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Extended Abstract

Basic Logic was introduced by Petr Hájek to provide a uni�ed approach to fuzzy logics, and judging by
its rapid adoption in the research community, it has enjoyed considerable success in this regard. One of the
reasons is that while it is a very general logic, it has elegant semantics with respect to the real unit interval,
which allow for practical applications and use of standard software tools. Here we show how to use these
semantics to encode propositional Basic Logic into the Satis�ability Modulo Theories (SMT) framework,
based on an interpretation of Lukasiewicz logic, Gödel logic and product logic into SMT [4]. Ultimately these
ideas go back to Mundici's result [13] that satis�ablity for Lukasiewicz logic is NP-complete, and Hähnle's
translation from Lukasiewicz logic to integer linear programming [8, 9]. In the current setting the translation
to SMT is very simple, and since there are several e�cient SMT-solvers available, this is probably one of the
most e�ective and �exible ways of implementing a decision procedure for propositional basic logic.

Basic logic algebras (or BL-algebras for short) are bounded integral commutative residuated lattices that
satisfy divisibility and prelinearity. The latter property implies that subdirectly irreducible BL-algebras are
linearly ordered. Generalized BL-algebras (or GBL-algebras) are just divisible residuated lattices, but still
retain many of the properties of BL-algebras. For example they have distributive lattice reducts, the fusion
operation distributes over the meet operation, and in the n-potent case they are integral and commutative
[10]. The subdirectly irreducible GBL-algebras are no longer linearly ordered, but in the �nite case they have
a well-understood structure theory based on the so-called poset product construction [10, 11].

In [3] it is shown that the category of �nite BL-algebras is dually equivalent to a category of �nite rooted
forests, labeled by positive integers. This result is extended here to �nite GBL-algebras, with rooted forests
replaced by posets. Since subdirectly irreducible GBL-algebras correspond to labeled rooted posets under
this duality, it becomes feasible to calculate the HS-poset of subdirectly irreducible GBL-algebras up to a
�xed size, giving a view of the lattice of �nitely generated GBL varieties. The duality also implies that
GBL-algebras with n join-irreducibles are in one-one correspondence with preorders on n-elements, which
simpli�es the enumeration of �nite GBL-algebras.

The Kripke models of the modal logic S4 are determined by preorders, so the duality can be extended to
the category of �nite closure algebras (the algebraic models of S4). Since the larger category of all modal
algebras has a well-developed duality theory using descriptive frames, these results may be useful for obtaining
a duality for all n-potent commutative GBL-algebras.

1. Deciding propositional Basic Logic with SMT-solvers

Boolean satis�ability solvers (SAT-solvers) are programs that take a classical propositional formula (often
restricted to conjunctive normal form) as input and search for an assignment of truth values to the variables
such that the formula is true, or report that no such assignment exists. Satis�ability modulo theories
solvers (SMT-solvers) are generalizations of SAT-solvers that take as input a formula of typed �rst-order
logic with equality (perhaps restricted to be quanti�er-free), and determine if there is an assignment into
a speci�c model (such as R or Z) under which the formula is true. The �modulo theories� in the name
of SMT-solvers refers to the theory of the model in which satis�ability is tested. E.g. a formula such as
0 < x+ y < 10 & x+ x− y − y = 1 would be satis�able in R but not in Z.

Applying SMT-solvers to decide propositional formulas in Lukasiewicz logic or Gödel logic is quite straight
forward, as shown in [4]. We take an algebraic view, and implement decision procedures for prelinear Heyting
algebras, abelian lattice-ordered groups, MV-algebras and BL-algebras. Recall that (A,∧,∨,→, 1, 0) is a
Heyting algebra if (A,∧,∨, 1, 0) is a bounded distributive lattice and x ∧ y ≤ z ⇐⇒ y ≤ x → z for all
x, y, z ∈ A. It is prelinear if the identity (x→ y)∨(y → x) = 1 holds, in which case the subdirectly irreducible
models are linearly ordered. Prelinear Heyting algebras are the algebraic semantics of Gödel logic, and a
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propositional formula ϕ of Gödel logic is a tautology precisely when the equation ϕ = 1 is an identity of
prelinear Heyting algebras. The same correspondence holds for Lukasiewicz logic and MV-algebras.

An abelian lattice-ordered group is of the form (A,∧,∨,+,−, 0) where (A,∧,∨) is a (necessarily distribu-
tive) lattice, (A,+,−, 0) is an abelian group and + is order-preserving in both arguments. The variety of
abelian lattice-ordered groups is generated by the model (Z,min,max,+,−, 0) as well as by (R,min,max,+,−, 0).

A MV-algebra is given by (A,∧,∨, ·,¬, 1, 0) where (A,∧,∨) is a lattice, (A, ·, 1) is a commutative monoid,
· is order-preserving in both arguments, ¬¬x = x, 0 = ¬1 and x · y ≤ z ⇐⇒ y ≤ ¬x ∨ z. This de�nition of
MV-algebras emphasizes that they are residuated lattices, though they are often de�ned equationally using
the the dual operation x⊕ y = ¬(¬x · ¬y).

The input for SMT-solvers is usually written in a standard language called SMT-LIB2. The input for
deciding MV-identities is given below and can be used with a variety of solvers, such as Z3, SMTinterpol,
opensmt, etc. For the algebraic operations we use standard LATEX names for the symbols. Any semicolon
and all following characters up to the end of each line are optional comments. The SMT-LIB2 language has
a syntax similar to LISP, so expressions are lists of tokens separated by spaces and enclosed in parentheses.
The �rst token is usually a command or function name, and the remaining tokens are inputs for the function.
E.g. (ite (< x y) x y) is the if-then-else function applied to a boolean test and producing (in this case) the
smaller of the two values as output. The full syntax is de�ned at www.smtlib.org.

; Deciding MV (in)equations in SMT
(set-logic QF_LRA)
(de�ne-fun wedge ((x Real) (y Real)) Real (ite (> x y) y x)) ; x ∧ y
(de�ne-fun vee ((x Real) (y Real)) Real (ite (> x y) x y)) ; x ∨ y
(de�ne-fun oplus ((x Real) (y Real)) Real (wedge (+ x y) 1)) ; x⊕ y
(de�ne-fun cdot ((x Real) (y Real)) Real (vee (- (+ x y) 1) 0)) ; x · y
(de�ne-fun neg ((x Real)) Real (- 1 x)) ; ¬x = 1− x
(de�ne-fun to ((x Real) (y Real)) Real (wedge 1 (- (+ 1 y) x))) ; x→ y
(de�ne-fun leftrightarrow ((x Real) (y Real)) Real (wedge (to x y) (to y x)))
(declare-const x Real) (assert (<= 0 x)) (assert (<= x 1))
(declare-const y Real) (assert (<= 0 y)) (assert (<= y 1))
(assert (< (leftrightarrow (vee x y) (to (to x y) y)) 1)) ; (in)equation to be tested
; test if ((x ∨ y)↔ ((x→ y)→ y)) < 1 is satis�able
(check-sat)

We brie�y describe the SMT-LIB2 code listed above. The �rst line of the code is a descriptive comment
and the second line selects quanti�er-free linear real arithmetic (QF_LRA) as the theory used by the SMT-
solver. The next 7 lines de�ne the MV-operations on the unit interval by x∧y = min(x, y), x∨y = max(x, y),
x⊕y = (x+y)∧1, x ·y = (x+y−1)∨0, ¬x = 1−x, x→ y = (1−x+y)∧1, and x↔ y = (x→ y)∧ (y → x).
The lines that start with �declare-const� de�ne two real variables x, y and restrict their values to the interval
[0, 1]. The third last line asserts the formula that is to be checked, followed by a comment showing the
formula in standard notation. The last line asks the SMT-solver to check if the formula ϕ < 1 is satis�able,
in which case the formula ϕ is not a tautology. To test if an equation s = t is an identity, one would check
the formula s↔ t, adding more �declare-const� lines if the formula contains more than two variables.

Checking equations in prelinear Heyting algebras is a matter of deleting the de�nitions for oplus and cdot,
and replacing the next two lines by:

(de�ne-fun neg ((x Real)) Real (ite (= x 0) 1 0)); ¬x
(de�ne-fun to ((x Real) (y Real)) Real (ite (<= x y) 1 y)); x→ y
An abelian `-group inequation s ≤ t is coded directly using the operations +,−, 0 of the logic QF_LRA,

and the SMT-solver is asked to check if s > t is satis�able. The assertions that restrict variables to the unit
interval have to be removed in this case. For equations s = t one checks if s > t or t > s is satis�able, i.e.,
(assert (or (< s t) (< t s))) in SMT-LIB2 syntax. A similar approach can be used to check (in)equations in
the negative cone of R by de�ning x · y = (x+ y)∧ 0. By using a translation with an extra variable z as in [7]
one can also check (in)equations in the negative cone of R with a new bottom element, which is equivalent
to checking propositional formulas in product logic. This is an improvement over the suggestion in [4] to
use full real arithmetic for product logic, since implementations of linear real arithmetic in SMT-solvers are
currently more e�cient.

The decision procedure for propositional basic logic with an SMT-solver uses the following result of [2]
(see also [1]).
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Theorem 1. Let An =
⊕n

i=0[0, 1] be the ordinal sum of n+ 1 unit-interval MV-algebras, and let Vn be the

variety generated by all n-generated BL-algebras. Then Vn = HSP (An), hence an n-variable BL-identity

holds in An if and only if it holds in all BL-algebras.

By constructing the algebra An of the above result within the SMT language, one obtains an e�ective
means of checking n-variable BL-identities. The universe for An is taken to be the interval [0, n + 1]. The
de�nition of fusion and implication are

x·y =

{
max(x+ y − 1− byc, bxc) if bxc = byc
min(x, y) otherwise

x→ y =


n+ 1 if x ≤ y

y if byc < bxc
min(1 + y − x+ bxc, 1 + byc) otherwise

A straightforward SMT-LIB2 implementation of these operations uses n+1 cases, so the formula does become
long even for small values of n. Below we give the implementations for n = 1 and n = 2, which can be used
to check 1-variable and 2-variable BL-identities.

n = 1:
(de�ne-fun cdot ((x Real) (y Real)) Real (ite (and (< x 1) (< y 1)) (vee (- (+ x y) 1) 0) (ite (and (<= 1

x) (<= 1 y)) (vee (- (+ x y) 2) 1) (wedge x y))))
(de�ne-fun to ((x Real) (y Real)) Real (ite (<= x y) 2 (ite (and (<= 1 x) (< y 1)) y (wedge 1 (- (+ 1 y)

x)))))
n = 2:
(de�ne-fun cdot ((x Real) (y Real)) Real (ite (and (< x 1) (< y 1)) (vee (- (+ x y) 1) 0) (ite (and (<= 1

x) (< x 2) (<= 1 y) (< y 2)) (vee (- (+ x y) 2) 1) (ite (and (<= 2 x) (<= 2 y)) (vee (- (+ x y) 3) 2) (wedge
x y)))))

(de�ne-fun to ((x Real) (y Real)) Real (ite (<= x y) 3 (ite (and (< x 1) (< y 1)) (+ (- 1 x) y) (ite (and
(<= 1 x) (< x 2) (<= 1 y) (< y 2)) (+ (- 2 x) y) (ite (and (<= 2 x) (<= 2 y) ) (+ (- 3 x) y) y)))))

A Python program has been written that takes as input a BL-(in)equation in LATEX using standard in�x
notation and generates the SMT-LIB2 �le for this identity. Calling a SMT-solver with this �le determines
if the (in)equation is valid in all BL-algebras, or produces a counterexample in a suitable ordinal sum of
standard MV-algebras.

2. Finitely generated varieties of BL-algebras

It is well known that subdirectly irreducible BL-algebras are linearly ordered (this is more generally true
for commutative prelinear residuated lattices). In the �nite case this means that they are simply n-element
chains. Every �nite subdirectly irreducible BL-algebra A is an ordinal sum of �nite MV-chains, hence the
structure of A is completely determined by the idempotent elements in the chain. The top and bottom of the
chain are always idempotent, so if A has n elements then there are 2n−2 choices for the idempotent elements,
and therefore 2n−2 nonisomorphic subdirectly irreducible BL-algebras. We will denote each of these algebras
by Ba1a2...am

where a1, a2, . . . , am is a list of positive integers, m is the number of join-irreducible idempotent
elements and ai is one greater than the number of non-idempotent elements between the ith idempotent
element and the (i + 1)th idempotent element in the chain, counting from the bottom. Note that with this
de�nition we have Ba1a2...am = MVa1 ⊕MVa2 ⊕ · · ·⊕MVam (where MVn is the n+1-element MV-chain and
⊕ is the adjoined ordinal sum). Hence B11...1 (with n 1's in the subscript) is the n-element linear Heyting
algebra, Bn = MVn, B1 is the 2-element Boolean algebra, and we use B0 to denote the trivial algebra. In
particular, any �nite BL-chain is determined by a unique �nite sequence of positive integers. The length of
the chain is always a1 + a2 + · · ·+ am + 1.

A variety V of algebras of �nite similarity type is said to be �nitely generated if V = HSP (K) for some �nite
set K of �nite algebras. If, in addition, V is congruence distributive then by Jónsson's lemma the subdirectly
irreducible members of V are all contained in HS(K), hence there are only �nitely many such members. In
particular, for two �nite subdirectly irreducible algebras A,B of the same type, HSP (A) ⊆ HSP (B) if and
only if A ∈ HS(B), and we write A ≤HS B in case the latter relation holds. Since HSHS = HS, this relation
is a partial order on isomorphism classes of �nite subdirectly irreducible algebras. Any variety is determined
by it subdirectly irreducible members, hence the lattice of �nitely generated subvarieties is isomorphic to the
lattice of �nite downsets of this partial order.

Lemma 2. Let A,B be �nite subdirectly irreducible GBL-algebras. Every subalgebra of B is subdirectly

irreducible, and if A is a homomorphic image of B then A is a subalgebra of B. Hence A ∈ HS(B) if and
only if A ∈ S(B).
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The preceding result simpli�es calculating the ≤HS partial order relation between subdirectly irreducible
GBL-algebras. Komori gave a complete description of the lattice of subvarieties of MV-algebras, showing
that it is countable and that the ≤HS poset of �nite subdirectly irreducible MV-algebras is isomorphic to the
divisibility lattice D = (N \ {0}, |), with MVm ≤HS MVn if and only if m|n. Here we describe the ≤HS poset
for �nite s.i. BL-algebras. As observed previously, these algebras are chains determined by �nite sequences
of positive integers.

Theorem 3. The ≤HS poset of �nite s.i. BL-algebras is isomorphic to D∗ =
⋃∞

n=0 Dn with the order on

D∗ extending the pointwise divisibility order on each component by (a1, . . . , am) ≤ (b1, . . . , bn) if and only if

there exists an injection f : {1, . . . ,m} → {1, . . . , n} such that f(1) = 1 and ai|bf(i) for all i ∈ {1, . . . ,m}.
The order relation (a1, . . . , am) ≤ (b1, . . . , bn) is a covering relation if and only if either

• m = n and (b1, . . . , bn) = (a1, . . . , ai−1, pai, ai+1, . . . , an) for some prime p and a unique i ≤ n, or
• m+ 1 = n and (b1, . . . , bn) = (a1, . . . , ai−1, 1, ai, . . . , am) for some i ∈ {2, . . . , n}.

A schematic diagram of the HS-poset is shown in the Appendix.

3. Mapping finite GBL-algebras to finite closure algebras

Recall that �nite GBL-algebras are poset products of �nite Wajsberg chains (= 0-free reducts of MV-
chains) [10]. The poset product does not dependent on the divisibility law, hence we �rst consider the more
general setting of poset products of bounded integral simple residuated chains.

Recall that an algebra is simple if it only has two congruence relations. An element c in a monoid is
central if it commutes with every element of the monoid, and it is idempotent if cc = c. For any negative
central idempotent c in a residuated lattice, the principal �lter ↑c is a normal �lter and hence determines a
congruence of the residuated lattice. Let C be the class of all bounded simple residuated chains, where we
denote the bounds by 0, 1 and assume that 1 is the monoid identity. By simplicity 0, 1 are the only central
idempotents of each member of C.

Let P be a poset. The (dual) poset product of a family {Ci : i ∈ P} ⊆ C is de�ned on a subset of the
cartesian product by

∏
P

Ci = {f ∈
∏
i∈P

Ci : ∀i > j ∈ P (f(i) = 0 or f(j) = 1)}.

The operations ∧,∨, · are de�ned pointwise and the bounds are the constant functions 0,1. The residuals
are given by

(f\g)(i) =

{
f(i)\g(i) if f(j) ≤ g(j) for all j < i

0 otherwise
(g/f)(i) =

{
g(i)/f(i) if f(j) ≤ g(j) for all j < i

0 otherwise.

It is shown in [10] that a (dual) poset product (called poset sum in that paper) of bounded integral residuated
lattices is again a bounded residuated lattice, and if the factors are divisible, so is the poset product. Hence
a poset product of GBL-algebras is also a GBL-algebra. Since we are assuming that the factors are simple,
the only central idempotents in the resulting poset product will be the functions with range 0, 1. Moreover,
every �nite GBL-algebra is (isomorphic to) a poset product of Wajsberg chains [10]. These linearly ordered
factors are completely determined by their cardinality, so a �nite GBL-algebra is determined by a �nite
preorder v, where the blocks of the equivalence relation v ∩ w contain the elements of each Wajsberg chain.
Homomorphisms between �nite GBL-algebras correspond to certain p-morphisms between the preorders,
hence the HS-poset of �nite subdirectly irreducible GBL-algebras can be characterized in this way.

A preorder also determines a Kripke model of the modal logic S4, so every �nite GBL-algebra can be
mapped to a �nite closure algebra. Moreover, the homomorphisms between �nite GBL-algebras are homo-
morphisms between the corresponding closure algebras (however the converse does not hold).

Theorem 4. There is a functor, faithful on objects, from the category of �nite GBL-algebras to the category

of �nite closure algebras and hence also to its dual category of preorders with p-morphisms.

Current research is aiming to extend this functor to larger categories, such as the category of complete
perfect n-potent GBL-algebras.
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4. Appendix
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Figure 4.1. HS-poset of subdirectly irreducible BL-algebras


