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Abstract

It is shown that the Boolean center of complemented elements in a bounded in-
tegral residuated lattice characterizes direct decompositions. Generalizing both
Boolean products and poset sums of residuated lattices, the concepts of poset
product, Priestley product and Esakia product of algebras are defined and used
to prove decomposition theorems for various ordered algebras. In particular, we
show that FLw-algebras decompose as a poset product over any finite set of join
irreducible strongly central elements, and that bounded n-potent GBL-algebras
are represented as Esakia products of simple n-potent MV-algebras.
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1. Introduction

Topological dualities have been very effective tools for various classes of
algebras, such as Boolean algebras with Boolean spaces as duals, distributive
lattices with Priestley spaces as duals, and Heyting algebras with Esakia spaces
as duals. Boolean spaces have also been applied to the representation of algebras
by Boolean powers and (weak) Boolean products, where the latter are also
known as algebras of global sections of sheaves of algebras over Boolean spaces
[2].

In Section 2 we recall the concept of (weak) Boolean product, and define
the poset product for algebras of any signature with two constants 0,1 (previ-
ously the latter notion was defined only for residuated lattices [10]). We prove
that under mild assumptions on the basic operations of the algebras, the poset
product is a subalgebra of the direct product. Section 3 contains general results
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about direct decompositions of integral bounded unital `-groupoids, based on
the Boolean center of complemented elements. In the next section we restate
an embedding result, proved for integral GBL-algebras in [11], so that it ap-
plies to FLw-algebras in general. Theorem 12 shows that an FLw-algebra with
any finite subalgebra of strongly central elements (i.e. elements c that satisfy
c ∧ x = cx = xc for all x) decomposes as a poset product indexed by the dual
poset of join irreducible elements of the subalgebra, which generalizes a similar
result of [10] for finite GBL-algebras. Finally in Section 5 we combine Boolean
products and poset products by defining the concept of Priestley product and
Esakia product. The latter notion is used to show that any bounded n-potent
GBL-algebra is an Esakia product of simple n-potent MV-algebras.

2. Boolean products and poset products

Let {Ai : i ∈ X} be a family of algebras with the same fundamental op-
eration symbols from a set F . The direct (cartesian) product

∏
i∈X Ai of this

family of algebras is of course the set of all functions f : X →
⋃

i∈X Ai such
that f(i) ∈ Ai for all i ∈ X (i.e. choice functions), with the operations defined
pointwise, and with projections πj :

∏
i∈X Ai � Aj .

It is not often the case that an algebra can be expressed as a direct product
of simpler algebras, so various generalizations of products are used to obtain
more widely applicable representation results. E.g. Birkhoff’s subdirect product
represents algebras as subalgebras of direct products for which the projections
are still surjective. Recall that a Boolean space is a set with a Boolean topology,
defined as a topology that is compact and totally disconnected (i.e. distinct
elements are separated by clopen sets, hence every Boolean space is Hausdorff).
By Stone duality, clopen sets of a Boolean space X form a Boolean algebra AX,
and the set XA of ultrafilters of a Boolean algebra A carry a natural Boolean
topology such that XAX

∼= X and AXA
∼= A. A weak Boolean product is a

subdirect product A ≤
∏

i∈X Ai for which there exists a Boolean topology on
the index set X such that for all f, g ∈ A

(i) the equalizer [[f = g]] = {i ∈ X : f(i) = g(i)} is open and
(ii) for all clopen U , f |U ∪ g|X−U ∈ A

If “open” is replaced by “clopen” in (i) then A is a Boolean product of {Ai :
i ∈ X}.

The Boolean power of an algebra B over a Boolean space X = (X, τ) is

B[X]∗ = {f ∈ BX : f−1[{b}] is open for all b ∈ B}

i.e. the set of continuous functions from X to B, where B is considered to
have the discrete topology. Every Boolean power is a Boolean product (see e.g.
[2]), and if X is a finite set then both concepts reduce to the direct product
(since any function on a finite domain can be constructed from a finite union of
restrictions of functions in a subdirect product). Boolean products have been
used in many settings to derive powerful decidability results and representation
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results for classes of algebras, see e.g. [3], [2] for discriminator algebras, [5] for
lattices, [4] for MV-algebras, [7] for BL-algebras.

The poset product (introduced for residuated lattices in [10] as dual poset
sum) uses a partial order on the index set to define a subset of the direct product.
Specifically, let X = (X,≤) be a poset, and assume the algebras Ai have two
distinct constant operations denoted 0, 1. A labeling of X is a choice function
f : X →

⋃
i∈X Ai. An antichain labeling f of X (or ac-labeling for short) is a

labeling that satisfies

f(i) = 0 or f(j) = 1 for all i < j in X.

The poset product of {Ai : i ∈ X} is∏
X

Ai = {f ∈
∏
i∈X

Ai : f is an ac-labeling}.

The poset product is distinguished visually from the direct product since the
index set is a poset X rather than just a set X. The terminology “antichain
labeling” is explained by the following observation.

Lemma 1. Let X be a poset, and {Ai : i ∈ X} a family of algebras with
constants 0, 1. For a labeling f of X the following are equivalent.

(i) f is an antichain labeling.
(ii) {i ∈ X : f(i) /∈ {0, 1}} is a (possibly empty) antichain of X, f−1[{0}] is a

downset of X and f−1[{1}] is an upset of X.

Proof. (i)⇒(ii): Assume f : X →
⋃

i∈X Ai is an ac-labeling, and consider
i, j ∈ X. If f(i), f(j) /∈ {0, 1} then they are incomparable, hence the set of all
elements labeled neither 0 nor 1 is an antichain. If f(j) = 0 6= 1 and i < j then
f(i) = 0 hence f−1[{0}] is a downset, and dually for f−1[{1}].

(ii)⇒(i): Assume (ii), suppose f is a labeling, and let i < j. If f(i) 6= 0 then
i is in the antichain of elements labeled neither 0 nor 1, or f(i) = 1. In either
case we must have f(j) = 1, hence f is an ac-labeling.

For every labeling f of X there are two “projections” p0(f) and p1(f) into
the poset product defined by

p0(f)(i) =

{
f(i) if f(j) = 1 for all j > i

0 otherwise

p1(f)(i) =

{
f(i) if f(j) = 0 for all j < i

1 otherwise

Now each basic operation o ∈ F is defined on the poset product A by

oA(f1, . . . , fn) = p0(o
∏

i∈X Ai(f1, . . . , fn))
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where o
∏

i∈X Ai is the usual pointwise operation on the direct product. A poset
power is a poset product where all the factor algebras are identical to an algebra
B, in which case

∏
X Ai is denoted by BX.

Note that a poset product is not, in general, a subalgebra of the direct
product. However, with some mild assumptions on the basic operations of the
algebras, the following result shows that the projections have no effect, and
hence the poset sum is closed under pointwise defined operations. An element
c in an algebra A is an idempotent of the operation o if oA(c, c, . . . , c) = c, and
the operation is strict with respect to c if oA(x1, . . . , xi−1, c, xi+1, . . . , xn) = c
for all i ∈ {1, . . . , n} and all x1, . . . , xn ∈ A.

Lemma 2. Let A =
∏

X Ai for some poset X and family {Ai : i ∈ X}. If 0, 1
are idempotents of o and if o is strict with respect to 0 in each Ai or strict with
respect to 1 in each Ai then oA is computed pointwise in A.

Proof. Suppose 0, 1 are distinct idempotents and o is strict with respect to 0
in each Ai. For f1, ..., fn ∈ A, let f be the result of applying o to f1, . . . , fn

pointwise and consider i < j in X. If fk(i) = 0 for some k ∈ {1, . . . , n} then
f(i) = 0 since o is strict, and if fk(i) 6= 0 for all k ∈ {1, . . . , n} then fk(j) = 1
for all k and hence f(j) = 1 since 1 is an idempotent. Therefore f is an ac-
labeling, and the proof for o strict with respect to 1 is similar. It follows that
p0(f) = p1(f) = f ∈ A.

Our main application of the poset product is to bounded lattice-ordered
algebras, and specifically to bounded residuated lattices. In the most general
setting, a lattice-ordered algebra (or `-algebra) is any universal algebra that
has a lattice reduct. However, one often assumes that the operations preserve
joins or meets, or interchange joins or meets, in each argument. For example, `-
groupoids, unital `-groupoids, `-monoids and `-groups are defined as groupoids,
unital groupoids, monoids and groups that are expanded with lattice operations
and satisfy the identities x(y ∨ z) = xy ∨ xz and (x ∨ y)z = xz ∨ yz. They are
bounded if there are constants ⊥,> denoting the bottom and top element of the
lattice reduct.

A bounded residuated lattice A = (A,∧,∨, ·, \, /, 1,⊥,>) is a lattice-ordered
monoid (A,∧,∨, ·, 1) such that for all x, y, z ∈ A

x · y ≤ z iff x ≤ z/y iff y ≤ x\z

and ⊥,> are the bottom and top element of A (see e.g. [8]). For bounded
residuated lattices the operations ∧,∨, · satisfy the assumption of the previous
lemma (with 0, 1 replaced by ⊥,>), while \, / do not. The next result implies
that the poset product of a family of bounded residuated lattices is again a
bounded residuated lattice, and this motivates our choice of p0 (rather than p1)
in the definition of operations on poset products.

Lemma 3. Let f be a labeling of a poset X and assume that the algebras Ai

are partially ordered with 0 and 1 as bottom and top elements respectively. Then
p0(f) is the largest element of

∏
X Ai that is pointwise less or equal to f , and

likewise p1(f) is the smallest element that is pointwise greater or equal to f .
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3. Direct decompositions and Boolean products of FLw-algebras

Mostly we consider integral bounded unital `-groupoids (or ibu`-groupoids
for short), i.e. they have the identity element 1 as top element, and in this case
the bottom element is denoted by 0. A residuated `-groupoid (or r`-groupoid)
is an `-groupoid for which the residuals \, / exist relative to the groupoid op-
eration. A FLw-algebra is a residuated integral bounded `-monoid (see e.g.
[8]).

A subset F of a residuated lattice A is a filter if F is up-closed, 1 ∈ F and
F is closed under the monoid operation and the meet operation. A filter F is
normal if it is closed under conjugation, i.e.

x ∈ F and y ∈ A imply y\(xy), (yx)/y ∈ F .

For a ∈ A and S ⊆ A, we let ↓Aa = {x ∈ A : x ≤ a}, ↓AS =
⋃
{↓Aa : a ∈ S},

and ↑Aa, ↑AS are defined dually (A is often omitted). For any residuated
lattice, the lattice of normal filters is isomorphic to the congruence lattice via
θ 7→ ↑{x : (x, 1) ∈ θ} and F 7→ {(x, y) : x\y, y\x ∈ F}. The congruence class
of an element x ∈ A with respect to the congruence induced by the filter F
is denoted by x/F . A normal residuated lattice is one in which every filter is
normal. For example every commutative residuated lattice is normal.

Before characterizing poset decompositions we consider some results about
direct decompositions. An element c in an ibu`-groupoid A is complemented if
there exists c′ ∈ A such that c∧c′ = 0 and c∨c′ = 1. The Boolean center of A is
the set B(A) of all complemented elements. The next result generalizes similar
results for MV-algebras [4] and BL-algebras [7]. The first part is essentially
from [1].

Lemma 4. Let A be an ibu`-groupoid and let c ∈ B(A). Then
(i) x ∧ c = xc = cx for all x ∈ A, hence the Boolean center is a Boolean

sublattice of central idempotent elements.
(ii) If A is a residuated ibu`-groupoid then B(A) is also closed under the

residuals, the complement of c is −c = 0/c = c\0 and c\x = x/c = −c∨ x
for all c ∈ B(A) and x ∈ A.

Proof. (i) Suppose A is an ibu`-groupoid and c∧d = 0, c∨d = 1. By integrality

cx ≤ c ∧ x = (c ∨ d)(c ∧ x) = c(c ∧ x) ∨ d(c ∧ x) ≤ cx ∨ 0 = cx,

and similarly xc ≤ x ∧ c ≤ xc. Suppose we also have a ∧ b = 0, a ∨ b = 1. To
see that B(A) is a sublattice of A, it suffices to show that a ∨ c and b ∧ d are
complements: (a∨ c)∧ (b∧ d) = (a∨ c)bd = abd∨ cbd = 0 and (a∨ c)∨ (b∧ d) =
a ∨ c ∨ bd = a ∨ c ∨ bc ∨ bd = a ∨ c ∨ b(c ∨ d) = a ∨ c ∨ b = 1.

Now B(A) is complemented by definition, and it is a distributive lattice
since · distributes over ∨, hence it is a Boolean lattice.

(ii) For complements c, d and any x ∈ A we have c\x = (c ∨ d)(c\x) =
c(c\x) ∨ d(c\x) ≤ x ∨ d. On the other hand c(x ∨ d) = cx ∨ cd ≤ x implies
x ∨ d ≤ c\x. Hence c\x = d ∨ x, and for x = 0 we obtain −c = c\0 = d.
Therefore c\x = −c ∨ x for all x ∈ A. The results for / follow similarly.
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For an ib(r)u`-groupoid A and an element c ∈ B(A), define the relativized
subalgebra Ac with universe Ac = ↓c, unit 1Ac = c, operations ∧,∨, · restricted
from A, and a\b = (a\Ab) ∧ c, a/b = (a/Ab) ∧ c for all a, b ∈ ↓c.

Lemma 5. For any ib(r)u`-groupoid A and any c ∈ B(A), the relativized
subalgebra Ac is an ib(r)u`-groupoid. If A is an FLw-algebra then the map
f : A → Ac given by f(a) = ac is a homomorphism, hence Ac satisfies all
identities that hold in A.

Proof. By (i) of the preceding lemma, Ac has c as a unit and is closed under
∧,∨, ·, hence it is an ibu`-groupoid. If A has residuals then for all a, b, x ∈ Ac
we have

ax ≤ b iff x ≤A a\Ab and x ≤A c iff x ≤ a\b,

and similarly a/b = (a/Ab) ∧ c, whence \, / are residuals of · in Ac.
Now f(1) = 1c = 1Ac, (a ∧ b)c = a ∧ b ∧ c = ac ∧ bc and (a ∨ b)c = ac ∨ bc

hence f preserves ∧,∨. If · is associative then (ab)c = abcc = (ac)(bc). In any
residuated lattice x\y ≤ zx\zy, hence f(a\Ab) ≤ f(a)\f(b). For the opposite
inequality, we have ac(ac\Abc) ≤ bc ≤ b, so c(ac\Abc) ≤ a\Ab, and therefore
(ac\Abc) ∧ c ≤ (a\Ab)c. This shows f(a)\f(b) ≤ f(a\Ab).

Theorem 6. If A is an FLw-algebra and if c, d ∈ B(A) are complements then
A ∼= Ac×Ad.

Proof. Consider the map h : A → Ac×Ad defined by h(a) = (a∧c, a∧d). The
preceding two lemmas show that h is a homomorphism, and h has an inverse
given by (x, y) 7→ x ∨ y since ac ∨ ad = a(c ∨ d) = a and for x ≤ c, y ≤ d we
have ((x ∨ y)c, (x ∨ y)d) = (xc ∨ yc, xd ∨ yd) = (x, y).

Conversely, any direct decomposition of an ib(r)u`-groupoid is obtained in
this way, since the elements (0, 1), (1, 0) are complements.

Corollary 7. An FLw-algebra is directly indecomposable iff its Boolean center
contains only the elements {0, 1}.

The preceding results about direct decompositions are useful for a charac-
terization of (weak) Boolean products of FLw-algebras. We first recall a general
characterization of weak Boolean products in terms of Boolean algebras of factor
congruences from [13]. A (weak) Boolean decomposition of A is an isomorphism
from A to a (weak) Boolean product. A pair θ, ψ of congruences of A are called
factor congruences if θ ∩ ψ = idA and θ ◦ ψ = A2. A Boolean algebra of factor
congruences is a set of factor congruences that is a Boolean algebra, with ∩ and
◦ as lattice operations.

Theorem 8. Let A be an algebra.

(i) Suppose K is a Boolean algebra of factor congruences on A. For each
prime filter F of K, let θF =

⋃
(K−F ) and define ε : A →

∏
F∈XK

A/θF

by ε(a)(F ) = a/θF . Then ε is a weak Boolean decomposition of A.
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(ii) If X is a Boolean space and ε′ : A →
∏

i∈X Ai is any weak Boolean
decomposition then there exists a unique Boolean algebra K of factor con-
gruences, a homeomorphism k : X → XK, and isomorphisms hi : Ai

∼=
A/θk(i) such that hiπiε

′ = πk(i)ε, where ε : A →
∏

i∈X A/θk(i) s given by
ε(a)(i) = a/θk(i).

The algebra K in (ii) is the set of congruences ψU = ∩{ker(πiε
′) : i ∈ U}

where U ranges over the clopen sets of X. For an FLw-algebra A the algebra of
all factor congruences is isomorphic to B(A). The following result generalizes
Theorem 2.1 in [7].

Corollary 9. Let A be a weak Boolean product of a nonempty family {Ai : i ∈
X} of non-trivial FLw-algebras over a Boolean space X and let C = {f ∈ A :
f [X] ⊆ {0, 1}}. Then

(i) C is a subalgebra of B(A),
(ii) the map k(i) = {f ∈ C : f(i) = 1} is a homeomorphism from X onto XC,
(iii) Ai is isomorphic to A/↑k(i), and
(iv) C coincides with B(A) iff all algebras Ai are directly indecomposable.

Conversely, suppose A is a nontrivial FLw-algebra and C is a subalgebra of
B(A). Then A is isomorphic to a weak Boolean product of {A/↑F : F ∈ XC}.

Proof. (i) holds since f ∈ C implies f\0 is a complement of f , and (ii) follows
from the observation that the algebra AX of clopen subsets of X is isomorphic to
C ∼= AXC

. The isomorphism in (iii) follows from (ii) of the preceding theorem,
and the converse is from part (i) of the same result.

4. Embeddings and representations via poset products

A generalized BL-algebra or (GBL-algebra for short) is a residuated lattice
that is divisible, i.e. satisfies

x ≤ y ⇒ x = (x/y)y = y(y\x).

This property is equivalent to an identity (replace x by x∧ y), and implies that
there are no idempotent elements above 1. Hence any bounded GBL-algebra is
integral, and we again denote the bottom element by 0. As examples we list the
following subvarieties:

• BL-algebras are bounded GBL-algebras that satisfy commutativity (xy =
yx) and prelinearity (x\y ∨ y\x = 1),

• Heyting algebras are bounded GBL-algebras in which all elements are
idempotent (whence xy = x ∧ y),

• GMV-algebras are GBL-algebras that satisfy x∧y = x/(y\x) = (x/y)\x),

• pseudo MV-algebras are bounded GMV-algebras,
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• MV-algebras in addition satisfy commutativity xy = yx, and

• Boolean algebras are the intersection of Heyting algebras and (pseudo-
)MV-algebras.

We now recall a result from [11] that gives sufficient conditions for an algebra
to be embeddable into a poset product. There it is proved for integral GBL-
algebras, and the factors are assumed to be totally ordered GMV-algebras. Since
they need not have a lower bound, the factors are first embedded into pseudo
MV-algebras. Here we state the result for FLw-algebras in general, but note
that the proof is essentially the same. The ordinal sum of two algebras B0,B1,
each with constants 0, 1, is defined as B0 ⊕B1 =

∏
2∂ Bi, where 2∂ = {0, 1} is

the two element poset with 1 < 0. For ib(r)ul-groupoids this agrees with the
usual definition of (amalgamated) ordinal sum where all elements of B0 are less
or equal to all elements of B1.

Theorem 10. Let A be a FLw-algebra, X a poset, and {Fi : i ∈ X} a family
of normal filters of A such that for all i ∈ X

(i) A/Fi = Bi ⊕Ci where Bi,Ci are FLw-algebras,
(ii) c ⊆ Fj for all c ∈ Ci and all j > i,
(iii) for all a /∈ Fi there exists j ≥ i such that a/Fj ∈ Cj − {1/Fj},
(iv)

⋂
i∈X Fi = {1}.

Then A embeds into the poset product
∏

X Ci.

In [11] this theorem is used to prove that every integral normal GBL-algebra
embeds into a poset product of totally ordered integral bounded GMV-algebras.
The key result that enables this application is the Blok-Ferreirim decomposition
theorem for subdirectly irreducible integral normal GBL-algebras proved in [10]:
every such algebra is isomorphic to an ordinal sum B⊕W where W is a non-
trivial totally ordered integral GMV-algebra and B is an integral GBL-algebra.

An algebra A is poset indecomposable if whenever A is isomorphic to a poset
product

∏
X Ai there exists i ∈ X such that A ∼= Ai.

In [9] it is shown that every finite GBL-algebra is isomorphic to a (uniquely
determined) poset product of totally ordered integral GMV-algebras, which are
poset indecomposable. In the next section we augment poset products with a
Boolean topology on the index poset, with the aim of extending the represen-
tation of finite GBL-algebras to a larger class of algebras.

For a residuated lattice A we define the set of strongly central elements
IA = {a ∈ A : a ∧ x = ax = xa for all x ∈ A}. Recall from [9] that if A is a
GBL-algebra then IA is a subalgebra of A. For bounded GBL-algebras, IA is in
fact a Heyting algebra, and B(A) is the subalgebra of complemented elements
of IA. For MV-algebras B(A) = IA.

Lemma 11. Let A be a FLw-algebra and let a, b ∈ IA with a ≤ b. Then the
interval [a, b] = {x ∈ A : a ≤ x ≤ b} is a FLw-algebra, with 0 = a, 1 = b, ∧,
∨, · inherited from A, and x\y = (x\Ay) ∧ b, x/y = (x/Ay) ∧ b. If A is a
GBL-algebra, then so is [a, b].
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Proof. As in Lemma 5, h(x) = xb is a homomorphism from A to Ab. For any
integral residuated lattice B and idempotent a ∈ B, the principal filter ↑a is
a subalgebra of B (see [8] Lemma 3.40). Therefore the GBL identity holds in
[a, b] if it holds in A.

We now generalize the poset decomposition result of [9] from finite GBL-
algebras to FLw-algebras. Recall that an element c in a lattice L is completely
join irreducible if, for any subset S of L, c =

∨
S implies c ∈ S. Equivalently,

c is completely join irreducible if there exists a unique element c∗ < c, called a
lower cover of c, such that no element of L is strictly between c∗ and c.

Theorem 12. Consider a FLw-algebra A with a finite subalgebra C such that
C ⊆ IA, and let X be the dual of the partially ordered set of completely join
irreducible elements of C. If Ac = ↓c∗⊕[c∗, c] for all c ∈ X then A ∼=

∏
X[c∗, c],

where c∗ is the unique lower cover of c in C and [c∗, c] is an interval in A.

Proof. Let A be a FLw-algebra with a subalgebra C that satisfies the assump-
tions of the theorem. We define the map h : A →

∏
X[c∗, c] by h(a)(c) = ac∨ c∗

(this is an element of [c∗, c] since c∗ ≤ ac ∨ c∗ ≤ C). To see that f = h(a) is an
element of the poset product, we have to show that if c < d in X (hence c > d
in C) then f(c) = c∗ (the 0 of [c∗, c]) or f(d) = d (the 1 of [d∗, d]). Assuming
f(c) 6= c∗, we have a ∧ c > c∗ since Ac = ↓c∗ ⊕ [c∗, c]. Therefore a > c∗ ≥ d,
and it follows that f(d) = ad ∨ d∗ = d.

We claim that h is a FLw-algebra isomorphism. It suffices to show that
h is an order-isomorphism that preserves the monoid structure (since order-
isomorphisms always preserve the first-order definable lattice operations and
residuals). We have h(1) = 1 since 1c∨ c∗ = c, and the preservation of · follows
from (ac ∨ c∗)(bc ∨ c∗) = acbc ∨ acc∗ ∨ bcc∗ ∨ c∗ = (ab)c ∨ c∗.

The map h is clearly order-preserving, and to show it is a bijection, we define
g :

∏
X[c∗, c] → A by

g(f) =
∨
{f(c) : f(k) = k for all k ∈ X with k <C c}.

Then g is also order-preserving, and it remains to show that it is the inverse
of h. For a ∈ A, note that g(h(a)) =

∨
{ac ∨ c∗ : ak = k for all k ∈ X with

k <C c} =
∨
{ac : c∗ ≤ a}, since we have c∗ =

∨
{k ∈ X : k < c}. Moreover,

because C is finite, there is a smallest m ∈ C such that a ≤ m. For any c ∈ X
with c ≤ m we have c∗ < ca or ca ≤ c∗ since Ac = ↓c∗ ⊕ [c∗, c]. But ca ≤ c∗
implies a ≤ c\c∗ ∈ C (since C is a subalgebra of A), and by choice ofm it follows
that m ≤ c\c∗, so c = cm ≤ c∗, contradicting c∗ < c. Hence c∗ < ca ≤ a, and
we obtain g(h(a)) = a(

∨
{c : c∗ ≤ a}) = am = a.

Now let f be an element of the poset product, and consider h(g(f)). We
have h(g(f))(c) = g(f)c ∨ c∗ =

∨
{f(d)c ∨ c∗ : f(k) = k for all k ∈ X with

k <C d} ∈ [c∗, c]. The elements f(d)c ∨ c∗ are refered to as the joinands of the
join. If f(c) = c then f(k) = k for all k < c, so f(c) is one of the joinands, hence
h(g(f))(c) = c = f(c). On the other hand, if f(c) < c then h(g(f))(c) ≥ f(c)
(even in case f(k) < k for some k < c, since then f(c) = c∗). We need to show
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that f(d)c ≤ f(c) for all joinands, i.e. whenever f(k) = k for all k < d. In this
case we know d 6> c since f(c) < c. If d < c then f(d) ≤ d ≤ c∗ ≤ f(c), and
if c, d are incomparable then c ∧ d ≤ c∗, hence f(d)c ≤ dc ≤ c∗ ≤ f(c). This
concludes the proof that h(g(f)) = f .

5. Combining Boolean products and poset products

As observed in the previous sections, both Boolean products and poset prod-
ucts are a generalization of direct products. Even if all the factors of a Boolean
product are complete lattices, the resulting algebra need not be complete. How-
ever for poset products the completeness of the factors implies the completeness
of the poset product. So it is not possible to represent incomplete algebras by
poset products of finite (or complete) algebras, without generalizing the poset
product to include topological aspects.

A Priestley space X = (X,≤, τ) is a poset (X,≤) such that τ is a compact
totally order disconnected topology on X, i.e. for all i 6≤ j in X there is a clopen
upset U such that i ∈ U and j /∈ U . By the well known Priestley duality [6],
the collection DX of clopen upsets of X forms a bounded distributive lattice
under intersection and join, and from any distributive lattice D one can obtain
a Priestley space XD = (XD,⊆, τ) by considering the set XD of prime filters of
D, ordered by inclusion, and with τ given by a basis {Ua∩(XD−Ub) : a, b ∈ D}
where Ua = {F ∈ XD : a ∈ F}. Moreover, XDX

∼= X and DXD
∼= D.

An Esakia space X is a Priestley space that satisfies the additional require-
ment that ↓U is clopen for every clopen set U . By compactness ↓K is closed
for any closed set K, so it suffices to require that the downset generated by any
open set is open. The Esakia duality states that the clopen upsets of an Esakia
space form a Heyting algebra AX (with U → V = X − ↓(U − V )), and the
Priestley space XA of any Heyting algebra A is in fact an Esakia space. As
before, XAX

∼= X and AXA
∼= A.

Let X be a Priestley space, and consider a family {Ai : i ∈ X} of algebras
with constants 0, 1. A weak Priestley product is a subalgebra A of the poset
product

∏
(X,≤) Ai such that for all f, g ∈ A

(i) [[f = g]] is open,
(ii) for all clopen U , if f |U ∪ g|X−U is an ac-labeling then f |U ∪ g|X−U ∈ A,

and
(iii) for each i ∈ X the projection πi restricted to A is surjective.

As for Boolean products, A is a Priestley product A is obtained if “open” in (i) is
replaced by “clopen”. The Priestley power BX of an algebra B over a Priestley
space X is the set of continuous functions in the poset power B(X,≤). Note
that, in general, a Priestley power may not be closed under the operations of
the poset power (consider, for example, a Priestley power of 2-element Heyting
algebras over a non-Esakia space).

Lemma 13. If 0, 1 are idempotents of B, and each operation is strict with
respect to 0 or 1 then every Priestley power of B is a Priestley product, hence
a subalgebra of the poset product.
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Proof. Under the assumptions on 0, 1, the poset product is a subalgebra of
the direct product, so a Priestley product is just the intersection of a Boolean
product and a poset product, and likewise for the Priestley power. Since every
Boolean power is a Boolean product and every poset power is (by definition) a
poset product, the result follows.

Priestley products or powers can be used to give representations for many
algebras that cannot be represented by Boolean products or powers since e.g.
finite Priestley products are poset products rather than direct products.

However, the assumptions in the preceding lemma are too strong for an
application to residuated lattices, which motivates the following refinement. A
(weak) Esakia product is a (weak) Priestley product A such that

(iv) p0(f |U ∪ g|X−U ) ∈ A for all f, g ∈ A and all clopen U .

Note that if the partial order on the Priestley space is an antichain, then both
Priestley products and Esakia products reduce to Boolean products. Further-
more, Priestley powers over the 2-element distributive lattice are isomorphic
to the distributive lattice of clopen upsets of the Priestley space, and similarly
Esakia powers of the 2-element Heyting algebra are isomorphic to the Heyting
algebra of clopen upsets of the given Esakia space.

Lemma 14. For a weak Esakia product, the Priestley space X is necessarily an
Esakia space.

Proof. Suppose U is a clopen set of X. We need to show that (iv) implies ↓U
is open. Note that the constant functions 0,1 are in A, and let f = 0|U∪1|X−U .
Then p0(f) ∈ A by (iv). We claim that [[p0(f) = 0]] = ↓U , hence by (i) ↓U is
open. The claim follows from the following equivalent statements: i ∈ [[p0(f) =
0]] iff p0(f)(i) = 0 iff f(j) = 0 for some j ≥ i iff i ∈ ↓U.

A GBL-algebra is n-potent if it satisfies the identity xn+1 = xn. Note that
simple MV-algebras are n-potent iff they are totally ordered and contain at most
n elements. The following result is from [10].

Lemma 15. Every n-potent GBL-algebra is integral and commutative, hence
normal. It is subdirectly irreducible if and only if it has a maximal idempotent
below 1.

It is proved in [9] that the poset product of GBL-algebras is again a GBL-
algebra. The result below generalizes the representation of finite GBL-algebras
as poset products of simple MV-algebras.

Theorem 16. Let A be a weak Esakia product of a family {Ai : i ∈ X} of
simple n-potent MV-algebras, and let C = {f ∈ A : f [X] ⊆ {0, 1}}. Then

(i) C = IA,
(ii) the map k : X → XC defined by k(i) = {f ∈ C : f(i) = 1} is an order-

preserving homeomorphism and
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(iii) for all i ∈ X, A/↑Ak(i) is subdirectly irreducible and its minimal nontriv-
ial filter is isomorphic to Ai.

Conversely, suppose A is a nontrivial bounded n-potent GBL-algebra and let
C = IA. Then for each F ∈ XC, A/↑AF is subdirectly irreducible and its
minimal nontrivial filter AF is a simple n-potent MV-algebra. Furthermore A
is isomorphic to an Esakia product of {AF : F ∈ XC}.

Proof. (i) For g ∈ C, we have f ∧ g = fg = gf for all f ∈ A since x ∧ 0 =
x0 = 0x = 0 and 1 ∧ x = 1x = x1 = x in any FLw-algebra, hence C ⊆ IA. On
the other hand, if g /∈ C then g(i) /∈ {0, 1} for some i ∈ X, and since simple
MV-algebras only have 0, 1 as idempotents, we have g(i)2 6= g(i), whence g /∈ IA.

(ii) holds because by Esakia duality AX
∼= 2X = C (where 2X denotes the

Esakia power) and k gives the correspondence between prime filters in these two
isomorphic algebras.

(iii) Since k(i) is a prime filter of the Heyting algebra C, the quotient C/k(i)
is subdirectly irreducible and hence has a coatom f/k(i), where f ∈ C. Letting
Fi = ↑Ak(i) it follows that f/Fi < 1/Fi is a maximal idempotent of A/Fi,
and hence A/Fi is subdirectly irreducible. Note that f ∈ C − k(i), whence
f(i) = 0. The isomorphism between Ai and the finite chain above f/Fi is given
by b 7→ fb/Fi where fb agrees with f except that fb(i) = b.

For the converse, note that C is a Heyting algebra and let F ∈ XC. Then
F is a prime filter of C, so as before A/↑F is subdirectly irreducible and has
a maximal idempotent f/↑F below the top 1. The algebra AF is the interval
[f/↑F, 1] which by n-potence is a finite simple MV-algebra. Using Theorem 10
it follows that the map ε : A→

∏
F∈XC

AF given by

ε(a)(i) =

{
a/↑F if a/↑F ∈ AF

0 otherwise

is an embedding into the poset product
∏

XC
AF , and by construction ε[A] is

an Esakia product.

As mentioned earlier, if A is an MV-algebra then IA = B(A), so a rep-
resentation of A as an Esakia product is in fact a Boolean product. Hence
for MV-algebras the preceding result reduces to the representation of n-potent
MV-algebras as Boolean products of simple MV-algebras (see [4]).
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