Duality for partial algebras, bunched implication algebras and GBL-algebras

Peter Jipsen

School of Computational Sciences and Center of Excellence in Computation, Algebra and Topology (CECAT) Chapman University, Orange, California

> Coherence and Truth 2015 In Memoriam Franco Montagna

Peter Jipsen — Chapman University — December 17, 2015

Outline

- Partial algebras
- Effect algebras
- Generalized orthoalgebras
- Concrete generalized orthoalgebras
- Natural duality
- Bunched implication algebras
- Residuated Heyting algebras
- Generalized basic logic algebras

A **groupoid** is a set A with a binary operation $\cdot : A \times A \rightarrow A$

If A is finite, say = $\{a_1, \ldots, a_n\}$, then a groupoid can be defined by its operation table

- What do we know about 2-element groupoids?
- How many are there? 16 Up to isomorphism? 10

• Give axioms for the varieties they generate

Peter Jipsen — Chapman University — December 17, 2015

In fact, quite a bit is known about 2-element algebras

Post lattice (from Schölzel 2010)

A partial groupoid is a set A with a partial binary operation $\cdot : A \times A \rightsquigarrow A$

If $A = \{a_1, ..., a_n\}$, then a partial groupoid can be defined by a **partially** filled out operation table

Convention: every (total) algebra is a partial algebra

What do we know about 2-element partial groupoids?

• How many are there? 81 - 16 = 65 Up to isomorphism? 45 - 10 = 35

	_	-	1		-	-	L 1		•	-			-	-			•	-	
•1	0	1		•2	0	1		•3	0	1		•4	0	1		•5	0	1	
0	0	0		0	0	0		0	0	0		0	0	0		0	0	0	
1	0			1	1			1		0		1		1		1			
.6	0	1		•7	0	1		.8	0	1		.9	0	1		.10	0	1	
0	0	1		0	0	1		0	0	1		0	0	1		0	0	1	
1	0			1	1			1		0		1		1		1			
·11	0	1		·12	0	1		•13	0	1		·14	0	1		·15	0	1	
0	0			0	0			0	0			0	0			0	0		
1	0	0		1	0			1	1	0		1	1			1		0	
·16	0	1		·17	0	1		·18	0	1		·19	0	1		·20	0	1	
0	0			0	0			0	1	0		0	1	0		0	1	0	
1		1		1				1	0			1	1			1		0	
·21	0	1		·22	0	1		·23	0	1		•24	0	1		·25	0	1	
0	1	0		0	1	1		0	1	1		0	1	1		0	1	1	
1				1	0			1	1			1		0		1			
·26	0	1		•27	0	1		·28	0	1		•29	0	1		•30	0	1	
0	1			0	1			0	1			0	1			0		0	
1	0			1	1			1		0		1				1	0		
.31	0	1		•32	0	1		•33	0	1		•34	0	1		•35	0	1	
0		0		0		0		0		1		0		1		0			
1	1			1				1	0			1				1			
	'1 0 1 '6 0 1 '11 0 1 '16 0 1 '21 0 1 '26 0 1 '31 0 1	$\begin{array}{ccc} \cdot_1 & 0 \\ 0 & 0 \\ 1 & 0 \\ \end{array} \\ \begin{array}{c} \cdot_6 & 0 \\ 0 & 0 \\ 1 & 0 \\ \end{array} \\ \begin{array}{c} \cdot_{11} & 0 \\ 0 & 0 \\ 1 & 0 \\ \end{array} \\ \begin{array}{c} \cdot_{16} & 0 \\ 0 & 0 \\ 1 \\ \end{array} \\ \begin{array}{c} \cdot_{16} & 0 \\ 0 & 0 \\ 1 \\ \end{array} \\ \begin{array}{c} \cdot_{21} & 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} \cdot_{26} & 0 \\ 0 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} \cdot_{26} & 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ \end{array} \\ \begin{array}{c} \cdot_{31} & 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} \cdot_{31} & 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} \cdot_{31} & 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{c} \cdot_{31} & 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} $	·1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 3 0 1 0 0 1 3 0 1 0 0 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Peter Jipsen — Chapman University — December 17, 2015

Remove all partial projection groupoids

• Leaves 21 non-relational partial groupoids

0

0 1 1

Peter Jipsen — Chapman University — December 17, 2015

Remove partial groupoids that are isom. to opposite

• Leaves 16 non-dually-isomorphic partial groupoids

Peter Jipsen — Chapman University — December 17, 2015

1

Axioms for the ISP classes they generate?

- Which of these generate a finitely axiomatizable ISP class?
- Natural duality theory applies to partial algebras (Davey [2006])
- Which of these partial groupoids are dualizable?
- For this talk: want the operation to have an identity element 0
- Two total groupoids: 2-element semilattice and 2-element group

$$\bullet \ \ \frac{\vee \ \ 0 \ \ 1}{1 \ \ 1 \ \ 1} \qquad \ \frac{+_2 \ \ 0 \ \ 1}{0 \ \ 0 \ \ 1}$$

How many partial groupoids with an identity element are there?
P₁ = P₁ = 0
0
1
Is ISP(P₁) finitely axiomatizable? Dualizable?

Subalgebras, products, homomorphisms

- A partial algebra A = (A, F^A) is a set A and a collection of partial operation F^A on A
- Every partial algebra can be extended to a total algebra à by adding one element ∞ ∉ A

•
$$\tilde{f}(x_1,...,x_n) = \begin{cases} f(x_1,...,x_n) & \text{if } f(x_1,...,x_n) \text{is defined (i.e., exists)} \\ \infty & \text{otherwise} \end{cases}$$

• dom
$$(f) = \{(x_1,\ldots,x_n) \mid f(x_1,\ldots,x_n) \text{ exists}\}$$

- B ⊆ A is a (partial) subalgebra if B is closed under the partial operations of A
- ∏_{i∈I} A_i is the product; operations are defined pointwise; exist iff they exist in all coords
- Note that $\tilde{\mathbf{A}} \times \tilde{\mathbf{B}} \neq \widetilde{\mathbf{A} \times \mathbf{B}}$
- $h: \mathbf{A} \to \mathbf{B}$ is a homomorphism if $h(f(x_1, \dots, x_n)) = f(h(x_1), \dots, h(x_n))$ for all $(x_1, \dots, x_n) \in \text{dom}(f)$
- HSP is defined using these operations

Peter Jipsen — Chapman University — December 17, 2015

Identities and quasiidentities

The **signature** of a partial algebra is a set F of (partial) **function symbols**, each with an associated finite arity

The interpretation of f in a partial algebra **A** is denoted f^{A}

Terms and formulas are defined as usual

A term $t(a_1,...,a_n)$ is defined iff **all subterms are defined**

An identity $s(x_1,...,x_n) = t(x_1,...,x_n)$ holds in a partial algebra **A** if for all $x_1,...,x_n \in A$ either **both sides are undefined**, or they are **defined and** equal

A quasiidentity $s_1 = t_1 \& \cdots \& s_n = t_n \implies s = t$ holds in **A** if for all assignments that make **the premises defined and equal**, s, t are **defined and equal**

Why bother with partial operations?

- Boole originally considered union undefined for overlapping sets
- In a field, the multiplicative inverse is a partial operation
- In quantum logic, effect algebras are partial algebras
- Kripke frames of ordered algebras are partial algebras
- Products of partial algebras are cartesian (not true with $\tilde{\textbf{A}})$
- Natural duality now allows partial operations and relations on both sides
- Partial algebras include all relational structures in an algebraic way
- $R \subseteq A^n$ corresponds to $f_R(x_1, \dots, x_n) = \begin{cases} x_1 & \text{if } (x_1, \dots, x_n) \in R \\ \text{undef} & \text{otherwise} \end{cases}$
- Note: f_R is the **restricted projection** $\pi_1 \upharpoonright_R$

Why bother with partial operations?

- The main reason: Computer Science
- Consider the memory of a computer: a list of cells with values in them
- $(m_0, m_1, \ldots, m_i, \ldots)$ or more generally:
- a function $m: L \rightarrow V$ from a set L of **locations** to V of **values**
- As a program runs, it is allocated some of these cells
- The part of memory used is called a heap h, where h: L → V is a partial function
- If several programs run concurrently, they use separate heaps

Cancellative commutative partial monoids

- A cancellative commutative partial monoid is of the form (A,+,0) where + : A × A → A is
- x + y = y + x (commutative)
- (x+y)+z = x + (y+z) (associative)
- x + 0 = x (0 is the identity)
- $x + z = y + z \implies x = y$ (cancellative)
- Calcagno, O'Hearn, Yang [2007] call them separation algebras
- Typical model: $P_{L,V} = \{ \text{ all heaps } (= \text{ partial functions } L \text{ to } V) \}$ and $h+k = \begin{cases} h \cup k & \text{ if } \text{dom}(h) \cap \text{dom}(k) = \emptyset \\ \text{ undef. } & \text{otherwise} \end{cases}$
- E.g., if $L = \{0,1\}$ and $V = \{0,1\}$ we have $A = \{uu, u0, u1, 0u, 1u, 00, 01, 10, 11\}$ where h = ab is the heap that satisfies h(0) = a, h(1) = b; h(x) = u means undefined
- Define heap algebras = $S({P_{L,V} | L, V \text{ are sets}})$. Note that 0 = uu

Heap algebra examples

• $P_{2,2} =$ и0 *u*1 0*u* 1u00 01 10 $\frac{11}{11}$ +ии (00)(10)0101 10 *u*0 u10*u* 1u00 ии ии и0 и0 00 10 *u*1 u101 11 0*u* 0*u* 00 01 ĺΌu (u1 (u0) (1u)10 1u1u11 00 00 01 01 10 (uu 10 1111

• Define $x \le y$ if x + z = y for some z (the **natural order**)

• Can you find another (smaller) example? Guess what! $P_1 = P_{1,1}$

Heap algebras = $ISP(P_1)$

Products of P_1 are Boolean lattice reducts with $x + y = x \lor y$ if $x \land y = 0$

What do the (partial) subalgebras of products of P_1 look like?

Theorem

The class of heap algebras is $ISP(P_1)$

Proof.

$$P_{L,V} \cong (V \cup \{u\})^L$$
 where $u \notin V$

•
$$P_{1,V}$$
 is a subalgebra of $(P_1)^{V}$

Observe that
$$P_{L,V} = (P_{1,V})^L$$

Subquasivarieties of canc. comm. partial monoids

Let CCpM = quasivariety of cancellative commutative partial monoids

CCpM is larger than ISP(P_1) since \mathbb{Z}_2 is a CCpM

 P_1 is **positive**, i.e., satisfies $x + y = 0 \implies x = 0$, which fails in \mathbb{Z}_2

A generalized effect algebra is a positive CCpM

Fact

 $x \le y$ is a **partial order** in generalized effect algebras

Effect algebras come from quantum logic, Foulis and Bennett [1994]

Effect algebras are generalized EA that have unary ' such that x + x' = 0'

Generalized Orthogalgebras

Addition in P_1 is **orthogonal**, i.e., $x + x = x + x \implies x = 0$

Unit interval with truncated + is a **non-orthogonal** pos. CCpM: $\frac{1}{2} + \frac{1}{2} = 1$

Lemma: Orthogonal CCpMs are positive. Proof: If x + y = 0 then x + (x + y) is defined, so (x + x) + y is defined, hence x + x = x + x so we get x = 0

Orthogonal CCpMs are also known as generalized orthoalgebras

 P_1 is **coherent**, i.e., if x + y, x + z and y + z are defined, so is (x + y) + z

Example of a **non-coherent** generalized orthoalgebra: Take an 8-element BA and remove the top element

Coherent orthoalgebras are first-order equivalent to orthomodular posets

Concrete generalized orthoalgebras

Let U be any set and define + on
$$\mathscr{P}(U)$$
 by
 $X + Y = \begin{cases} X \cup Y & \text{if } X \cap Y = \emptyset \\ \text{undef.} & \text{otherwise} \end{cases}$

Then $(\mathscr{P}(U), +, \emptyset)$ is a coherent generalized orthoalgebra $\cong P_1^{|U|}$

A **concrete generalized orthoalgebra** is any partial algebra embedded in this powerset algebra

Hence the class of **concrete generalized orthoalgebras** is $ISP(P_1)$

But this is smaller than the class of coherent generalized orthoalgebras

Is it finitely axiomatizable?

More quasiidentities

Lemma: The following quasiequations hold in P_1 and are not consequences of previous axioms:

$$x \le y + z \& y \le x + z \implies x = y$$

- w + x = y + z & w + y = u & x + z = v ⇒ x = y
 Proof that 1. holds in P₁: Suppose x ≤ y + z & y ≤ x + z but x ≠ y.
 By symmetry can assume x = 0, y = 1.
 Then x ≤ y + z implies z = 0 (since y + z must be defined).
 But now 1 = y ≤ x + z = 0 + 0 = 0 is a contradiction.
 - 1. fails in this coherent generalized orthoalgebra:

where only u + x, y + z, x + z, y + v are defined

Similarly 2. w + x = y + z & w + y = u & $x + z = v \implies x = y$ holds in P_1 : Suppose x = 0, y = 1.

w + x = y + z implies z = 0 and w = 1.

But now w + y = 1 + 1 is undefined, contradicting w + y = u.

Below is a coherent generalized orthoalgebra that satisfies 1. but fails 2.

Concrete GOAs are not finitely axiomatized

Theorem

ISP (P_1) is not finitely axiomatizable.

Proof. Consider the following quasiidentities q_n :

$$\&_{i=0}^{n-1}(x_{2i}+x_{2i+1}=x_{2i+2}+x_{2i+3}) \& \&_{i=0}^{n-1}(x_{2i+1}+x_{2i+2}=y_i) \implies x_0=x_2$$

where index addition is modulo 2n.

We also define an algebra $\mathcal{Q}_n = \{0, a_0, a_1, \dots, a_{2n-1}, b_0, b_1, \dots, b_n\}$

by 0 + x = 0 = x + 0, $a_{2i} + a_{2i+1} = b_n$, and $a_{2i+1} + a_{2i+2} = b_i$ (index addition mod 2n)

It is not difficult to check that this algebra is a coherent orthogonal CCpM

Claim 1. For all n > 1 the formula q_n holds in **ISP** (P_1) but fails in Q_n .

Proof.

Suppose the premises hold in P_1 but $x_0 \neq x_2$. If $x_0 = 0$ then $x_2 = 1$, and since $x_1 + x_2$ is defined, it follows that $x_1 = 0$. However, this contradicts $x_0 + x_1 = x_2 + x_3$. If $x_0 = 1$ then $x_1 = 0$ since $x_0 + x_1$ is defined, and $x_2 = 0$ since we are assuming $x_0 \neq x_2$. Now $x_0 + x_1 = x_2 + x_3$ implies $x_3 = 1$, and since $x_3 + x_4$ is defined, we have $x_4 = 0.$ If n = 2 then $x_4 = x_0$ since indices are calculated modulo 4, but this contradicts $x_0 = 1$. Assume we have shown $x_{2i-1} = 1$ and $x_{2i} = 0$. Then $x_{2i-2} + x_{2i-1} = x_{2i} + x_{2i+1}$ implies $x_{2i+1} = 1$, hence $x_{2i+2} = 0$. By induction we have $x_{2n} = 0$, which again contradicts $x_0 = 1$. To see that q_n fails in Q_n , take a_i to be the value of the variable x_1 .

Claim 2. The ultraproduct $(\prod_{n \in \omega} Q_n) / \mathscr{U}$ is in **ISP**(P_1) for any nonprincipal ultrafilter \mathscr{U} on ω , hence **ISP**(P_1) is not finitely axiomatizable.

Proof.

(outline) In each Q_n , the term $a_i + a_j$ is defined iff $j = i \pm 1 \pmod{2n}$, and the terms $a_{2i} + a_{2i+1}$ are all equal to b_n .

This same structure holds in the ultraproduct, except that the addition is now done in $\mathbb{Z}.$

To see that the ultraproduct is in **ISP**(P_1), it suffices to embed this algebra in the powerset algebra $\mathscr{P}(\omega)$ with disjoint union as partial operation and the empty set as identity.

Let $a_0 = 2\mathbb{Z}$ and $a_1 = \omega - a_0$. In general, let $a_k = 2k\mathbb{Z}$ and $a_{k+1} = \omega - a_k$, and check that this map is an embedding.

$ISP(P_1)$ is not closed under H

Heap algebras satisfy no congruence equations

- Consider the heap algebra $P_{1,n} =$
- Can identify any two maximal elements without collapsing any others
- Can identify any maximal element with 0 without collapsing any others
- Therefore Con(P_{1,n}) = Eq(n) = the lattice of equivalence relations on an n element set
- Any lattice equation fails in Eq(n) for some n

Natural duality (briefly)

- Duality theory aims to find categorical (dual) equivalences between two categories
- **Natural dualities** provide a framework using homomorphisms into a generating object
- E.g. **Stone duality** $D : BA \rightarrow Stone$, $E : Stone \rightarrow BA$ given by

 $D(\mathbf{A}) = \operatorname{Hom}(\mathbf{A}, \mathbf{2})$ with product topology from $\underline{2}^A$, $D(h)(x) = x \circ h$ $E(\mathbf{X}) = \operatorname{Hom}(\mathbf{X}, \underline{2})$ with operations inherited from $\mathbf{2}^X$, $E(k)(a) = a \circ k$ • Or **Priestley duality** $D : \operatorname{BDL} \to \operatorname{Pri}, E : \operatorname{Pri} \to \operatorname{BDL}$ given by $D(\mathbf{A}) = \operatorname{Hom}(\mathbf{A}, \mathbf{C}_2)$ with product topology from \underline{C}_2^A , $D(h)(x) = x \circ h$ $E(\mathbf{X}) = \operatorname{Hom}(\mathbf{X}, \underline{C}_2)$ with operations inherited from $\mathbf{2}^X$, $E(k)(a) = a \circ k$ • Then $E(D(\mathbf{A})) \cong \mathbf{A}$ and $D(E(\mathbf{X})) \cong \mathbf{X}$ via a **natural** isomorphism

Dualizability of 2-element algebras

Theorem

[Clark, Davey 1998] All 2-element (total) algebras are dualizable, except for the 8 that are limits of descending chains

Peter Jipsen — Chapman University — December 17, 2015

Natural duality for partial algebras

- Davey [2006] extends natural dualities to categories of partial algebras and relational structures
- Davey, Pitkethly and Willard [2012] give a symmetric formulation:
- Let f be m-ary, g be n-ary partial functions on a set A
- f,g are compatible $(f \sim g)$ if for all $(a_{ij}) \in A^{m \times n}$ with $f(a_{*j}), g(a_{i*})$ defined we have $f(g(a_{1*}), \dots, g(a_{m*})) = g(f(a_{*1}), \dots, f(a_{*n}))$

•
$$F^{\Diamond} = \{g : f \sim g \text{ for all } f \in F\}$$

- Lemma [DPW'12]. (i) SP(⟨A, F⟩) and SP(⟨A, F'⟩) are isomorphic categories if F^{◊◊} = F'^{◊◊}
- (ii) g ∈ F^{◊◊} iff g has an extension in Clo_p(F) and the domain of g is conjunct-atomic definable from F
- Here $\operatorname{Clo}_p(F)$ is the clone of partial functions generated by F
- A k-ary relation R is conjunct-atomic definable from F if R = {a ∈ A^k : ψ(a) is true in ⟨A, F⟩} for some formula ψ that is a conjunction of atomic formulas

An algorithm for computing $F^{\Diamond\Diamond}$

Let $\mathbf{A} = \langle A, F \rangle$ be a finite partial algebra with F finite

To compute all *k*-ary partial functions in $F^{\Diamond\Diamond}$, compute the *k*-ary partial clone G_k = subalgebra of \mathbf{A}^{A^k} generated by the *k*-ary projections π_1, \ldots, π_k Next, close G_k under equalizers of partial functions, i.e., $f, g \in G_k$ implies $E(f,g) \in G_k$ where $E(f,g)(\mathbf{a}) = \begin{cases} f(\mathbf{a}) & \text{if } f(\mathbf{a}) = g(\mathbf{a}) \\ \text{undef.} & \text{otherwise} \end{cases}$ Finally, close G_k under the restriction of f to the domain of g, for all $f, g \in G_k$

Sets of the form $F^{\Diamond\Diamond}$ are called **structural clones**

There are 17 unary and 1693 binary structural clones on $\{0,1\}$ compared to 6 unary and 26 binary (total) clones

Computing the structural clone of \mathbf{P}_1

Peter Jipsen — Chapman University — December 17, 2015

P_1 is dualizable at the finite level

Theorem

(Joint with M. A. Moshier)
$$\mathbf{P}_1 = \frac{\begin{array}{c|c} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 \end{array}$$
 is dualizable at the finite level

Let $\underline{\mathbf{P}}_1 = \langle \{0,1\}, G \rangle$ where $G = \{+,0\}^{\Diamond}$, so $g \in G$ if $g(0,\ldots,0) = 0$ and if $g(x_1,\ldots,x_k), g(y_1,\ldots,y_k)$, and $x_i + y_i$ defined for $i = 1,\ldots,k$ then $g(x_1 + y_1,\ldots,x_k + y_k) = g(x_1,\ldots,x_k) + g(y_1,\ldots,y_k)$ (both defined)

Show for all finite $\mathbf{A} \in SP(\mathbf{P}_1)$ we have $E(D(\mathbf{A})) \cong \mathbf{A}$

Bunched implication algebras

A bunched implication algebra (BI-algebra) is of the form

 $(A, \lor, \land, \rightarrow, \top, \bot, *, \backslash, /, 1)$ where $(A, \lor, \land, \rightarrow, \top, \bot)$ is a Heyting algebra

(i.e. a bounded distributive lattice with $x \wedge y \leq z$ iff $y \leq x \rightarrow z$) and

$(A, \lor, \land, *, \backslash, /, 1)$ is a commutative residuated lattice

(i.e. a commutative monoid with $x * y \le z$ iff $y \le x \setminus z$ iff $x \le z/y$)

If $(x \to \bot) \to \bot = x$ we get **classical** BI-algebras

CBI-algebras = commutative residuated Boolean monoids = *crm*-algebras of Jónsson-Tsinakis [1993]

BI-algebras come from **Separation Logic**, a **Hoare programming logic** for reasoning about pointers and concurrent resources

Peter Jipsen — Chapman University — December 17, 2015

BI-algebras from generalized effect algebras

Let $(P, \oplus, 0)$ be a generalized effect algebra (GEA) Recall the natural order $x \le y$ iff $\exists z \ x \oplus z = y$

Up(P) is the set of upward closed subsets of P= a completely distributive complete lattice under intersection and union

Hence $(Up(P), \cup, \cap, \rightarrow, P, \emptyset)$ is a **Heyting algebra**

Define $X * Y = \{x \oplus y \mid x \in X, y \in Y\}$,

 $X \setminus Y = \{ z \mid x \oplus z \in Y \text{ for all } x \in X \}, \quad X/Y = Y \setminus X \text{ and } 1 = \{ 0 \}$

Then $(Up(P), \cup, \cap, \rightarrow, P, \emptyset, *, \backslash, /, 1)$ is a bunched implication algebra

Let $Up(GEA) = \{Up(P) \mid P \in GEA\}$

Problem: Axiomatize the class HSP(Up(GEA)) or $HSP(Up(SP(P_1)))$

Peter Jipsen — Chapman University — December 17, 2015

Residuated Heyting algebras

BI-algebras are residuated lattices with a Heyting algebra order A **residuated Heyting algebra** (RHA) is of the form $(A, \lor, \land, \rightarrow, \top, \bot, *, \backslash, /, 1)$ where $(A, \lor, \land, \rightarrow, \top, \bot)$ is a **Heyting algebra** and $(A, \lor, \land, *, \backslash, /, 1)$ is a **residuated lattice** For example **every finite distributive residuated lattice** can be expanded to a residuated Heyting algebra

But RL congruences need not be RHA congruences: $\frac{ \cdot \quad 0 \quad a \quad b \quad 1}{0 \quad 0 \quad 0 \quad 0 \quad 0}$ $\frac{a \quad 0 \quad 0 \quad 0 \quad a}{b \quad 0 \quad 0 \quad b \quad b}$ $1 \quad 0 \quad a \quad b \quad 1$ with 0 < a < b < 1 has an RL congruence θ with blocks $\{0, a\}, \{b, 1\}$ but in a HA $0\theta a \Rightarrow 0\theta 1$

Duality for residuated Heyting algebras

Since RHAs have distributive RLs as reducts, many techniques from DRL can be adapted

The duality for HA is given by **Esakia spaces**, i.e. Priestley spaces for which $\downarrow U$ is open for every open set U

The elements of the space are the **prime lattice filters** of the Heyting algebra

The **monoid operation** of a RHA is captured by a **ternary Kripke relation** on the prime filters

For **finite** algebras, this reduces to **Birkhoff's duality** for distributive lattices, with a **ternary relation**

Adding divisibility: HGBL-algebras

A HGBL-algebra is a divisible residuated Heyting algebra

i.e., satisfies $x \leq y \implies y(y \setminus x) = (x/y)y = x$

Most of the results of J-Montagna [2006, 2009, 2010] can be lifted to HGBL-algebras

In particular, poset products completely describe the structure theory of finite HGBL-algebras

The equational decidablity of GBL-algebras is still open

Problem: Do HGBL-algebras have a decidable equational theory?

References

C. Calcagno, P.W. O'Hearn, H. Yang, Local Action and Abstract Separation Logic, Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, 2007, 366–378

B. Davey, Natural dualities for structures, Acta Univ. M. Belii Math. 13, 2006, 3–28

B. Davey, J.G. Pitkethly and R. Willard. The lattice of alter egos, Internat J. Algebra Comput. 22 (2012)

D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logics, Foundations of Physics 24, 10, 1994, 1331–1352

B. Jónsson and C. Tsinakis. Relation algebras as residuated Boolean algebras. Algebra Universalis, 30, 1993 469–478

Thank you Franco! Peter Jipsen — Chapman University — December 17, 2015