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Involutive residuated posets

An involutive residuated poset is of the form (A, <,-, ~,—,0) such that

@ (A, <) is a poset (i.e., < is reflexive, antisymmetric, transitive),
@ - is an associative operation on A: (xy)z = x(yz), and

QO x<y < x-~y<0 < —y-x<0 forall x,yeA
The element —0 is denoted by 1, and x - y is usually written xy.

Also define x + y = ~(—y - —x) (not necessarily commutative).
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Involutive residuated posets

Lemma
Involutive residuated posets have the following properties:
Q ~—x=x=—~x
QO X<y << ~y<~x < —y<—X
Q@ lx=x=x1
Q@Q1=~0 -1=~1=0
Q@ ~(—y —x)=—(~y ~x)
QO xy<z <<= y<~(—z-x) <= x<—(y-~2)
Hence they are residuated po-monoids with residuals x\y = ~(—y - x)
and x/y = —(y - ~x), and - is order-preserving in both arguments.
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Involutive residuated posets

Involutive “residuation”: x <y <= x-~y<0 < —-y-x<0

Proof of (1): ~—x = x = —~x.
—x<y « —x-~y <0 < ~y < x (dual Galois connection).
Therefore —x < —x = ~—x < x, hence ~—~—x < ~—x < x.

Equivalently —x < —~—x.
Similarly ~—x < ~—x = —~—x < —x, hence —~—x = —x.

Now x < x =— —x-x<0,s0—~—x-x <0 and therefore x < ~—x.

This proves ~—x = x, and —~x = x follows similarly. ]

(2)-(6) are also easy to derive.
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Involutive residuated posets are a po-variety

The class of involutive residuated posets is denoted by InRP.

All operations are order-preserving or order-reversing in each argument,
hence this class forms a partially ordered quasivariety (Pigozzi 2004)

InRP is a partially ordered variety (or po-variety) defined by the
po-identities

(xy)z = x(yz), ~—x=x=—~x, ~0=-0
—0-x=x, —x-x<0, x-~(yx) <~y

together with the order-preservation of - and the order-reversal of ~, —.
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Integral, cyclic, commutative and idempotent InRPs

IInRP is the po-subvariety of integral (x < 1) InRPs
CyInRP is the po-subvariety of cyclic (~x = —x) InRPs
CInRP is the po-subvariety of commutative (xy = yx) InRPs
IdInRP is the po-subvariety of idempotent (xx = x) InRPs

Commutative — cyclic:

X<~y &= —~y x<0 = x-~—y <0 &= x<—y.

InRP

IInRP CyInRP IdInRP

CInRP
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Po-subvarieties of involutive residuated posets
InRP

IInRP CyInRP IdInRP

7

CylInRP CInRP

T T

ClinRP CldInRP
BA
[
O = one-element InRPs
Note: meet in the diagram = intersection (joins are not shown)

Integral + idempotent = Boolean

Cyclic + idempotent = commutative (more details and/or proofs later)
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Po-subvarieties of involutive residuated posets

InRP contains several well-known subclasses of (po-)algebras:

@ The variety of pointed groups is axiomatized by adding
x<y = x=ytoInRP.

@ The variety of groups is axiomatized by adding 0 = 1 to pointed
groups. Hence involutive residuated posets may be considered the
analogue of (pointed) groups over the category of posets.

@ The po-subvariety of pregroups (Lambek 1999) is obtained by
adding the identity xy = ~(—y - —x) to InRP.

@ The po-subvariety of partially ordered groups (Fuchs 1963, Glass
1999) is obtained by adding ~x = —x to pregroups.
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Po-subvarieties of involutive residuated posets

e Involutive pocrims (Raftery 2007) are defined as commutative
integral involutive residuated partially ordered monoids, hence
they are the same as ClInRP.

They are a class of algebras since x <y «<— —y-x=0.

Involutive pocrims include the subvarieties of IMTL-algebras,
MV-algebras and Boolean algebras.

@ The variety of involutive residuated lattices is the expansion of
InRP with a semilattice operation v suchthat x <y < xvy=y.

This class includes the subvarieties of lattice-ordered groups,
classical linear logic algebras (without exponentials), De Morgan
monoids and Sugihara algebras from relevance logic.
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Number of nonisomorphic po-algebras

Number of elements: n= |12 3|4 | 5 6 7 8
Residuated posets 1{2]5|28]|186 | 1795
Residuated lattices 1|]1|3|20 149 | 1488 | 18554 | 295292
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Number of nonisomorphic po-algebras

Number of elements: n= |12 |34 | 5 6 7 8
Residuated posets 1{2]5|28]|186 | 1795
Residuated lattices 1(1]3|20]| 149 | 1488 | 18554 | 295292
Comm. residuated posets 1/2|5|24|131| 1001
Comm. residuated lattices 1/1|3|16]100| 794 | 7493 | 84961
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Number of nonisomorphic idempotent InRPs

There are “very few” idempotent involutive residuated posets

[ n= [1]2[3[4[5[6[7[8]9[10[11[12[13] 14 ] 15 ] 16 |

IdnRP [ 1 [1]1|2[2[4]4[9[10|22]2453]61]134]157 | 343
IdinRL [ 1| 1| 1|22 4 |4|9|10]| 21224952114 121270
MV [1[1(1|2|1]|2[1[3[2 21|41 2]2]5
BA |[1|1|0|1]|0]|0]0[1]0]0]O0]0O]|O0O] O] O0]71

Most of the idempotent InRPs are lattice-ordered.

All with < 16 elements are commutative!

For an idempotent InRP define the monoid preorder by x C y < xy = x.

1 is the top of this preorder;
Note: If - is commutative then = is a (meet-)semilattice order.

Clearly the semilattice order = determines the moniod operation -

Peter Jipsen, Olim Tuyt, Diego Valota
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A typical finite commutative idempotent involutive RL

1
0
2
3
4

10

Figure: The lattice order and the monoid order for A € IdInRL
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The smallest commutative idempotent invol. res. poset

S

<10 E10
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The next two smallest idempotent invol. res. posets

0=1
<11,1 =111
% §0 =1
<112 C112=C1091
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Constants in cyclic idempotent involutive posets

A residuated lattice is said to be square-increasing if it satisfies the
identity x < x?, and square-decreasing if x*> < x.

Lemma

Given a square-increasing involutive residuated poset A,

0<1 < A isidempotent.

Proof.

It suffices to show that in a square-increasing involutive residuated poset,
0<1 < xx<x.

If A is square-decreasing then 00 < 0, and then 0 < 0\0 = 1.

Conversely, suppose that 0 < 1. Then —x = 0/x < 1/x, hence —xx < 1.
By square-increasing, —xx < (—x—x)x = —x(—xx) < —x1 = —x.

Hence, x < ~(—xx) = x\x, and therefore x? < x. O

v
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Boolean intervals in commutative IdInRLs

Corollary

In any idempotent involutive residuated poset 0 < 1. J

In an involutive residuated lattice, idempotence implies that 0 < 1 and
that ([0,1],-,+,—,0,1) is a Boolean algebra, where x + y = ~(—y - —x).

For A € CIdInRP, define the terms

0y = x-—x and

1y = -0y = —(x—x) = x + —x.

Define the monoid interval of x by By, = {ae A: 0, = aC 1,}

le., By ={acA:0,-a=0yand a-1, = a}
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Intervals in the monoid order of CldInRPs

Lemma

Fora,be [0,1], ac b <= a< b, hence By =B; = [0,1].

Lemma (PJ., Olim Tuyt, Diego Valota)
Let Ae CIdInRP, x € A and a€ B,. Then

Theorem (PJ., Olim Tuyt, Diego Valota)

Let A be a commutative idempotent involutive residuated poset.

Then for all x € A, (By, -, +, —,0x, 1x) is a Boolean algebra.
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Boolean intervals partition any CldInRP

The set of monoid intervals By actually partition A.

To see this, define a relation =g as follows for x,y € A

X =gy — 0x = 0y.

=g is easily seen to be an equivalence relation on A.
Let [x]o denote the equivalence class of an element x € A.

Theorem (PJ., Olim Tuyt, Diego Valota)
For all x € A, [x]o = Bx.
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A typical finite commutative idempotent involutive RL
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The smallest commutative idempotent invol. res. poset

S

<10 E10

Dark lines show the monoid order partitioned into Boolean intervals
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The next two smallest idempotent invol. res. posets

e

<111 E11,1
% %0 =1
<112 C112=C10®1

Dark lines show the monoid order partitioned into Boolean intervals
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Properties of cyclic idempotent involutive posets

Idempotence for cyclic involutive residuated posets is a strong restriction.

Lemma (José Gil-Ferez and PJ)
Any involutive idempotent residuated posets satisfies:
Q x(~x) < ~x and (—x)x < —x,
Q@ x(~x) < x and (—x)x < x.
Assuming cyclicity implies the following additional identities:
Q@ x(~x)x = x(~x),
Q x(~x) = (~x)x.
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Proof.
In any involutive residuated poset ~(yx) < ~(yx), so yx(~(yx)) <0,
whence x(~(yx)) < ~y.
@ Follows from this identity and idempotence by substituting x for y.
@ Replace x by ~x in the second identity of (1).
© Multiplying (1) by x on the right we obtain x(~x)x < (~x)x. By
cyclicity (~x)x < 0, and using idempotence gives xx(~x)x < 0, or
equivalently x(~x)x < ~x. Multiplying by x on the left shows that
x(~x)x < x(~x). Multiplying (2) by x(~x) on the left produces
x(~x)x(~x) < x(~x)x, whence x(~x) < x(~x)x follows from
idempotence. Therefore (3) holds.
© Again multiplying (1) by x on the right we obtain x(~x)x < (~x)x,
hence by (3) we get x(~x) < (~x)x. Using cyclicity we can replace x
by ~x to deduce the reverse inequality.

Ol
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Every cyclic idempotent involutive poset is commutative

Theorem (José Gil-Ferez and PJ)

Every cyclic idempotent involutive residuated poset is commutative.

Proof.

The identity y - ~(xy) < ~x holds in any InRL, hence

IN

xy - ~(xy) < x - ~x < ~x.

Applying (4) of the preceeding lemma on the left, we have ~(xy)xy < ~x,
from which we deduce ~(xy)xyx < (~x)x < 0. Therefore xyx < xy.

Now multiply both sides by y on the left and use idempotence to deduce
the identity yx < yxy. Renaming variables proves xyx = xy.

A similar argument shows xyx = yx, whence xy = xyx = yx. O
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A noncyclic idempotent involutive residuated lattice

There exist noncommutative idempotent involutive residuated lattices:

Example (Jése Gil-Ferez and PJ)

Let A=Z® {1} @ 7%, where @ is the ordinal sum.

Lattice order:

cra o <ag<ag<ai<a---<l<---bh<b<b<bi<b,---
Monoid preorder:
vrags=bscai=bicagpg=hca=bca=bc---c1
Linear negations:

1=0, ~a;=0b;, ~bj=ai1, —ai=bi;1, —bj=a;

Hence ~~a; = a;_1 and ——a; = a;;1 and the same for b;.

Conjecture: All finite idempotent involutive res. posets are commutative.
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Some partial results

Theorem
Finite idempotent involutive residuated chains are commutative. J

The following results have been obtained using Prover9 [McCune]

Theorem
© The po-subvariety of IdInRP determined by the identity ————x = x
satisfies ——x = x, hence is cyclic and thus commutative.
© The po-subvariety of IdInRP determined by the identity
—————— X = X satisfies ————x = x.

Let —,x be the term with n copies of —. Then —,x is a permutation on
A, hence if A is finite it satisfies —,x = —,x for some n> m > 0.
Applying m copies of ~ on both sides shows A satisfies —,_,,x = x.
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