn fails in Qn, take ai to be the value of the variable x1.
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Claim 2. The ultraproduct (∏n∈ω Qn)/U is in ISP(P1) for any
nonprincipal ultrafilter U on ω, hence ISP(P1) is not finitely
axiomatizable.

Proof.
(outline) In each Qn, the term ai +aj is defined iff j = i±1 (mod2n), and
the terms a2i +a2i+1 are all equal to bn.
This same structure holds in the ultraproduct, except that the addition is
now done in Z.
To see that the ultraproduct is in ISP(P1), it suffices to embed this
algebra in the powerset algebra P(ω) with disjoint union as partial
operation and the empty set as identity.
Let a0 = 2Z and a1 = ω−a0. In general, let ak = 2kZ and ak+1 = ω−ak ,
and check that this map is an embedding.
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ISP(P1) is not closed under H

(P1,2)2 ∼= 0u

uu

11

u1

01

0u

00

u0

10

1u

and has a homomorphic image

0

w y zx /∈ ISP(P1)
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Heap algebras satisfy no congruence equations

Consider the heap algebra P1,n =
· · ·3 n1

0

2

Can identify any two maximal elements without collapsing any others
Can identify any maximal element with 0 without collapsing any
others
Therefore Con(P1,n) = Eq(n) = the lattice of equivalence relations on
an n element set
Any lattice equation fails in Eq(n) for some n
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Natural duality (briefly)

Duality theory aims to find categorical (dual) equivalences between
two categories
Natural dualities provide a framework using homomorphisms into a
generating object
E.g. Stone duality D : BA→ Stone, E : Stone→ BA given by

D(A) = Hom(A,2) with product topology from 2A, D(h)(x) = x ◦h
E (X) = Hom(X,2) with operations inherited from 2X , E (k)(a) = a ◦k

Or Priestley duality D : BDL→ Pri, E : Pri→ BDL given by
D(A) = Hom(A,C2) with product topology from CA

2 , D(h)(x) = x ◦h
E (X) = Hom(X,C2) with operations inherited from 2X , E (k)(a) = a ◦k

Then E (D(A))∼= A and D(E (X))∼= X via a natural isomorphism
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Dualizability of 2-element algebras

Theorem
[Clark, Davey 1998] All 2-element (total) algebras are dualizable, except
for the 8 that are limits of descending chains
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Natural duality for partial algebras
Davey [2006] extends natural dualities to categories of partial
algebras and relational structures
Davey, Pitkethly and Willard [2012] give a symmetric formulation:
Let f be m-ary, g be n-ary partial functions on a set A
f ,g are compatible (f ∼ g) if for all (aij) ∈ Am×n with f (a∗j),g(ai∗)
defined we have f (g(a1∗), . . . ,g(am∗)) = g(f (a∗1), . . . , f (a∗n))

F♦ = {g : f ∼ g for all f ∈ F}
Lemma [DPW’12]. (i) SP(〈A,F 〉) and SP(〈A,F ′〉) are isomorphic
categories if F♦♦ = F ′♦♦

(ii) g ∈ F♦♦ iff g has an extension in Clop(F ) and the domain of g is
conjunct-atomic definable from F
Here Clop(F ) is the clone of partial functions generated by F
A k-ary relation R is conjunct-atomic definable from F if
R = {a ∈ Ak : ψ(a) is true in 〈A,F 〉} for some formula ψ that is a
conjunction of atomic formulas
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An algorithm for computing F♦♦

Let A = 〈A,F 〉 be a finite partial algebra with F finite

To compute all k-ary partial functions in F♦♦, compute the k-ary partial
clone Gk = subalgebra of AAk generated by the k-ary projections π1, . . . ,πk
Next, close Gk under equalizers of partial functions, i.e., f ,g ∈ Gk

implies E (f ,g) ∈ Gk where E (f ,g)(a) =

{
f (a) if f (a) = g(a)

undef. otherwise
Finally, close Gk under the restriction of f to the domain of g , for all
f ,g ∈ Gk

Sets of the form F♦♦ are called structural clones

There are 17 unary and 1693 binary structural clones on {0,1}
compared to 6 unary and 26 binary (total) clones
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Computing the structural clone of P1

x y 0 x + y 2x 2y 2x + y x +2y 2x +2y E (x ,y) x �x+y y �x+y 0 �x+y 0 �E(x ,y)
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 − 1 − − − 0 1 0 −
1 0 0 1 − 0 − 1 − − 1 0 0 −
1 1 0 − − − − − − 1 − − − 0
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P1 is dualizable at the finite level

Theorem

(Joint with M. A. Moshier) P1 =

+ 0 1
0 0 1
1 1

is dualizable at the finite level

Let P1 = 〈{0,1},G〉 where G = {+,0}♦, so g ∈ G if g(0, . . . ,0) = 0 and
if g(x1, . . . ,xk),g(y1, . . . ,yk), and xi + yi defined for i = 1, . . . ,k
then g(x1 + y1, . . . ,xk + yk) = g(x1, . . . ,xk) +g(y1, . . . ,yk) (both defined)

Show for all finite A ∈ SP(P1) we have E (D(A))∼= A
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Bunched implication algebras
A bunched implication algebra (BI-algebra) is of the form

(A,∨,∧,→,>,⊥,∗,\,/,1) where (A,∨,∧,→,>,⊥) is a Heyting algebra

(i.e. a bounded distributive lattice with x ∧y ≤ z iff y ≤ x → z) and

(A,∨,∧,∗,\,/,1) is a commutative residuated lattice

(i.e. a commutative monoid with x ∗ y ≤ z iff y ≤ x\z iff x ≤ z/y)

If (x →⊥)→⊥= x we get classical BI-algebras

CBI-algebras = commutative residuated Boolean monoids
= crm-algebras of Jónsson-Tsinakis [1993]

BI-algebras come from Separation Logic, a Hoare programming logic
for reasoning about pointers and concurrent resources
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BI-algebras from generalized effect algebras
Let (P,⊕,0) be a generalized effect algebra (GEA)
Recall the natural order x ≤ y iff ∃z x ⊕ z = y

Up(P) is the set of upward closed subsets of P
= a completely distributive complete lattice under intersection and union

Hence (Up(P),∪,∩,→,P, /0) is a Heyting algebra

Define X ∗Y = {x ⊕y | x ∈ X ,y ∈ Y },

X\Y = {z | x ⊕ z ∈ Y for all x ∈ X}, X/Y = Y \X and 1 = {0}

Then (Up(P),∪,∩,→,P, /0,∗,\,/,1) is a bunched implication algebra

Let Up(GEA) = {Up(P) | P ∈ GEA}

Problem: Axiomatize the class HSP(Up(GEA)) or HSP(Up(SP(P1)))
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Residuated Heyting algebras

BI-algebras are residuated lattices with a Heyting algebra order
A residuated Heyting algebra (RHA) is of the form
(A,∨,∧,→,>,⊥,∗,\,/,1) where (A,∨,∧,→,>,⊥) is a Heyting algebra
and (A,∨,∧,∗,\,/,1) is a residuated lattice
For example every finite distributive residuated lattice can be
expanded to a residuated Heyting algebra

But RL congruences need not be RHA congruences:

· 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 b b
1 0 a b 1

with 0< a < b < 1 has an RL congruence θ with blocks {0,a},{b,1} but
in a HA 0θa⇒ 0θ1
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Duality for residuated Heyting algebras

Since RHAs have distributive RLs as reducts, many techniques from DRL
can be adapted

The duality for HA is given by Esakia spaces, i.e. Priestley spaces for
which ↓U is open for every open set U

The elements of the space are the prime lattice filters of the Heyting
algebra

The monoid operation of a RHA is captured by a ternary Kripke
relation on the prime filters

For finite algebras, this reduces to Birkhoff’s duality for distributive
lattices, with a ternary relation
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Adding divisibility: HGBL-algebras

A HGBL-algebra is a divisible residuated Heyting algebra

i.e., satisfies x ≤ y =⇒ y(y\x) = (x/y)y = x

Most of the results of J-Montagna [2006, 2009, 2010] can be lifted to
HGBL-algebras

In particular, poset products completely describe the structure theory of
finite HGBL-algebras

The equational decidablity of GBL-algebras is still open

Problem: Do HGBL-algebras have a decidable equational theory?
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Thank you Franco!
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