GENERALIZATIONS OF BOOLEAN PRODUCTS FOR
LATTICE-ORDERED ALGEBRAS

P. JIPSEN

Dedicated to Franco Montagna on the occasion of his 60th birthday

1. Introduction

Topological dualities have been very effective tools for various classes of algebras, such as Boolean algebras with Boolean spaces as duals, distributive lattices with Priestley spaces as duals, and Heyting algebras with Esakia spaces as duals. Boolean spaces have also been applied to the representation of algebras by Boolean powers and (weak) Boolean products, where the latter are also known as algebras of global sections of sheaves of algebras over Boolean spaces [2]. We define a poset product, a Priestley product, and an Esakia product of algebras (of any signature that includes two constants 0, 1), which generalize both Boolean products [2] and poset sums [10]. These products are then used to give representation results for some classes of residuated lattices. In particular, Theorem 12 shows that an FLw-algebra with any finite subalgebra of strongly central elements (i.e., elements c that satisfy \(c \land x = cx = xc \) for all \(x \)) decomposes as a poset product indexed by the dual poset of join irreducible elements of the subalgebra, which generalizes a similar result of [10] for finite GBL-algebras. Furthermore, Theorem 16 shows that any bounded \(n \)-potent GBL-algebra is an Esakia product of simple \(n \)-potent MV-algebras.

2. Boolean products and poset products

Let \(\{ A_i : i \in X \} \) be a family of algebras with the same fundamental operation symbols from a set \(F \). The direct (cartesian) product \(\prod_{i \in X} A_i \) of this family of algebras is of course the set of all functions \(f : X \to \bigcup_{i \in X} A_i \) such that \(f(i) \in A_i \) for all \(i \in X \) (i.e., choice

Date: September 9, 2008.
2000 Mathematics Subject Classification. Primary: 06F05, Secondary: 06D35, 03G10, 03G25.

Key words and phrases. Residuated lattices, generalized BL-algebras, basic logic, generalized MV-algebras, posets.
functions), with the operations defined pointwise, and with projections \(\pi_j : \prod_{i \in X} A_i \rightarrow A_j \).

It is not often the case that an algebra can be expressed as a direct product of simpler algebras, so various generalizations of products are used to obtain more widely applicable representation results. E.g. Birkhoff’s subdirect product represents algebras as subalgebras of direct products for which the projections are still surjective. Recall that a Boolean space is a set with a Boolean topology, defined as a topology that is compact and totally disconnected (i.e. distinct elements are separated by clopen sets, hence every Boolean space is Hausdorff). By Stone duality, clopen sets of a Boolean space \(X \) form a Boolean algebra \(A_X \), and the set \(X_A \) of ultrafilters of a Boolean algebra \(A \) carry a natural Boolean topology such that \(X_A \sim X \) and \(A_X \sim A \).

A weak Boolean product is a subdirect product \(A \leq \prod_{i \in X} A_i \) for which there exists a Boolean topology on the index set \(X \) such that for all \(f, g \in A \)

(i) the equalizer \([f = g] = \{ i \in X : f(i) = g(i) \}\) is open and

(ii) for all clopen \(U, f|_U \cup g|_{X-U} \in A \)

If “open” is replaced by “clopen” in (i) then \(A \) is a Boolean product of \(\{ A_i : i \in X \} \).

The Boolean power of an algebra \(B \) over a Boolean space \(X = (X, \tau) \) is

\[
B[X]^* = \{ f \in B^X : f^{-1}\{\{b\} \} \text{ is open for all } b \in B \}
\]

i.e. the set of continuous functions from \(X \) to \(B \), where \(B \) is considered to have the discrete topology. Every Boolean power is a Boolean product (see e.g. [2]), and if \(X \) is a finite set then both concepts reduce to the direct product (since any function on a finite domain can be constructed from a finite union of restrictions of functions in a subdirect product). Boolean products have been used in many settings to derive powerful decidability results and representation results for classes of algebras, see e.g. [3], [2] for discriminator algebras, [5] for lattices, [4] for MV-algebras, [7] for BL-algebras.

The poset product (introduced for residuated lattices in [10] as dual poset sum) uses a partial order on the index set to define a subset of the direct product. Specifically, let \(X = (X, \leq) \) be a poset, and assume the algebras \(A_i \) have two distinct constant operations denoted \(0, 1 \). A labeling of \(X \) is a choice function \(f : X \rightarrow \bigcup_{i \in X} A_i \). An antichain labeling \(f \) of \(X \) (or \(ac \)-labeling for short) is a labeling that satisfies

\[
f(i) = 0 \text{ or } f(j) = 1 \quad \text{for all } i < j \text{ in } X.
\]
The poset product of \(\{ A_i : i \in X \} \) is
\[
\prod_X A_i = \{ f \in \prod_{i \in X} A_i : f \text{ is an ac-labeling} \}.
\]

The poset product is distinguished visually from the direct product since the index set is a poset \(X \) rather than just a set \(X \). The terminology “antichain labeling” is explained by the following observation.

Lemma 1. Let \(X \) be a poset, and \(\{ A_i : i \in X \} \) a family of algebras with constants 0, 1. For a labeling \(f \) of \(X \) the following are equivalent.

(i) \(f \) is an antichain labeling.

(ii) \(\{ i \in X : f(i) \notin \{0, 1\} \} \) is a (possibly empty) antichain of \(X \), \(f^{-1}[\{0\}] \) is a downset of \(X \) and \(f^{-1}[\{1\}] \) is an upset of \(X \).

Proof. (i)\(\Rightarrow \) (ii): Assume \(f : X \to \bigcup_{i \in X} A_i \) is an ac-labeling, and consider \(i, j \in X \). If \(f(i), f(j) \notin \{0, 1\} \) then they are incomparable, hence the set of all elements labeled neither 0 nor 1 is an antichain. If \(f(j) = 0 \neq 1 \) and \(i < j \) then \(f(i) = 0 \) hence \(f^{-1}[\{0\}] \) is a downset, and dually for \(f^{-1}[\{1\}] \).

(ii)\(\Rightarrow \) (i): Assume (ii), suppose \(f \) is a labeling, and let \(i < j \). If \(f(i) \neq 0 \) then \(i \) is in the antichain of elements labeled neither 0 nor 1, or \(f(i) = 1 \). In either case we must have \(f(j) = 1 \), hence \(f \) is an ac-labeling. \(\square \)

For every labeling \(f \) of \(X \) there are two “projections” \(p_0(f) \) and \(p_1(f) \) into the poset product defined by

\[
p_0(f)(i) = \begin{cases}
 f(i) & \text{if } f(j) = 1 \text{ for all } j > i \\
 0 & \text{otherwise}
\end{cases}
\]

\[
p_1(f)(i) = \begin{cases}
 f(i) & \text{if } f(j) = 0 \text{ for all } j < i \\
 1 & \text{otherwise}
\end{cases}
\]

Now each basic operation \(o \in \mathcal{F} \) is defined on the poset product \(A \) by

\[
o^A(f_1, \ldots, f_n) = p_0(p^{\prod_{i \in X} A_i}(f_1, \ldots, f_n))
\]

where \(p^{\prod_{i \in X} A_i} \) is the usual pointwise operation on the direct product. A *poset power* is a poset product where all the factor algebras are identical to an algebra \(B \), in which case \(\prod_X A_i \) is denoted by \(B^X \).

Note that a poset product is not, in general, a subalgebra of the direct product. However, with some mild assumptions on the basic operations of the algebras, the following result shows that the poset sum is closed under pointwise defined operations. An element \(c \) in an algebra \(A \) is an *idempotent* of the operation \(o \) if \(o^A(c, c, \ldots, c) = c \), and the operation
is strict with respect to c if $o^A(x_1, \ldots, x_{i-1}, c, x_{i+1}, \ldots, x_n) = c$ for all $i \in \{1, \ldots, n\}$ and all $x_1, \ldots, x_n \in A$.

Lemma 2. Let $A = \prod_X A_i$ for some poset X and family $\{A_i : i \in X\}$. If $0, 1$ are idempotents of o and if o is strict with respect to 0 in each A_i, or strict with respect to 1 in each A_i then o^A is computed pointwise in A.

Proof. Suppose $0, 1$ are distinct idempotents and o is strict with respect to 0 in each A_i. For $f_1, \ldots, f_n \in A$, let f be the result of applying o to f_1, \ldots, f_n pointwise and consider $i < j$ in X. If $f_k(i) = 0$ for some $k \in \{1, \ldots, n\}$ then $f(i) = 0$ since o is strict, and if $f_k(i) \neq 0$ for all $k \in \{1, \ldots, n\}$ then $f_k(j) = 1$ for all k and hence $f(j) = 1$ since 1 is an idempotent. Therefore $p_0(f) = f \in A$, and the proof for o strict with respect to 1 is similar. □

Our main application of the poset product is to bounded lattice-ordered algebras, and specifically to bounded residuated lattices. In the most general setting, a lattice-ordered algebra (or ℓ-algebra) is any universal algebra that has a lattice reduct. However, one often assumes that the operations preserve joins or meets, or interchange joins or meets, in each argument. For example, ℓ-groupoids, unital ℓ-monoids, and ℓ-groups are defined as groupoids, unital groupoids, monoids and groups that are expanded with lattice operations and satisfy the identities $x(y \lor z) = xy \lor xz$ and $(x \lor y)z = xz \lor yz$.

They are **bounded** if there are constants \bot, \top denoting the bottom and top element of the lattice reduct.

A bounded residuated lattice $A = (A, \land, \lor, \cdot, \backslash, /, 1, \bot, \top)$ is a lattice-ordered monoid $(A, \land, \lor, \cdot, 1)$ such that for all $x, y, z \in A$

$x \cdot y \leq z \iff x \leq z/y \iff y \leq x \backslash z$

and \bot, \top are the bottom and top element of A (see e.g. [8]). For bounded residuated lattices the operations \land, \lor, \cdot satisfy the assumption of the previous lemma (with $0, 1$ replaced by \bot, \top), while $\backslash, /$ do not. The next result implies that the poset product of a family of bounded residuated lattices is again a bounded residuated lattice, and this motivates our choice of p_0 (rather than p_1) in the definition of operations on poset products.

Lemma 3. Let f be a labeling of a poset X and assume that the algebras A_i are partially ordered with 0 and 1 as bottom and top elements respectively. Then $p_0(f)$ is the largest element of $\prod_X A_i$ that is pointwise less or equal to f, and likewise $p_1(f)$ is the smallest element that is pointwise greater or equal to f.
3. Direct decompositions and Boolean products of \(\text{FL}_w \)-algebras

Mostly we consider integral bounded unital \(\ell \)-groupoids (or \(ibu \)-groupoids for short), i.e. they have the identity element 1 as top element, and in this case the bottom element is denoted by 0. A residuated \(\ell \)-groupoid (or \(r\ell \)-groupoid) is an \(\ell \)-groupoid for which the residuals \(\setminus, / \) exist relative to the groupoid operation. A \(FL_w \)-algebra is a residuated integral bounded \(\ell \)-monoid (see e.g. [8]).

A subset \(F \) of a residuated lattice \(A \) is a filter if \(F \) is up-closed, \(1 \in F \), and \(F \) is closed under the monoid operation and the meet operation.

A filter \(F \) is normal if it is closed under conjugation, i.e.
\[
x \in F \text{ and } y \in A \implies y \setminus (xy), (yx)/y \in F.
\]

For any residuated lattice, the lattice of normal filters is isomorphic to the congruence lattice via \(\theta \mapsto \uparrow \{x : (x, 1) \in \theta\} \) and \(F \mapsto \{ (x,y) : x \setminus y, y \setminus x \in F\} \). The congruence class of an element \(x \in A \) with respect to the congruence induced by the filter \(F \) is denoted by \(x/F \). A normal residuated lattice is one in which every filter is normal. For example every commutative residuated lattice is normal.

Before characterizing poset decompositions we consider some results about direct decompositions. An element \(c \) in an \(ibu \)-groupoid \(A \) is complemented if there exists \(c' \in A \) such that \(c \land c' = 0 \) and \(c \lor c' = 1 \).

The Boolean center of \(A \) is the set \(B(A) \) of all complemented elements.

The next result generalizes similar results for MV-algebras [4] and BL-algebras [7]. The first part is essentially from [1].

Lemma 4. Let \(A \) be an \(ibu \)-groupoid and let \(c \in B(A) \). Then

(i) \(x \land c = xc = cx \) for all \(x \in A \), hence the Boolean center is a Boolean sublattice of central idempotent elements.

(ii) If \(A \) is a residuated \(ibu \)-groupoid then \(B(A) \) is also closed under the residuals, the complement of \(c \) is \(-c = 0/c = c \setminus 0 \) and \(c \setminus x = x/c = -c \lor x \) for all \(c \in B(A) \) and \(x \in A \).

Proof. (i) Suppose \(A \) is an \(ibu \)-groupoid and \(c \land d = 0, c \lor d = 1 \). By integrality
\[
x \leq c \land x \leq (c \lor d)(c \land x) = c(c \land x) \lor d(c \land x) \leq cx \lor 0 = cx,
\]
and similarly \(xc \leq x \land c \leq xc \). Suppose we also have \(a \land b = 0, a \lor b = 1 \). To see that \(B(A) \) is a sublattice of \(A \), it suffices to show that \(a \lor c \) and \(b \land d \) are complements: \((a \lor c) \land (b \land d) = (a \lor c)bd = abd \lor cbd = 0 \) and \((a \lor c) \lor (b \land d) = a \lor c \lor b = a \lor c \lor d = a \lor c \lor b = 1 \).

Now \(B(A) \) is complemented by definition, and it is a distributive lattice since \(\cdot \) distributes over \(\lor \), hence it is a Boolean lattice.
(ii) For complements \(c, d\) and any \(x \in A\) we have \(c \setminus x = (c \lor d)(c \setminus x) = c(c \setminus x) \lor d(c \setminus x) \leq x \lor d\). On the other hand \(c(x \lor d) = cx \lor cd \leq x\) implies \(x \lor d \leq c \setminus x\). Hence \(c \setminus x = d \lor x\), and for \(x = 0\) we obtain \(-c = c\setminus 0 = d\). Therefore \(c \setminus x = -c \lor x\) for all \(x \in A\). The results for \(\lor\) follow similarly.

For an \(ib(r)ul\)-groupoid \(A\) and an element \(c \in B(A)\), define the relativized subalgebra \(Ac\) with universe \(Ac = \downarrow c\), unit \(1^A_c = c\), operations \(\land, \lor, \cdot\) restricted from \(A\), and \(a \setminus b = (a \setminus^Ac) \land c\), \(a / b = (a /^Ac) \land c\) for all \(a, b \in \downarrow c\).

Lemma 5. For any \(ib(r)ul\)-groupoid \(A\) and any \(c \in B(A)\), the relativized subalgebra \(Ac\) is an \(ib(r)ul\)-groupoid. If \(A\) is an FL\(_\omega\)-algebra then the map \(f : A \to Ac\) given by \(f(a) = ac\) is a homomorphism, hence \(Ac\) satisfies all identities that hold in \(A\).

Proof. By (i) of the preceding lemma, \(Ac\) has \(c\) as a unit and is closed under \(\land, \lor, \cdot\), hence it is an \(ibul\)-groupoid. If \(A\) has residuals then for all \(a, b, x \in Ac\) we have

\[
ax \leq b \iff x \leq^A a \setminus^A b \text{ and } x \leq^A c,
\]

whence \(a \setminus b = (a \setminus^Ac) \land c\), and similarly \(a / b = (a /^Ac) \land c\).

Now \(f(1) = 1c = 1^A_c\), \((a \land b)c = a \land b \land c = ac \land bc\) and \((a \lor b)c = ac \lor bc\) hence \(f\) preserves \(\land, \lor\). If \(\cdot\) is associative then \((ab)c = abc = (ac)(bc)\). In any residuated lattice \(x \land y \leq xz \land yz\), hence \(f(a \setminus^Ac) \leq f(a) \setminus f(b)\). For the opposite inequality, we have \(ac(ac \land bc) \leq bc \leq b\) and therefore \(c(ac \land bc) \leq a \setminus b\).

Theorem 6. If \(A\) is an FL\(_\omega\)-algebra and if \(c, d \in B(A)\) are complements then \(A \cong Ac \times Ad\).

Proof. Consider the map \(h : A \to Ac \times Ad\) defined by \(h(a) = (a \land c, a \land d)\). The preceding two lemmas show that \(h\) is a homomorphism, and \(h\) has an inverse given by \((x, y) \mapsto x \lor y\) since \(ac \lor ad = a(c \lor d) = a\) and for \(x \leq c, y \leq d\) we have \(((x \lor y)c, (x \lor y)d) = (xc \lor yc, xd \lor yd) = (x, y)\).

Conversely, any direct decomposition of an \(ib(r)ul\)-groupoid is obtained in this way, since the elements \((0, 1), (1, 0)\) are complements.

Corollary 7. An FL\(_\omega\)-algebra is directly indecomposable iff its Boolean center contains only the elements \(\{0, 1\}\).

The preceding results about direct decompositions are useful for a characterization of (weak) Boolean products of FL\(_\omega\)-algebras. We first recall a general characterization of weak Boolean products in terms of Boolean algebras of factor congruences from [13]. A (weak) Boolean
decomposition of \(A \) is an isomorphism from \(A \) to a (weak) Boolean product. A pair \(\theta, \psi \) of congruences of \(A \) are called factor congruences if \(\theta \cap \phi = \text{id}_A \) and \(\theta \circ \psi = A^2 \). A Boolean algebra of factor congruences is a set of factor congruences that is a Boolean algebra, with \(\cap \) and \(\circ \) as lattice operations.

Theorem 8. Let \(A \) be an algebra.

(i) Suppose \(K \) is a Boolean algebra of factor congruences on \(A \). For each prime filter \(F \) of \(K \), let \(\theta_F = \bigcup(K - F) \) and define \(\varepsilon : A \to \prod_{F \in X_K} A/\theta_F \) by \(\varepsilon(a)(F) = a/\theta_F \). Then \(\varepsilon \) is a weak Boolean decomposition of \(A \).

(ii) If \(X \) is a Boolean space and \(\varepsilon' : A \to \prod_{i \in X} A_i \) is any weak Boolean decomposition then there exists a unique Boolean algebra \(K \) of factor congruences, a homeomorphism \(k : X \to X_K \) and isomorphisms \(h_i : A_i \cong A/\theta_k(i) \) such that \(h_i \pi_i \varepsilon = \pi_k(i) \varepsilon' \).

The algebra \(K \) in (ii) is the set of congruences \(\psi_U = \cap \{\ker(\pi_i \varepsilon') : i \in U\} \) where \(U \) ranges over the clopen sets of \(X \). For an \(FL_w \)-algebra \(A \) the algebra of all factor congruences is isomorphic to \(B(A) \). The following result generalizes Theorem 2.1 in [7].

Corollary 9. Let \(A \) be a weak Boolean product of a nonempty family \(\{A_i : i \in X\} \) of non-trivial \(FL_w \)-algebras over a Boolean space \(X \) and let \(C = \{f \in A : f[A] \subseteq \{0, 1\}\} \). Then

(i) \(C \) is a subalgebra of \(B(A) \),

(ii) the map \(k(i) = \{f \in C : f(i) = 1\} \) is a homeomorphism from \(X \) onto \(X_C \),

(iii) \(A_i \) is isomorphic to \(A/\uparrow k(i) \), and

(iv) \(C \) coincides with \(B(A) \) iff all algebras \(A_i \) are directly indecomposable.

Conversely, suppose \(A \) is a nontrivial \(FL_w \)-algebra and \(C \) is a subalgebra of \(B(A) \). Then \(A \) is isomorphic to a weak Boolean product of \(\{A/\uparrow F : F \in X_C\} \).

Proof. (i) holds since \(f \in C \) implies \(f \setminus 0 \) is a complement of \(f \), and (ii) follows from the observation that the algebra \(A_X \) of clopen subsets of \(X \) is isomorphic to \(A_{X_C} \). The isomorphism in (iii) follows from (ii) of the preceding theorem, and the converse is from part (i) of the same result. \(\square \)
4. Embeddings and representations via poset products

A generalized BL-algebra or (GBL-algebra for short) is a residuated lattice that is divisible, i.e. satisfies

\[x \leq y \Rightarrow x = (x/y)y = y(y\setminus x). \]

This property is equivalent to an identity (replace \(x \) by \(x \wedge y \)), and implies that there are no idempotent elements above 1. Hence any bounded GBL-algebra is integral, and we again denote the bottom element by 0. As examples we list the following subvarieties:

- **BL-algebras** are bounded GBL-algebras that satisfy commutativity \((xy = yx)\) and prelinearity \((x\setminus y \vee y\setminus x = 1)\),
- **Heyting algebras** are bounded GBL-algebras in which all elements are idempotent (whence \(xy = x \wedge y \)),
- **pseudo-MV-algebras** are bounded GBL-algebras that satisfy \(x \wedge y = x/(y\setminus x) = (x/y)\setminus x \),
- **MV-algebras** in addition satisfy commutativity \(xy = yx \), and
- **Boolean algebras** are the intersection of Heyting algebras and (pseudo-)MV-algebras.

We now recall a result from [11] that gives sufficient conditions for an algebra to be embeddable into a poset product. There it is proved for integral GBL-algebras, and the factors are assumed to be totally ordered GMV-algebras. Since they need not have a lower bound, the factors are first embedded into bounded integral GMV-algebras. Here we state the result for \(FL_w \)-algebras in general, but note that the proof is essentially the same. The ordinal sum of two algebras \(B_0, B_1 \), each with constants 0, 1, is defined as \(B_0 \oplus B_1 = \prod_{2^\partial} B_i \), where \(2^\partial = \{0, 1\} \) is the two element poset with \(1 < 0 \). For \(ib(r)ul \)-groupoids this agrees with the usual definition of (amalgamated) ordinal sum where all elements of \(B_0 \) are less or equal to all elements of \(B_1 \).

Theorem 10. Let \(A \) be a \(FL_w \)-algebra, \(X \) a poset, and \(\{ F_i : i \in X \} \) a family of normal filters of \(A \) such that for all \(i \in X \)

1. \(A/F_i = B_i \oplus C_i \) where \(B_i, C_i \) are \(FL_w \)-algebras,
2. \(c \subseteq F_j \) for all \(c \in C_i \) and all \(j > i \),
3. for all \(a \notin F_i \) there exists \(j \geq i \) such that \(a/F_j \in C_j - \{1/F_j\} \),
4. \(\bigcap_{i \in X} F_i = \{1\} \).

Then \(A \) embeds into the poset product \(\prod_X C_i \).

In [11] this theorem is used to prove that every integral normal GBL-algebra embeds into a poset product of totally ordered integral bounded GMV-algebras. The key result that enables this application is the Blok-Ferreirim decomposition theorem for subdirectly irreducible integral...
normal GBL-algebras proved in [10]: every such algebra is isomorphic to an ordinal sum $B \oplus W$ where W is a nontrivial totally ordered integral GMV-algebra.

An algebra A is poset indecomposable if whenever A is isomorphic to a poset product $\prod X A_i$ there exists $i \in X$ such that $A \cong A_i$.

In [9] it is shown that every finite GBL-algebra is isomorphic to a (uniquely determined) poset product of totally ordered integral GMV-algebras, which are poset indecomposable. In the next section we augment poset products with a Boolean topology on the index poset, with the aim of extending the representation of finite GBL-algebras to a larger class of algebras.

For a residuated lattice A we define the set $I_A = \{ a \in A : a \wedge x = ax = xa \text{ for all } x \in A \}$. Recall from [9] that if A is a GBL-algebra then I_A is a subalgebra of A. For bounded GBL-algebras, I_A is in fact a Heyting algebra, and $B(A) = \text{the subalgebra of complemented elements of } I_A$. For MV-algebras $B(A) = I_A$.

Lemma 11. Let A be a FL$_w$-algebra and let $a, b \in I_A$ with $a \leq b$. Then the interval $[a, b] = \{ x \in A : a \leq x \leq b \}$ is a FL$_w$-algebra, with $0 = a$, $1 = b$, \wedge, \vee, \cdot inherited from A, and $x/y = (x^A y) \wedge b$, $x/y = (x^A y) \wedge b$. If A is a GBL-algebra, then so is $[a, b]$.

Proof. As in Lemma 5 $h(x) = xb$ is a homomorphism from A to Ab. For any integral residuated lattice B and idempotent $a \in B$, the principal ideal $\uparrow a$ is a subalgebra of B (see [8] Lemma 3.40). Therefore the GBL identity holds in $[a, b]$ if it holds in A.

We now generalize the poset decomposition result of [9] from finite GBL-algebras to FL$_w$-algebras.

Theorem 12. Consider a FL$_w$-algebra A with a finite subalgebra C such that $C \subseteq I_A$, and let X be the dual of the partially ordered set of completely join irreducible elements of C. If $Ac = \downarrow c_\ast \oplus [c_\ast, c]$ for all $c \in X$ then $A \cong \prod_X [c_\ast, c]$, where c_\ast is the unique lower cover of c in C and $[c_\ast, c]$ is an interval in A.

Proof. Let A be a FL$_w$-algebra with a subalgebra C that satisfies the assumptions of the theorem. We define the map $h : A \rightarrow \prod_X [c_\ast, c]$ by $h(a)(c) = ac \lor c_\ast$. To see that $f = h(a)$ is an element of the poset product, we have to show that if $c, d \in X$ and $c > d$ in C then $f(c) = c_\ast$ or $f(d) = d$. Assuming $f(c) \neq c_\ast$, we have $a \wedge c > c_\ast$, so $a > c_\ast \geq d$, and it follows that $f(d) = ad \lor d_\ast = d$.

We claim that h is a FL$_w$-algebra isomorphism. It suffices to show that h is an order-isomorphism that preserves the monoid structure.
(since order-isomorphisms always preserve the first-order definable lattice operations and residuals). We have \(h(1) = 1 \) since \(1c \lor c_\ast = c \), and the preservation of \(\cdot \) follows from \((ac \lor c_\ast)(bc \lor c_\ast) = abc \lor acc_\ast \lor bcc_\ast \lor c_\ast = (ab)c \lor c_\ast \).

The map \(h \) is clearly order-preserving, and to show it is a bijection, we define \(g : \prod_X [c_\ast, c] \rightarrow A \) by

\[
g(f) = \bigvee \{ f(c) : f(k) = k \} \quad \text{for all } k \in X \text{ with } k < c \}.
\]

Then \(g \) is also order-preserving, and it remains to show that it is the inverse of \(h \). Note that \(g(h(a)) = \bigvee \{ ac \lor c_\ast : ak = k \} \) for all \(k < c \} = \bigvee \{ ac : c_\ast \leq a \}, \) since we have \(c_\ast = \bigvee \{ k \in X : k < c \} \). Moreover, because \(C \) is finite, there is a smallest \(m \in C \) such that \(a \leq m \). For any \(c \in X \) with \(c \leq m \) we have \(c_\ast < ca \) or \(ca \leq c_\ast \), since \(A_c = 1_c \oplus [c_\ast, c] \). But \(ca \leq c_\ast \) implies \(a \leq c \setminus c_\ast \in C \), and by choice of \(m \) it follows that \(m \leq c \setminus c_\ast \), a contradiction. Hence \(c_\ast < ca \leq a \), and we obtain \(g(h(a)) = a(\bigvee \{ c : c_\ast \leq a \}) = am = a \).

Considering \(h(g(f)) \), we have \(h(g(f))(c) = g(f)c \lor c_\ast = \bigvee \{ f(d)c \lor c_\ast : f(k) = k \} \) for all \(k < d \}. \) If \(f(c) = c \) then \(f(k) = k \) for all \(k < c \), so \(f(c) \) is one of the joinands, hence \(h(g(f))(c) = f(c) \). On the other hand, if \(f(c) < c \) then \(h(g(f))(c) \geq f(c) \) (even in case \(f(k) < k \) for some \(k < c \), since then \(f(c) = c_\ast \)). We need to show that \(f(d)c \leq f(c) \) for all other joinands, i.e. whenever \(f(k) = k \) for all \(k < d \). In this case we know \(d \neq c \) since \(f(c) < c \). If \(d < c \) then \(f(d) \leq d \leq c_\ast \leq f(c) \), and if \(c, d \) are incomparable then \(c \land d \leq c_\ast \), hence \(f(d)c \leq dc \leq c_\ast \leq f(c) \). This concludes the proof that \(h(g(f)) = f \).

\[\square\]

5. Combining Boolean products and poset products

As observed in the previous sections, both Boolean products and poset products are a generalization of direct products. Even if all the factors of a Boolean product are complete lattices, the resulting algebra need not be complete. However for poset products the completeness of the factors implies the completeness of the poset product. So it is not possible to represent incomplete algebras by poset products of finite (or complete) algebras, without generalizing the poset product to include topological aspects.

A Priestley space \(X = (X, \leq, \tau) \) is a poset \((X, \leq)\) such that \(\tau \) is a compact totally order disconnected topology on \(X \), i.e. for all \(i \notin j \) in \(X \) there is a clopen upset \(U \) such that \(i \in U \) and \(j \notin U \). By the well known Priestley duality [6], the collection \(D_X \) of clopen upsets of \(X \) form a bounded distributive lattice under intersection and join, and from any distributive lattice \(D \) one can obtain a Priestley space \(X_D = \)
(X_D, ⊆, τ) by considering the set X_D of prime filters of D, ordered by inclusion, and with τ given by a basis \(\{ U_a \cap (X_D - U_b) : a, b \in D \} \) where \(U_a = \{ F \in X_D : a \in F \} \). Moreover, \(X_{D_X} \cong X \) and \(D_{X_D} \cong D \).

An Esakia space X is a Priestley space that satisfies the additional requirement that \(\downarrow U \) is clopen for every clopen set U. By compactness \(\downarrow K \) is closed for any closed set K, so it suffices to require that the \(\downarrow \) of any open set is open. The Esakia duality states that the clopen upsets of an Esakia space form a Heyting algebra \(A_X \) (with \(U \rightarrow V = X - \downarrow (U - V) \)), and the Priestley space \(X_A \) of any Heyting algebra A is in fact an Esakia space. As before, \(X_{A_X} \cong X \) and \(A_{X_A} \cong A \).

Let X be a Priestley space, and consider a family \(\{ A_i : i \in X \} \) of algebras with constants 0, 1. A weak Priestley product is a subalgebra A of the poset product \(\prod_{(X, \leq)} A_i \) such that for all \(f, g \in A \)

(i) \([f = g] \) is open,
(ii) for all clopen \(U \), if \(f|_U \cup g|_{X - U} \) is an ac-labeling then \(f|_U \cup g|_{X - U} \in A \), and
(iii) for each \(i \in X \) the projection \(\pi_i \) restricted to A is surjective.

As for Boolean products, A is a Priestley product A is obtained if “open” in (i) is replaced by “clopen”. The Priestley power \(B^X \) of an algebra B over a Priestley space X is the set of continuous functions in the poset power \(B^{(X, \leq)} \). Note that, in general, a Priestley power may not be closed under the operations of the poset power (consider, for example, a Priestley power of 2-element Heyting algebras over a non-Esakia space).

Lemma 13. If 0, 1 are idempotents of B, and each operation is strict with respect to 0 or 1 then every Priestley power of B is a Priestley product, hence a subalgebra of the poset product.

Proof. Under the assumptions on 0, 1, the poset product is a subalgebra of the direct product, so a Priestley product is just the intersection of a Boolean product and a poset product, and likewise for the Priestley power. Since every Boolean power is a Boolean product and every poset power is (by definition) a poset product, the result follows. □

Priestley products or powers can be used to give representations for many algebras that cannot be represented by Boolean products or powers since e.g. finite Priestley products are poset products rather than direct products.

However, the assumptions in the preceding lemma are too strong for an application to residuated lattices, which motivates the following refinement. A (weak) Esakia product is a (weak) Priestley product A such that
(iv) $p_0(f|_U \cup g|_{X-U}) \in A$ for all $f,g \in A$ and all clopen U.

Note that if the partial order on the Priestley space is an antichain, then both Priestley products and Esakia products reduce to Boolean products. Furthermore, Priestley powers over the 2-element distributive lattice are isomorphic to the distributive lattice of clopen upsets of the Priestley space, and similarly for Esakia powers of the 2-element Heyting algebra.

Lemma 14. For a weak Esakia product, the Priestley space X is necessarily an Esakia space.

Proof. Suppose U is a clopen set of X. We need to show that (iv) implies $\downarrow U$ is open. Note that the constant functions 0, 1 are in A, and let $f = 0|_U \cup 1|_{X-U}$. Then $p_0(f) \in A$ by (iv). We claim that $[p_0(f) = 0] = \downarrow U$, hence by (i) $\downarrow U$ is open. The claim follows from the following equivalent statements: $i \in [p_0(f) = 0]$ iff $p_0(f)(i) = 0$ iff $f(j) = 0$ for some $j \geq i$ iff $i \in \downarrow U$. □

A GBL-algebra is n-potent if it satisfies the identity $x^{n+1} = x^n$. Note that simple MV-algebras are n-potent iff they are totally ordered with \leq n elements.

Lemma 15. [10] Every n-potent GBL-algebra is integral and commutative, hence normal. It is subdirectly irreducible if and only if it has a maximal idempotent below 1.

It is proved in [9] that the poset product of GBL-algebras is again a GBL-algebra. The result below generalizes the representation of finite GBL-algebras as poset products of simple MV-algebras.

Theorem 16. Let A be a weak Esakia product of a family $\{A_i : i \in X\}$ of simple n-potent MV-algebras, and let $C = \{f \in A : f[X] \subseteq \{0, 1\}\}$. Then

(i) $C = I_A$,

(ii) the map $k : X \to X_C$ defined by $k(i) = \{f \in C : f(i) = 1\}$ is an order-preserving homeomorphism and

(iii) for all $i \in X$, $A/\uparrow A k(i)$ is subdirectly irreducible and its minimal nontrivial filter is isomorphic to A_i.

Conversely, suppose A is a nontrivial bounded n-potent GBL-algebra and let $C = I_A$. Then for each $F \in X_C$, $A/\uparrow A F$ is subdirectly irreducible and its minimal nontrivial filter A_F is a simple n-potent MV-algebra. Furthermore A is isomorphic to an Esakia product of $\{A_F : F \in X_C\}$.
Proof. (i) For $g \in C$, we have $f \wedge g = fg = gf$ for all $f \in A$ since $x \wedge 0 = x0 = 0x = 0$ and $1 \wedge x = 1x = x1 = x$ in any FLw-algebra, hence $C \subseteq I_A$. On the other hand, if $g \notin C$ then $g(i) \notin \{0, 1\}$ for some $i \in X$, and since simple MV-algebras only have 0, 1 as idempotents, we have $g(i)^2 \neq g(i)$, whence $g \notin I_A$.

(ii) holds because by Esakia duality $A_X \cong 2^X = C$ (where 2^X denotes the Esakia power) and k gives the correspondence between prime filters in these two isomorphic algebras.

(iii) Since $k(i)$ is a prime filter of the Heyting algebra C, the quotient $C/k(i)$ is subdirectly irreducible and hence has a coatom $f/k(i)$, where $f \in C$. Letting $F_i = \uparrow_A k(i)$ it follows that $f/F_i < 1/F_i$ is a maximal idempotent of A/F_i, and hence A/F_i is subdirectly irreducible. Note that $f \in C - k(i)$, whence $f(i) = 0$. The isomorphism between A_i and the finite chain above f/F_i is given by $b \mapsto f_b/F_i$ where f_b agrees with f except that $f_b(i) = b$.

For the converse, note that C is a Heyting algebra and let $F \in X_C$. Then F is a prime filter of C, so as before $A/\uparrow F$ is subdirectly irreducible and has a maximal idempotent $f/\uparrow F$ below the top 1. The algebra A_F is the interval $[f/\uparrow F, 1]$ which by n-potence is a finite simple MV-algebra. Using Theorem 10 it follows that the map $\varepsilon : A \rightarrow \prod_{F \in X_C} A_F$ given by

$$
\varepsilon(a)(i) = \begin{cases}
 a/\uparrow F & \text{if } a/\uparrow F \in A_F \\
 0 & \text{otherwise}
\end{cases}
$$

is an embedding into the poset product $\prod_{X_C} A_F$, and by construction $\varepsilon[A]$ is an Esakia product.

As mentioned earlier, if A is an MV-algebra then $I_A = B(A)$, so a representation of A as an Esakia product is in fact a Boolean product, hence for MV-algebras the preceding result reduces to the representation of n-potent MV-algebras as Boolean products of simple MV-algebras (see [4]).

References

CHAPMAN UNIVERSITY, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, ORANGE, CA 92866, USA

E-mail address: jipsen@chapman.edu