Partially ordered varieties of idempotent residuated posets

Peter Jipsen

Chapman University

based on joint work with Jóse Gil-Ferez, Olim Tuyt (U. Bern) and Diego Valota (U. Milan)

> TACL, University of Nice June 17 - 21, 2019

Outline

- Involutive residuated posets
- Partially ordered subvarieties
- Number of finite members in some subvarieties
- Boolean decomposition of commutative idempotent involutive residuated posets
- Cyclic idempotent involutive residuated posets are commutative

Involutive residuated posets

An **involutive residuated poset** is of the form $(A, \leq, \cdot, \sim, -, 0)$ such that

- **1** (A, \leq) is a **poset** (i.e., \leq is reflexive, antisymmetric, transitive),
- ② · is an associative operation on A: (xy)z = x(yz), and

The element -0 is denoted by 1, and $x \cdot y$ is usually written xy.

Also define $x + y = \sim (-y \cdot -x)$ (not necessarily commutative).

Involutive residuated posets

Lemma

Involutive residuated posets have the following properties:

- 1x = x = x1
- $(-y \cdot -x) = -(\sim y \cdot \sim x)$

Hence they are **residuated po-monoids** with **residuals** $x \setminus y = \sim (-y \cdot x)$ and $x/y = -(y \cdot \sim x)$, and \cdot is **order-preserving** in both arguments.

Involutive residuated posets

Involutive "residuation": $x \le y \iff x \cdot \sim y \le 0 \iff -y \cdot x \le 0$

Proof of (1): $\sim -x = x = -\sim x$.

$$-x \leqslant y \iff -x \cdot \sim y \leqslant 0 \iff \sim y \leqslant x \text{ (dual Galois connection)}.$$

Therefore $-x \leqslant -x \implies \sim -x \leqslant x$, hence $\sim -\sim -x \leqslant \sim -x \leqslant x$.

Equivalently $-x \leq -\sim -x$.

Similarly
$$\sim -x \leqslant \sim -x \implies -\sim -x \leqslant -x$$
, hence $-\sim -x = -x$.

Now
$$x \leqslant x \implies -x \cdot x \leqslant 0$$
, so $- \sim -x \cdot x \leqslant 0$ and therefore $x \leqslant \sim -x$.

This proves $\sim -x = x$, and $-\sim x = x$ follows similarly.

(2)-(6) are also easy to derive.

Involutive residuated posets are a po-variety

The class of involutive residuated posets is denoted by InRP.

All operations are order-preserving or order-reversing in each argument, hence this class forms a **partially ordered quasivariety** (Pigozzi 2004)

InRP is a **partially ordered variety** (or po-variety) defined by the po-identities

$$(xy)z = x(yz), \quad \sim -x = x = -\sim x, \quad \sim 0 = -0$$

 $-0 \cdot x = x, \quad -x \cdot x \le 0, \quad x \cdot \sim (yx) \le \sim y$

together with the order-preservation of \cdot and the order-reversal of \sim , -.

Integral, cyclic, commutative and idempotent InRPs

IInRP is the po-subvariety of **integral** $(x \le 1)$ InRPs

CylnRP is the po-subvariety of cyclic ($\sim x = -x$) InRPs

CInRP is the po-subvariety of **commutative** (xy = yx) InRPs

IdInRP is the po-subvariety of **idempotent** (xx = x) InRPs

Commutative \implies cyclic:

$$x \leqslant \sim y \iff -\sim y \cdot x \leqslant 0 \iff x \cdot \sim -y \leqslant 0 \iff x \leqslant -y.$$

Po-subvarieties of involutive residuated posets

Note: meet in the diagram = intersection (joins are not shown)

 $Integral + idempotent \implies Boolean$

Cyclic + idempotent ⇒ commutative (more details and/or proofs later)

Po-subvarieties of involutive residuated posets

InRP contains several well-known subclasses of (po-)algebras:

- The variety of **pointed groups** is axiomatized by adding $x \le y \implies x = y$ to InRP.
- The variety of **groups** is axiomatized by adding 0 = 1 to pointed groups. Hence involutive residuated posets may be considered the analogue of (pointed) groups over the category of posets.
- The po-subvariety of **pregroups** (Lambek 1999) is obtained by adding the identity $xy = \sim (-y \cdot -x)$ to **InRP**.
- The po-subvariety of partially ordered groups (Fuchs 1963, Glass 1999) is obtained by adding $\sim x = -x$ to pregroups.

Po-subvarieties of involutive residuated posets

 Involutive pocrims (Raftery 2007) are defined as commutative integral involutive residuated partially ordered monoids, hence they are the same as CIInRP.

They are a class of **algebras** since $x \le y \iff -y \cdot x = 0$.

Involutive pocrims include the subvarieties of IMTL-algebras, MV-algebras and Boolean algebras.

• The variety of **involutive residuated lattices** is the expansion of InRP with a semilattice operation \vee such that $x \leqslant y \iff x \vee y = y$.

This class includes the subvarieties of lattice-ordered groups, classical linear logic algebras (without exponentials), De Morgan monoids and Sugihara algebras from relevance logic.

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464
Cyclic inv. res. posets	1	3	5	20	39	176	493	2461
Cyclic inv. res. lattices	1	1	2	9	21	101	279	1433

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464
Cyclic inv. res. posets	1	3	5	20	39	176	493	2461
Cyclic inv. res. lattices	1	1	2	9	21	101	279	1433
Comm. inv. res. posets	1	3	5	20	39	174	488	2399
Comm. inv. res. lattices	1	1	2	9	21	100	276	1392

Number of elements: n =	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464
Cyclic inv. res. posets	1	3	5	20	39	176	493	2461
Cyclic inv. res. lattices	1	1	2	9	21	101	279	1433
Comm. inv. res. posets	1	3	5	20	39	174	488	2399
Comm. inv. res. lattices	1	1	2	9	21	100	276	1392
Integ. inv. res. posets	1	1	1	3	3	13	17	84
Integ. inv. res. lattices	1	1	1	3	3	12	17	78

Number of elements: n =	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464
Cyclic inv. res. posets	1	3	5	20	39	176	493	2461
Cyclic inv. res. lattices	1	1	2	9	21	101	279	1433
Comm. inv. res. posets	1	3	5	20	39	174	488	2399
Comm. inv. res. lattices	1	1	2	9	21	100	276	1392
Integ. inv. res. posets	1	1	1	3	3	13	17	84
Integ. inv. res. lattices	1	1	1	3	3	12	17	78
Involutive pocrims $=$ CIInRP	1	1	1	3	3	12	15	73
Comm. int. inv. res. lattices	1	1	1	3	3	12	15	70

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464
Cyclic inv. res. posets	1	3	5	20	39	176	493	2461
Cyclic inv. res. lattices	1	1	2	9	21	101	279	1433
Comm. inv. res. posets	1	3	5	20	39	174	488	2399
Comm. inv. res. lattices	1	1	2	9	21	100	276	1392
Integ. inv. res. posets	1	1	1	3	3	13	17	84
Integ. inv. res. lattices	1	1	1	3	3	12	17	78
Involutive pocrims = $CIInRP$	1	1	1	3	3	12	15	73
Comm. int. inv. res. lattices	1	1	1	3	3	12	15	70
Idempotent inv. res. posets	1	1	1	2	2	4	4	9

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464
Cyclic inv. res. posets	1	3	5	20	39	176	493	2461
Cyclic inv. res. lattices	1	1	2	9	21	101	279	1433
Comm. inv. res. posets	1	3	5	20	39	174	488	2399
Comm. inv. res. lattices	1	1	2	9	21	100	276	1392
Integ. inv. res. posets	1	1	1	3	3	13	17	84
Integ. inv. res. lattices	1	1	1	3	3	12	17	78
Involutive pocrims = $CIInRP$	1	1	1	3	3	12	15	73
Comm. int. inv. res. lattices	1	1	1	3	3	12	15	70
Idempotent inv. res. posets	1	1	1	2	2	4	4	9
MV-algebras	1	1	1	2	1	2	1	3

Number of elements: $n =$	1	2	3	4	5	6	7	8
Residuated posets	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Comm. residuated posets	1	2	5	24	131	1001		
Comm. residuated lattices	1	1	3	16	100	794	7493	84961
Involutive res. posets	1	3	5	20	39	179	500	2525
Involutive res. lattices	1	1	2	9	21	101	284	1464
Cyclic inv. res. posets	1	3	5	20	39	176	493	2461
Cyclic inv. res. lattices	1	1	2	9	21	101	279	1433
Comm. inv. res. posets	1	3	5	20	39	174	488	2399
Comm. inv. res. lattices	1	1	2	9	21	100	276	1392
Integ. inv. res. posets	1	1	1	3	3	13	17	84
Integ. inv. res. lattices	1	1	1	3	3	12	17	78
Involutive pocrims = $CIInRP$	1	1	1	3	3	12	15	73
Comm. int. inv. res. lattices	1	1	1	3	3	12	15	70
Idempotent inv. res. posets		1	1	2	2	4	4	9
MV-algebras	1	1	1	2	1	2	1	3
Boolean algebras	1	1	0	1	0	0	0	1

Number of nonisomorphic idempotent InRPs

There are "very few" idempotent involutive residuated posets

n =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
IdInRP	1	1	1	2	2	4	4	9	10	22	24	53	61	134	157	343
IdInRL	1	1	1	2	2	4	4	9	10	21	22	49	52	114	121	270
MV	1	1	1	2	1	2	1	3	2	2	1	4	1	2	2	5
BA	1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1

Most of the idempotent InRPs are lattice-ordered.

All with ≤ 16 elements are **commutative!**

For an idempotent InRP define the **monoid preorder** by $x \sqsubseteq y \iff xy = x$.

1 is the **top** of this preorder; if \bot exists then $\bot \sqsubseteq x$

Note: If \cdot is **commutative** then \sqsubseteq is a (meet-)semilattice order.

Clearly the semilattice order \sqsubseteq determines the moniod operation \cdot

A typical finite commutative idempotent involutive RL

Figure: The lattice order and the monoid order for $\mathbf{A} \in IdInRL$

The **smallest** commutative idempotent invol. res. **poset**

⊑10

The next two **smallest** idempotent invol. res. **posets**

Constants in cyclic idempotent involutive posets

A residuated lattice is said to be **square-increasing** if it satisfies the identity $x \le x^2$, and *square-decreasing* if $x^2 \le x$.

Lemma

Given a square-increasing involutive residuated poset A,

 $0 \leqslant 1 \iff \mathbf{A}$ is idempotent.

Proof.

It suffices to show that in a square-increasing involutive residuated poset, $0 \le 1 \iff xx \le x$.

If **A** is square-decreasing then $00 \leqslant 0$, and then $0 \leqslant 0 \backslash 0 = 1$.

Conversely, suppose that $0 \le 1$. Then $-x = 0/x \le 1/x$, hence $-xx \le 1$.

By square-increasing, $-xx \leqslant (-x-x)x = -x(-xx) \leqslant -x1 = -x$.

Hence, $x \le \sim (-xx) = x \setminus x$, and therefore $x^2 \le x$.

Boolean intervals in commutative IdInRLs

Corollary

In any **idempotent** involutive residuated poset $0 \leq 1$.

In an involutive residuated lattice, idempotence implies that $0 \le 1$ and that $([0,1],\cdot,+,-,0,1)$ is a Boolean algebra, where $x+y=\sim (-y\cdot -x)$.

For $A \in CldInRP$, define the terms

$$0_x = x \cdot -x$$
 and

$$1_x = -0_x = -(x \cdot -x) = x + -x.$$

Define the **monoid interval of** x by $\mathbb{B}_x = \{a \in A : 0_x \sqsubseteq a \sqsubseteq 1_x\}$

I.e.,
$$\mathbb{B}_{x} = \{a \in A : 0_{x} \cdot a = 0_{x} \text{ and } a \cdot 1_{x} = a\}$$

Intervals in the monoid order of CldInRPs

Lemma

For $a,b\in[0,1]$, $a\sqsubseteq b\iff a\leqslant b$, hence $\mathbb{B}_0=\mathbb{B}_1=[0,1]$.

Lemma (PJ., Olim Tuyt, Diego Valota)

Let $A \in \mathbf{CldInRP}$, $x \in A$ and $a \in \mathbb{B}_x$. Then

- \bullet $-a \in \mathbb{B}_x$, and

Theorem (PJ., Olim Tuyt, Diego Valota)

Let A be a commutative idempotent involutive residuated poset. Then for all $x \in A$, $(\mathbb{B}_x, \cdot, +, -, 0_x, 1_x)$ is a Boolean algebra.

Boolean intervals partition any CldInRP

The set of monoid intervals \mathbb{B}_{x} actually partition A.

To see this, define a relation \equiv_0 as follows for $x, y \in A$

$$x \equiv_0 y \iff 0_x = 0_y.$$

 \equiv_0 is easily seen to be an **equivalence relation** on A.

Let $[x]_0$ denote the equivalence class of an element $x \in A$.

Theorem (PJ., Olim Tuyt, Diego Valota)

For all $x \in A$, $[x]_0 = \mathbb{B}_x$.

A typical finite commutative idempotent involutive RL

The **smallest** commutative idempotent invol. res. **poset**

Dark lines show the monoid order partitioned into Boolean intervals

The next two **smallest** idempotent invol. res. **posets**

Dark lines show the monoid order partitioned into Boolean intervals

Properties of cyclic idempotent involutive posets

Idempotence for cyclic involutive residuated posets is a strong restriction.

Lemma (José Gil-Ferez and PJ)

Any involutive idempotent residuated posets satisfies:

- $(x) \le x$ and $(-x)x \le x$.

Assuming cyclicity implies the following additional identities:

- $(\sim x)x = x(\sim x),$
- $(\sim x) = (\sim x)x.$

Proof.

In any involutive residuated poset $\sim(yx)\leqslant\sim(yx)$, so $yx(\sim(yx))\leqslant0$, whence $x(\sim(yx))\leqslant\sim y$.

- Follows from this identity and idempotence by substituting x for y.
- 2 Replace x by $\sim x$ in the second identity of (1).
- **③** Multiplying (1) by x on the right we obtain $x(\sim x)x \le (\sim x)x$. By cyclicity $(\sim x)x \le 0$, and using idempotence gives $xx(\sim x)x \le 0$, or equivalently $x(\sim x)x \le \sim x$. Multiplying by x on the left shows that $x(\sim x)x \le x(\sim x)$. Multiplying (2) by $x(\sim x)$ on the left produces $x(\sim x)x(\sim x) \le x(\sim x)x$, whence $x(\sim x) \le x(\sim x)x$ follows from idempotence. Therefore (3) holds.
- Again multiplying (1) by x on the right we obtain $x(\sim x)x \leq (\sim x)x$, hence by (3) we get $x(\sim x) \leq (\sim x)x$. Using cyclicity we can replace x by $\sim x$ to deduce the reverse inequality.

Every cyclic idempotent involutive poset is commutative

Theorem (José Gil-Ferez and PJ)

Every cyclic idempotent involutive residuated poset is commutative.

Proof.

The identity $y \cdot \sim (xy) \leqslant \sim x$ holds in any InRL, hence

$$xy \cdot \sim (xy) \leqslant x \cdot \sim x \leqslant \sim x$$
.

Applying (4) of the preceding lemma on the left, we have $\sim(xy)xy\leqslant\sim x$, from which we deduce $\sim(xy)xyx\leqslant(\sim x)x\leqslant0$. Therefore $xyx\leqslant xy$.

Now multiply both sides by y on the left and use idempotence to deduce the identity $yx \leq yxy$. Renaming variables proves xyx = xy.

A similar argument shows xyx = yx, whence xy = xyx = yx.

A noncyclic idempotent involutive residuated lattice

There exist **noncommutative** idempotent involutive residuated lattices:

Example (Jóse Gil-Ferez and PJ)

Let $A = \mathbb{Z} \oplus \{1\} \oplus \mathbb{Z}^{\partial}$, where \oplus is the ordinal sum.

Lattice order:

$$\cdots a_{-2} < a_{-1} < a_0 < a_1 < a_2 \cdots < 1 < \cdots b_2 < b_1 < b_0 < b_{-1} < b_{-2} \cdots$$

Monoid preorder:

$$\cdots a_{-2} \equiv b_{-2} \sqsubset a_{-1} \equiv b_{-1} \sqsubset a_0 \equiv b_0 \sqsubset a_1 \equiv b_1 \sqsubset a_2 \equiv b_2 \sqsubset \cdots \sqsubset \mathbf{1}$$

Linear negations:

$$1 = 0$$
, $\sim a_i = b_i$, $\sim b_i = a_{i-1}$, $-a_i = b_{i+1}$, $-b_i = a_i$

Hence $\sim \sim a_i = a_{i-1}$ and $--a_i = a_{i+1}$ and the same for b_i .

Conjecture: All **finite** idempotent involutive res. posets are **commutative**.

Some partial results

Theorem

Finite idempotent involutive residuated chains are commutative.

The following results have been obtained using Prover9 [McCune]

Theorem

- The po-subvariety of IdInRP determined by the identity ----x = x satisfies --x = x, hence is cyclic and thus commutative.
- 2 The po-subvariety of IdInRP determined by the identity ----x = x satisfies ----x = x.

Let -nx be the term with n copies of -. Then -nx is a permutation on A, hence if A is **finite** it satisfies -nx = -mx for some $n > m \ge 0$. Applying m copies of \sim on both sides shows A satisfies -nmx = x.

Some references

- A. M. W. Glass: "Partially ordered groups." World Scientific, 1999.
- J. Lambek: *Type grammar revisited*, In A. Lecomte, F. Lamarche and G. Perrier, editors, Logical Aspects of Computational Linguistics, Springer LNAI 1582, 1999, 1–27.
- W. McCune: *Prover9 and Mace4*. www.cs.unm.edu/~mccune/prover9/, 2005-2010.
- D. Pigozzi: *Partially ordered varieties and quasivarieties*. Unpublished lecture notes, 2004, 1–26,
- orion.math.iastate.edu/dpigozzi/notes/santiago_notes.pdf.
- J. Raftery: On the variety generated by involutive pocrims. Reports on Mathematical Logic, 42, (2007), 71–86.

Thanks!