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Abstract

The poset product construction is used to derive embedding theorems for several
classes of generalized basic logic algebras (GBL-algebras). In particular it is
shown that every n-potent GBL-algebra is embedded in a poset product of
finite n-potent MV-chains, and every normal GBL-algebra is embedded in a
poset product of totally ordered GMV-algebras. Representable normal GBL-
algebras have poset product embeddings where the poset is a root system. We
also give a Conrad-Harvey-Holland-style embedding theorem for commutative
GBL-algebras, where the poset factors are the real numbers extended with −∞.
Finally, an explicit construction of a generic commutative GBL-algebra is given,
and it is shown that every normal GBL-algebra embeds in the conucleus image
of a GMV-algebra.
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1. Introduction

Generalized BL-algebras (GBL-algebras for short, cf [JT02], [GT05]) are di-
visible residuated lattices, that is, residuated lattices such that if x ≤ y, then
there exist z, u such that zy = yu = x. These algebras constitute a generaliza-
tion of several important classes of algebras. First of all, GBL-algebras include
(zero-free subreducts of) Heyting algebras, which are the algebraic counterpart
of intuitionistic logic. Moreover, as the name suggests, GBL-algebras are a
generalization of (the zero free subreducts of) BL-algebras, which constitute
the variety generated by the commutative and integral residuated lattices with
([0, 1],max,min, 0, 1) as lattice reduct, and with a monoid operation which is
continuous on [0, 1], called a continuous t-norm, cf [Haj98], [Ha98], [CEGT].
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BL-algebras have been introduced by Hàjek in [Haj98] as a general semantics
for fuzzy logics. Indeed BL-algebras include Chang’s MV-algebras [CDM00],
product algebras [Haj98] and Gödel algebras (i.e., representable Heyting al-
gebras, cf [Haj98]). But GBL-algebras are also a generalization of `-groups,
which are structures arising from classical algebra, cf [AF88] and [Gl99]. In-
deed, an `-group is a divisible residuated lattice, with residuals x\y = x−1y
and y/x = yx−1. Divisibility follows from the observation that for all x, y, if
z = xy−1 and u = y−1x then zy = yu = x. Thus GBL-algebras constitute a
bridge between algebraic logic and classical algebra.

In this paper we prove several embedding theorems for classes of GBL-
algebras. By embedding theorem we mean a theorem stating that every algebra
of a given class C embeds into an algebra in C having a special form. A typ-
ical example is a naive version of Stone’s theorem stating that every boolean
algebra embeds into a powerset boolean algebra. Embedding theorems are weak
versions of representation theorems. By this terminology we mean theorems
stating that every algebra of a given class C is isomorphic to an algebra in C
having a special form. An example of a representation theorem is the strong
version of Stone’s theorem, which says that every boolean algebra is isomorphic
to the algebra of closed and open sets of a totally disconnected and compact
topological space. The list of all important representation theorems in algebraic
logic (often expressed in terms of an equivalence of categories) would be too long
to be included in this introduction. We will only mention a few of them, which
are closely related to GBL-algebras, namely, Mundici’s equivalence Γ between
MV-algebras and abelian `-groups with strong unit [Mu86], recently extended
by Dvurečenskij [Dv02] to the non-commutative case, the categorical equiva-
lence between integral GMV-algebras and negative cones of ell groups with a
nucleus [GT05], the ordinal sum representation of totally ordered BL-algebras
[AM03], also extended by Dvurečenskij [Dv07] to the non-commutative case, or
even the representation of finite GBL-algebras as finite poset products of finite
MV-algebras, proved in [JM09]. But in the literature of `-groups we also find
embedding theorems, for instance Holland’s theorem stating that every `-group
embeds into the `-group of automorphisms of a totally ordered set, with compo-
sition as group operation and with lattice operations defined pointwise, or even
the Conrad-Harvey-Holland embedding of any abelian `-group into the abelian
`-group of functions from a root system into the reals, cf [AF88], [Gl99] (in fact,
the embedding is an isomorphism if the `-group is divisible in the sense that for
every element x and for every positive integer n there is a y such that yn = x,
but it is not an isomorphism in general).

Coming to the content of this paper, our aim is to generalize the ordinal
sum decomposition of [AM03] or of [Dv07] to classes of GBL-algebras. To this
purpose we will use the poset product construction introduced as (dual) poset
sum in [JM09], which is a common generalization of ordinal sums and of direct
products. The paper is organized as follows: in Section 3 we give a general
sufficient condition for embeddability into a poset product of a family of GBL-
algebras. Then in Section 4 we use this condition in order to prove that every
n-potent GBL-algebra embeds into the poset product of a family of finite n-
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potent MV-chains. Heyting algebras occur as a particular case, because they are
just 1-potent bounded GBL-algebras. In Section 5 we prove that every normal1

GBL-algebra embeds into a poset product of totally ordered GMV-algebras, and
that every commutative GBL-algebra embeds into the poset product of totally
ordered MV-algebras and totally ordered abelian `-groups. In Section 6 we show
that representable normal GBL-algebras correspond to poset products in which
the poset is a root system, and we characterize various classes of GBL-algebras
in terms of poset product embeddability. In Section 7 we combine the previous
embedding theorems with Hahn’s embedding theorem of totally ordered abelian
groups, thus proving that the above mentioned classes of GBL-algebras embed
into algebras of functions taking values in R∪{−∞}, whose structure is induced
only by the structure of the reals and by some orderings. Finally, in Section 8
we give an explicit construction of a strongly generic commutative GBL-algebra,
that is, of a GBL-algebra which generates the full variety of commutative GBL-
algebras as a quasivariety.

2. Basic notions

In this section we review some definitions and some known results about
residuated lattices, GBL-algebras, GMV-algebras and ordinal sums.

2.1. Residuated lattices
Definition 2.1. A residuated lattice (cf e.g. [BT03], [JT02]) is an algebra of
the form (L,∨,∧, ·, \, /, e) where (L,∨,∧) is a lattice, (L, ·, e) is a monoid and
\ and / are binary operations that are left and right residuals of ·, i.e., for all
x, y, z ∈ L

x · y ≤ z iff y ≤ x\z iff x ≤ z/y.

In the sequel the symbol · will often be omitted. We recall briefly the terminol-
ogy that is used throughout the paper.

Definition 2.2. A residuated lattice is said to be

• commutative if it satisfies xy = yx,

• integral if it satisfies x ≤ e,

• bounded if it has a minimum m (and hence a maximum m/m) and if the
signature has an additional constant symbol interpreted as m,

• divisible iff x ≤ y implies y(y\x) = (x/y)y = x;

• cancellative if uxv = uyv implies x = y, and

• representable if it is isomorphic to a subdirect product of totally ordered
residuated lattices.

1a residuated lattice is said to be normal iff every filter of it is a normal filter
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Figure 1: Inclusions between classes of residuated lattices

Note that `-groups (cf [AF88], [Gl99]) can be presented as residuated lattices
satisfying x(x\e) = e. As mentioned in the introduction, given an `-group we
obtain a cancellative and divisible residuated lattice letting x\y = x−1y and
y/x = yx−1. Conversely, from a residuated lattice satisfying x(x\e) = e we
obtain an `-group by letting x−1 = x\e = e/x.

In a commutative residuated lattice the operations x\y and y/x coincide and
are denoted by x→ y.

2.2. GBL-algebras and GMV-algebras
Definition 2.3. A residuated lattice is called a

• a GBL-algebra (cf [JT02] and [GT05]) if it is divisible,

• a GMV-algebra if it is a GBL-algebra that satisfies the equations y/((x\y)∧
e) = ((y/x) ∧ e)\y = x ∨ y,

• an MV-algebra if it is a commutative, integral and bounded GMV-algebra,

• a pseudo BL-algebra (psBL-algebra for short, cf [DGJ02]) if it is an integral
and bounded GBL-algebra satisfying (x\y) ∨ (y\x) = (y/x) ∨ (x/y) = e,

• a BL-algebra (cf [Haj98]) if it is a commutative, integral, bounded and
representable GBL-algebra,

• a Heyting algebra if it is a bounded GBL-algebra satisfying x · y = x ∧ y,

• a Gödel algebra if it is a representable Heyting algebra.

Figure 1. shows the inclusion relation among the classes covered in the
previous definition. In some papers, such as [GRW03], the terminology GMV-
algebra has also been used in a more restricted sense for algebras that are in
addition assumed to be bounded and integral. However we use the definition of
[JT02] and [GT05] since it is more general, and hence corresponds better to the
notion of generalized MV-algebra. For instance, `-groups are GMV algebras in
the sense of [GT05], but not in the sense of [GRW03].
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Definition 2.4. The negative cone of a residuated lattice L is the algebra L−

whose domain is {x ∈ L : x ≤ e}, whose lattice operations and whose monoid
operation are the restrictions to L− of the corresponding operations in L and
whose residuals \− are and /− are defined by x\−y = (x\y) ∧ e and y/−x =
(y/x) ∧ e, where \ and / denote the residuals of L. Thus in particular in
the negative cone of an `-group G the residuals are x\y = (x−1y) ∧ e and
y/x = (yx−1) ∧ e.

In [BCGJT] it is shown that the class of negative cones of `-groups, the class of
cancellative and integral GMV-algebras and the class of cancellative and integral
GBL-algebras coincide.

Proposition 2.5. (cf [GT05]). Any integral GMV-algebra satisfies the equation
x\y ∨ y\x = y/x∨ x/y = e. Thus every integral and bounded GMV-algebra is a
psBL-algebra.

Recall that a nucleus on a residuated lattice R is a unary operation γ satisfying
the following conditions:

• x ≤ y implies γ(x) ≤ γ(y),

• x ≤ γ(x),

• γ(γ(x)) = γ(x), and

• γ(xy) = γ(γ(x)γ(y)).

The first three conditions state the γ is a closure operator, and the last one is
called the nuclear condition. Nuclei were introduced for Heyting algebras and in
pointfree topology to characterize congruences on frames. They also correspond
to epimorphic images in the category of residuated lattices with morphisms the
monoid homomorphisms that are also residuated maps. Further information
can be found in [Ro90] and [MT].

The next proposition shows that any integral GMV-algebra can be repre-
sented by means of a negative cone of an `-group and a nucleus.

Proposition 2.6. (cf [GT05]).

(a) If G− is the negative cone of an `-group and γ is a nucleus on G−, then
the image γ(G−) of G− under γ is a GMV-algebra with respect to the
operations: x∨γ y = γ(x∨ y), x∧γ y = x∧ y, x ·γ y = γ(x · y), x\γy = x\y
and x/γy = x/y. The monoid unit is γ(e). Moreover since G− is a GMV-
algebra, by [GT05], Theorem 3.4, we have that γ(e) = e and γ preserves
finite joins.

(b) ([GT05], Theorem 3.12). For every integral GMV-algebra A, there are
a negative cone G− of an `-group and a nucleus γ on G−, such that
A = (γ(G−),∨γ ,∧γ , ·γ , \γ , /γ , γ(e)), with ·γ ,∨γ ,∧γ , /γ , \γ defined as in
(a). Moreover γ(G−) is a lattice filter of G−, that is, it is closed up-
wards and it is closed under ∧. Finally, by [GT05], Theorem 3.11, G− is
generated by γ(G−) as a monoid.
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(c) ([GT05], Theorem 5.2). Every GBL-algebra (hence, every GMV-algebra)
is a direct product of an `-group and an integral GBL-algebra (respectively
GMV-algebra).

Proposition 2.6 (c) allows us to concentrate on integral GBL-algebras.

Corollary 2.7. Any totally ordered GMV-algebra is either an `-group, or a
bounded and integral GMV-algebra, or the negative cone of an `-group.

Proof. By Proposition 2.6 (c), any GMV-algebra A decomposes as a product
of an `-group and an integral GMV-algebra. Thus if A is totally ordered, it is
either an `-group or an integral GMV-algebra. In the latter case, by Proposition
2.6 (b), there are a negative cone G− of an `-group G and a nucleus γ on G−

such that A = γ(G−) and G− is generated by A as a monoid. Moreover, γ(G−)
is a lattice filter of G−.

We claim that G− is totally ordered. First note that G− is an integral
GMV-algebra, therefore by Proposition 2.5 it satisfies (x\y) ∨ (y\x) = e. Thus
in order to prove that G− is totally ordered, it suffices to show that e is join
irreducible in G−. Now suppose x, y ∈ G− and x, y < e. Then, by Proposition
2.6 (b), x and y can be written as products of elements of A, say x =

∏n
i=1 xi

and y =
∏m
j=1 yj , where at least one xi and one yj are less than e. Moreover

x ≤ xi and y ≤ yj , since G− is integral, therefore x ∨ y ≤ xi ∨ yj < e, because
A is totally ordered.

We continue the proof of Corollary 2.7. If γ(G−) = G−, then A = G− is
the negative cone of an `-group. Otherwise, there is c such that c ∈ G− \γ(G−).
Since G− is totally ordered, and A is upward closed, c is a lower bound of A.
Now for all x ∈ G−, γ(x) is the smallest y ∈ γ(G−) such that x ≤ y. Thus γ(c)
is the minimum of A, and A is a bounded integral GMV-algebra.

Another connection between GMV-algebras and negative cones of `-groups
is the following: let G− be the negative cone of an `-group G, let G

−
be the

domain of G− and let ′ be a bijection between G− and a set G′ disjoint from
G−. Let GMV(G−) denote the following structure:

• The domain of GMV(G−) is G− ∪G′.

• Let ·,∨,∧, \, /, denote the operations of G− and let e denote its neutral
element. Then, observing that every element of G− ∪ G′ is either in G−

or has the form x′ for some (uniquely determined) x ∈ G−, the operations
·′,∨′,∧′, \′, /′ of GMV(G−) are defined as follows, for all x, y ∈ G−:

x ·′ y = x · y, x′ ·′ y = (y\x)′, x ·′ y′ = (y/x)′, x′ ·′ y′ = e′;

x ∨′ y = x ∨ y, x ∨′ y′ = y′ ∨′ x = x, x′ ∨′ y′ = (x ∧ y)′;

x ∧′ y = x ∧ y, x ∧′ y′ = y′ ∧′ x = y′, x′ ∧′ y′ = (x ∨ y)′;

x\′y = x\y, x\′y′ = (y · x)′, y′\′x = e, x′\′y′ = x/y;

y/′x = y/x, y′/′x = (x · y)′, x/′y′ = e, y′/′x′ = y\x.

Finally, e is both the top element and the neutral element of GMV(G−)
and e′ is its bottom element.
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Proposition 2.8. (cf [DDT08]). If G− is the negative cone of an `-group, then
GMV(G−) is an integral and bounded GMV-algebra. Moreover GMV(G−) is
totally ordered iff G− is totally ordered. Finally G− is both a subalgebra and a
normal filter of GMV(G−).

2.3. Ordinal sums of integral GBL-algebras
Usually the ordinal sum of two posets H1,H2 is defined as the disjoint union

with all elements of H1 less than all elements of H2 (and if H1 has a top and
H2 has a bottom, these two elements are often identified). However, for integral
GBL-algebras, in view of the decomposition result from [JM09] (Proposition 2.9
below), we need a slightly different definition that intuitively replaces the neutral
element e of H1 by the algebra H2. The precise definition is as follows:

Let H1 and H2 be two integral GBL-algebras, assume that H1 ∩H2 = {e},
and that e is join irreducible in H1 or that H2 has a minimum element m. Then
the ordinal sum H1⊕H2 of H1 and H2 has domain H1∪H2, and the operations
in H1 ⊕H2 are given by

• if x, y ∈ Hi then x � y = x �i y for i=1, 2 and � ∈ {·, \, /,∧} or i=2, � = ∨

• if x, y ∈ H1 \ {e} then x ∨ y = x ∨1 y if x ∨1 y < e, and x ∨ y = m if
x ∨1 y = e

• if x ∈ H1 \ {e}, y ∈ H2 then x\y = e = y/x, x · y = x ∧ y = x, x ∨ y = y

• if y ∈ H1 \ {e}, x ∈ H2 then x\y = y = y/x, x · y = x ∧ y = y, x ∨ y = x.

It is readily seen that if H1 and H2 are integral GBL-algebras then so is
H1 ⊕H2 (verification is left to the reader).

Note that if e is join-reducible in H1 and H2 has no minimum, then the ordi-
nal sum of H1 and H2 cannot be defined as above. In this case, an “extended”
ordinal sum may be obtained by taking the ordinal sum of (H1 ⊕W1) ⊕H2,
where W1 is the MV-algebra with two elements (i.e. the 2-element Boolean
algebra). The ordinal sum H1 ⊕W1 exists since W1 has a minimum element,
and (H1 ⊕W1)⊕H2 exists since e is join irreducible in W1.

A filter of a residuated lattice A is an upward closed subset F of A which is
closed under the monoid operation and the meet operation, and which contains
e. A filter F is said to be normal if whenever x ∈ F and y ∈ A, then y\(xy) ∈ F
and (yx)/y ∈ F . A normal filter F is said to be a value if there exists a ∈ A
such that F is maximal among all normal filters not containing a. Note that
values are precisely the completely meet irreducible elements in the lattice of
normal filters.

A residuated lattice is said to be normal if every filter of it is a normal filter.
As an easy consequence of [GOR08] (Cor. 10), we have that a residuated lattice
is normal iff for all x, y there is a natural number n such that x(y ∧ e)n ≤ yx
and (y ∧ e)nx ≤ xy. A residuated lattice is said to be n-potent if it satisfies
xn+1 = xn, where xn = x · . . . · x (n times). Note that n-potent GBL-algebras
are normal ([JM09] 3.6).

7



In every residuated lattice, the lattice of normal filters is isomorphic to
the congruence lattice: to any congruence θ one associates the normal filter
Fθ = ↑ {x : (x, e) ∈ θ}. Conversely, given a normal filter F , the set θF of all
pairs (x, y) such that x\y ∈ F and y\x ∈ F is a congruence such that the
upward closure of the congruence class of e is F . In particular, the variety of
residuated lattices is congruence regular at e.
Notation. Given a normal filter F of an integral residuated lattice A, A/F
denotes the quotient of A modulo the congruence θF determined by F and for
every a ∈ A, a/F denotes the equivalence class of a modulo θF . Moreover for
all G ⊆ A, G/F denotes the set {a/F : a ∈ G}. This notation, as well as the
use of \ to denote set-theoretic difference, conflicts with the notation used for
residuals. However, we believe that this should not create confusion, as elements
of a residuated lattices are usually denoted by lowercase letters and sets, filters,
etc. are usually denoted by capital letters.

In [JM09] the following result is proved.

Proposition 2.9. (i) Every subdirectly irreducible integral and normal GBL-
algebra is the ordinal sum of a proper subalgebra of it and of a non-trivial
integral subdirectly irreducible GMV-algebra.

(ii) Every n-potent GBL-algebra is commutative and integral.

Note that the above result would not hold if the ordinal sum of H1 ⊕H2 were
defined such that all elements of H1 are below all elements of H2. For example
the unit interval I = [0, 1] with ordinary multiplication and order is a subdirectly
irreducible normal (G)BL-algebra that decomposes as W1 ⊕ (0, 1] according to
our definition of ⊕, but would not decompose with a subalgebra as bottom
summand otherwise (since stacking (0, 1] on top of W1 is not isomorphic to I).

Ordinal sums can be generalized in an obvious way to the case of infinitely
many summands. In this case we consider a totally ordered set I of indices,
and for all i ∈ I we consider an integral GBL-algebra Hi such that for i 6= j,
Hi ∩Hj = {e} and for all i, e is join irreducible in Hi. Then the ordinal sum⊕

i∈I Hi is defined as follows:

• The universe of
⊕

i∈I Hi is
⋃
i∈I Hi, and the monoid operation is defined

by

x · y =

 x ·i y if x, y ∈ Hi (i ∈ I)
x if x ∈ Hi \ {e} , y ∈ Hj with i < j
y if y ∈ Hi \ {e} , x ∈ Hj with i < j

• The partial order on
⊕

i∈I Hi is the unique partial order ≤ such that e
is the top element with respect to ≤, the partial order ≤i on Hi is the
restriction of ≤ to Hi, and if i < j, then every element of Hi\{e} precedes
every element of Hj .

• The lattice operations and the residuals are uniquely determined by ≤
and by ·.
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The following representation theorem is proved in [AM03].

Proposition 2.10. Every totally ordered integral commutative GBL-algebra H
can be represented as an ordinal sum

⊕
i∈I Hi of commutative, integral and

totally ordered GMV-algebras. Moreover H is a BL-algebra iff I has a minimum
i0 and Hi0 is bounded.

Recently Dvurečenskij has shown that Proposition 2.10 extends to the non-
commutative case.

Proposition 2.11. (cf [Dv07]). Every totally ordered integral GBL-algebra H
can be represented as an ordinal sum

⊕
i∈I Hi of an indexed family of integral

and totally ordered GMV-algebras. Moreover H is a psBL-algebra iff I has a
minimum i0 and Hi0 is bounded.

3. Poset products and a general condition for poset product embed-
dability

In the sequel, given a poset P = (P,≤), its dual, denoted by Pd, is defined
as the poset (P,≥). The next definition is taken from [JM09], but we adjust
the terminology to match [Ji09] and use the dual order on the index set.

Definition 3.1. Let P = (P,≤) be a poset and let (Ap : p ∈ P ) be a collection
of residuated lattices. Up to isomorphism we can (and we will) assume that
all Ap share the same neutral element e and that all Ap which are bounded
share the same minimum element 0. Suppose that if p is not minimal, then
Ap is integral and if p is not maximal then Ap is bounded. The poset product⊗

p∈P Ap is the algebra defined as follows.

• The domain of
⊗

p∈P Ap is the set of all maps h on P such that for all
p ∈ P ,

(a) h(p) ∈ Ap and

(b) if h(p) 6= e, then for all q < p, h(q) = 0.

• The monoid operation and the lattice operations are defined pointwise.

• The residuals are defined by

(h\g)(p) =
{

h(p)\pg(p) if for all q > p h(q) ≤p g(q)
0 otherwise

(g/h)(p) =
{

g(p)/ph(p) if for all q > p h(q) ≤p g(q)
0 otherwise

where \p, /p,≤p denote the residuals and order in Ap.

Note that the function on P that is constantly e is always an element of
the poset product. Sometimes it is convenient, as in [JM09], to consider the
dual poset product, that is, the poset product

⊗
p∈Pd Ap of the same algebras
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but with respect to the dual poset Pd. Note that in the dual poset product
condition (b) must be replaced by the following condition.

(b’) if h(p) 6= e, then for all q > p, h(q) = 0.

Moreover the definition of residuals becomes

(h\g)(p) =
{

h(p)\pg(p) if for all q < p h(q) ≤p g(q)
0 otherwise

(g/h)(p) =
{

g(p)/ph(p) if for all q < p h(q) ≤p g(q)
0 otherwise .

In the sequel, we will often omit subscripts when there is no danger of confusion.
We first give several examples to illustrate the general applicability of poset
products.
Examples. (1). Suppose that ≤ is just equality on P . Then, every element
of P is both maximal and minimal. Therefore, the poset product

⊗
p∈P Ap

is defined for any family (Ap : p ∈ P ) of residuated lattices. Moreover, every
element of

∏
p∈P Ap is in

⊗
p∈P Ap, and all operations (including residuals) are

pointwise. Hence,
⊗

p∈P Ap is simply the direct product
∏
p∈P Ap.

(2) Suppose that (P,≤) is totally ordered and finite, say, P = {p1, . . . , pn}
with p1 > p2 > · · · > pn. Suppose further that Ap1 , . . . ,Apn are integral and
bounded residuated lattices. Then,

⊗
p∈P Ap is isomorphic to the ordinal sum

Ap1 ⊕ · · · ⊕Apn
(warning: the minimum elements of all Api

are identified in⊗
p∈P Ap, but not in Ap1⊕· · ·⊕Apn

, whilst the neutral elements are identified
in both constructions). An isomorphism Φ is defined as follows: for every
h ∈

⊗
p∈P Ap, if h is not constantly equal to e, then let ph ∈ P be maximal

such that h(ph) < e (if ph = p1, then h(p) < e for all p ∈ P ). Now if h is
constantly equal to e, let Φ(h) = e. Otherwise, let

Φ(h) =
{

h(ph) if h(ph) > 0
0i if h(ph) = 0 ,

where 0i is the minimum of Api . It is easy to check that Φ is an isomorphism.

(3) If (P,≤) is totally ordered but P is infinite, then it is still true that the
ordinal sum of all Ap embeds into their dual poset product under the embedding
Ψ defined by

Ψ(x)(p) =

 xp if x ∈ Ap
e if ∃q > p (x ∈ Aq\ {e})
0 if ∃q < p (x ∈ Aq\ {e})

where xp = x if x 6= min(Ap) and xp = 0 if x = min(Ap).
However, the ordinal sum of all Ap and their dual poset product are not

isomorphic in general: consider e.g. the poset Q of rational numbers with
the usual order ≤, and let all algebras Ap be boolean algebras (considered
as residuated lattices) with two elements. Then the ordinal sum of all Ap is
countable, while their dual poset product is not: for every downward closed
subset X of Q, the function hX defined by
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hX(p) =
{

e if p ∈ X
0 otherwise

is in
⊗

p∈Qd Ap, and hence
⊗

p∈Qd Ap has the same cardinality as the reals.

(4). Let X = (X,≤) be a poset, and let P↑(X) be the set of upward closed
subsets of X. Then P↑(X) becomes a Heyting algebra with respect to the
constants ∅ (bottom) and X (top) and with respect to the operations ∪, ∩ and
⇒, where for all Y,Z ∈ P↑(X), Y ⇒ Z = {x : ∀y ≥ x(if y ∈ Y, then y ∈ Z)}.
We denote such Heyting algebra by P↑(X). For the readers who are familiar
with Kripke frames for intuitionistic logic, the poset X is the Kripke frame
associated with the algebra P↑(X). Note that every Heyting algebra embeds
into one of the form P↑(X).

For every x ∈ X, let Ax denote the two element boolean algebra (considered
as a residuated lattice). Then the poset product

⊗
x∈X Ax is isomorphic to

P↑(X) under the isomorphism Φ defined, for all Y ∈ P↑(X) and for all x ∈ X,
by

Φ(Y )(x) =
{

e if x ∈ Y
0 otherwise.

In [JM09] the following is shown:

Proposition 3.2. (a) The poset product of a collection of residuated lattices
is a residuated lattice, which is integral (divisible, bounded respectively)
when all factors are integral (divisible, bounded respectively).

(b) Every finite GBL-algebra can be represented as the poset product of a finite
family of finite MV-chains.

Our aim is to extend Proposition 3.2 (b) to larger classes of GBL-algebras.
As we could not obtain a general representation theorem, we will present some
embedding theorems. To begin with, in this section we give a sufficient condition
for poset product embeddability. Recall that by Corollary 2.7, a totally ordered
integral GMV-algebra A is either bounded or the negative cone of an `-group.
In the first case we set A∗ = A and in the second case we set A∗ = GMV(A).
Note that in either case A∗ is a totally ordered and bounded GMV-algebra and
that A is a subalgebra of A∗, cf Proposition 2.8.

Theorem 3.3. Let A be an integral GBL-algebra, let ∆ be a collection of nor-
mal filters of A, let � be a partial order on ∆, and let ∆ = (∆,�). Suppose
that the following conditions are satisfied.

(a) For every F ∈ ∆, A/F decomposes as an ordinal sum BF ⊕WF , where
BF is an integral GBL-algebra and WF is a totally ordered and integral
GMV-algebra.

(b) For every F,G ∈ ∆, if F ≺ G, then {a : a/F ∈WF } ⊆ G.
(c) For every F ∈ ∆ and for every a /∈ F there exists G ∈ ∆ such that F � G

and a/G ∈WG\ {e}.
(d)

⋂
∆ = {e}.
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Then A embeds into the poset product A∆ =
⊗

F∈∆ W∗
F .

Proof. First of all, note that if conditions (a), (b), (c) and (d) hold, then
F � G implies F ⊆ G. The claim is clear if F = G. If F ≺ G, then by (b),
{a : a/F ∈WF } ⊆ G. But if a ∈ F , then a/F = e ∈WF . Thus a ∈ F implies
a ∈ G and the claim follows.

Now for every a ∈ A, let ha be the function on ∆ defined by

ha(F ) =
{

a/F if a/F ∈WF

0 otherwise .

We claim that the map Φ : a 7→ ha is an embedding of A into A∆. We start
from the following observation. For F ∈ ∆ and for h, k ∈ A∆, let h �↑F k iff
h(G) ≤ k(G) for all G � F .

Lemma 3.4. For all a, b ∈ A and for all F ∈ ∆ we have

(i) a/F ∈WF iff for all G ∈ ∆ with F ≺ G, ha(G) = e.
(ii) ha �↑F hb iff (a\b)/F ∈WF (iff (b/a)/F ∈WF ).

Proof. (i) If a/F ∈WF , then by (b), F ≺ G implies a ∈ G, therefore ha(G) =
a/G = e. Conversely, if a/F /∈WF , then a /∈ F , and by (c) there exists F � G
such that a/G ∈ WG\ {e}. Clearly, G 6= F , as a/F /∈ WF and a/G ∈ WG.
Thus F ≺ G and ha(G) = a/G < e.

(ii) If (a\b)/F ∈WF , then by (b) we have a\b ∈ G for every G � F . Thus for all
G � F , since G is a normal filter, we have a/G ≤ b/G and hence ha(G) ≤ hb(G).
Conversely, suppose that (a\b)/F /∈ WF . Then by the argument used in the
proof of (i) we see that there exists G � F such that (a\b)/G ∈WG\ {e}. Since
G is a normal filter, (a\b)/G = (a/G)\(b/G), so by the definition of ordinal
sum, we must have b/G ∈ WG\ {e}, a/G ∈ WG and a/G � b/G. Hence
ha(G) � hb(G). This concludes the proof of Lemma 3.4.

Continuing with the proof of Theorem 3.3, we verify the following facts.

(1) For a ∈ A, Φ(a) = ha ∈ A∆. Indeed, for F ∈ ∆, ha(F ) is either an element
of WF or 0, therefore ha(F ) ∈W∗

F . Moreover, if ha(F ) > 0, then a/F ∈WF ,
and by Lemma 3.4 (i) ha(G) = e for all G � F . Thus if ha(G) < e, then
ha(F ) = 0 for all F ≺ G.

(2) Φ is one-one. Indeed, suppose a 6= b. Without loss of generality, we may
assume a\b < e. Since

⋂
∆ = {e}, there exists G ∈ ∆ such that a\b /∈ G.

Thus by (c) there exists H � G such that (a\b)/H ∈ WH\ {e}, therefore
ha(H) � hb(H) and Φ(a) 6= Φ(b).

(3) Φ preserves ∨, ∧ and ·. Let us verify first that Φ preserves ∨. Let a, b ∈ A
and let F ∈ ∆. If (a ∨ b)/F ∈ WF \ {0}, then either a/F ∈ WF \ {0} or
b/F ∈WF \ {0}, and recalling that every element of WF is an upper bound of
(A/F )\WF , we get

Φ(a ∨ b)(F ) = ha∨b(F ) = (a ∨ b)/F = a/F ∨ b/F = Φ(a)(F ) ∨ Φ(b)(F ).
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If either (a ∨ b)/F /∈ WF or (a ∨ b)/F = 0, then Φ(a ∨ b)(F ) = Φ(a)(F ) =
Φ(b)(F ) = (Φ(a) ∨ Φ(b))(F ) = 0.

We verify that Φ preserves ·. If a/F, b/F ∈WF , then (a · b)/F ∈WF , and
Φ(a · b)(F ) = (a · b)/F = a/F · b/F = (Φ(a) ·Φ(b))(F ). Otherwise, if e.g. a/F /∈
WF , then (a · b)/F /∈WF and Φ(a · b)(F ) = Φ(a)(F ) = (Φ(a) · Φ(b))(F ) = 0.

The proof for ∧ is similar.

(4) Φ preserves \ and /. We prove the claim for \, the proof for / being
quite similar. Suppose first that a\b ∈ F . Then Φ(a\b) = e, a/F ≤ b/F and
Φ(a)(F ) ≤ Φ(b)(F ). Moreover, if F � G, then by the observation made at the
beginning of the proof, F ⊆ G, therefore a\b ∈ G and a/G ≤ b/G. Thus for
all G � F , Φ(a)(G) ≤ Φ(b)(G), and by the definition of \ in a poset product,
(Φ(a)\Φ(b))(F ) = Φ(a)(F )\Φ(b)(F ) = e.
Next assume a\b /∈ F and (a\b)/F ∈WF . Then Φ(a\b)(F ) = (a\b)/F . More-
over (a\b)/F ∈WF \ {e}, therefore by the argument used in the proof of Lemma
3.4, (ii), a/F, b/F ∈WF . Also, by Lemma 3.4, (ii), we have that for all G � F ,
Φ(a)(G) ≤ Φ(b)(G), therefore

(Φ(a)\Φ(b))(F ) = Φ(a)(F )\Φ(b)(F ) = (a/F )\(b/F ) = Φ(a\b)(F ).

Finally, if (a\b)/F /∈WF , then Φ(a\b)(F ) = 0. On the other hand, by Lemma
3.4, (ii), there is G � F such that Φ(a)(G) � Φ(b)(G), therefore by the definition
of \ in a poset product, (Φ(a)\Φ(b))(F ) = 0. This ends the proof.

4. A poset product embedding theorem for n-potent GBL-algebras

In [DL03], Di Nola and Lettieri prove a representation theorem for finite
BL-algebras. These algebras can be presented as finite trees whose nodes are
labeled by finite MV-algebras. This result is extended to finite GBL-algebras
in [JM09] (in this case one has to take posets instead of trees). In the current
section we partially extend the result to n-potent GBL-algebras. In fact we will
prove the following embedding theorem:

Theorem 4.1. Every n-potent GBL-algebra embeds into the poset product of a
family of finite and n-potent MV-chains.

Proof. Let ∆(A) be the set of all values of A, and let ∆(A) denote the poset
(∆(A),⊆), that is, ∆(A) ordered with respect to set-theoretic inclusion. Then
for F ∈ ∆(A), A/F is subdirectly irreducible, because if b ∈ A is such that F is
maximal among the filters not containing b, then the minimum non-trivial filter
of A/F is the filter generated by b/F . By Proposition 2.9, A/F decomposes
as an ordinal sum A/F = BF ⊕WF , where BF is a proper subalgebra of
A/F and WF is a non-trivial subdirectly irreducible n-potent GMV-algebra.
Now by [JM09], Lemma 18, WF , being n-potent and subdirectly irreducible,
is (the reduct of) an n-potent MV-chain with ≤ n + 1 elements. In particular,
WF is bounded and W∗

F = WF . Now consider the poset product A∆(A) =⊗
F∈∆(A) WF . Then by Proposition 2.9, A∆(A) is a commutative and integral
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GBL-algebra. Moreover since product is defined pointwise in a poset product,
it is readily seen that A∆(A) is n-potent. We claim that A embeds into A∆(A).
To this end, it suffices to verify that ∆(A) and the indexed family (BF ,WF :
F ∈ ∆(A)) satisfy the assumptions (a), (b), (c) and (d) of Theorem 3.3.

(a) Clear.
(b) For every F ∈ ∆(A), WF is simple and is a filter of A/F . Hence it

is the minimum filter of A/F . Thus if F ⊂ G, then G/F ⊇ WF , therefore G
contains all elements a such that a/F ∈WF .

(c) Let F ∈ ∆(A) and a /∈ F . Let G be a filter which is maximal with respect
to the properties G ⊇ F and a /∈ G (such a filter exists by Zorn’s Lemma). Then
G ∈ ∆(A) and G ⊇ F . Moreover since WG is the minimum filter of A/G and
a/G belongs to this filter, a/G ∈WG\ {e}.

(d) By Zorn’s Lemma, for every a < e, there is a filter F which is maximal
with respect to the property that a /∈ F . Then F ∈ ∆(A) and a /∈ F , therefore
a /∈

⋂
∆(A), and the claim is proved.

This ends the proof.

Remark. Theorem 4.1 is an embedding theorem but not a representation
theorem, in the sense that not all n-potent GBL-algebras are isomorphic to a
poset product of n-potent MV-algebras. Indeed, any such poset product has a
minimum (the constantly zero function), whereas not all n-potent GBL-algebras
are bounded. More generally, any poset product of bounded residuated lattices
is bounded, and this fact imposes a limitation on the class of GBL-algebras
which are representable as a poset product.

Remark. Clearly, 1-potent GBL-algebras are commutative, integral and idem-
potent residuated lattices, that is, subreducts of Heyting algebras that may omit
the constant 0, called zer0-free subreducts (note that in 1-potent residuated lat-
tices, product and meet coincide). Thus Theorem 4.1 reduces to an embedding
theorem for Heyting algebras and its zero-free subreducts, that is, every Heyt-
ing algebra embeds into a poset product of a family of two-elements Boolean
algebras.

5. A poset product embedding theorem for integral and normal GBL-
algebras and for commutative GBL-algebras

The poset product construction in the previous section does not extend to
arbitrary integral and normal GBL-algebras A. Indeed, it is possible that for
some F,G ∈ ∆(A) with F ⊂ G and for some a ∈ A, one has a/F ∈WF \ {0, e}
and a/G ∈WG\ {0, e} (this is the case if WF is not simple), therefore F ⊂ G,
ha(G) < e and ha(F ) > 0, which is incompatible with the definition of poset
product.

In order to overcome this problem, we will still consider the set ∆(A) of
values of A, but with a different partial order. More precisely, we set F � G
iff either F = G or G ⊇ {a : a/F ∈WF }. Clearly � is a partial order. In the
sequel ∆(A) will denote the poset (∆(A) �). (This notation does not conflict
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with the notation used for n-potent GBL-algebras, because if A is an n-potent
GBL-algebra, then the relations � and ⊆ on ∆(A) coincide).

Another difference with the n-potent case is that in general if F is a value
and we decompose A/F as an ordinal sum A/F = BF ⊕WF , it is possible
that WF is unbounded and therefore W∗

F 6= WF . But with the adjustment to
∆(A) introduced above, it is still possible to get a poset product embedding
theorem. We begin with the following result.

Lemma 5.1. Every subdirectly irreducible and normal GMV-algebra is totally
ordered.

Proof. Let C be a subdirectly irreducible normal GMV-algebra. We first prove
that e is join irreducible in C. Indeed, suppose by contradiction that a, b < e
and a ∨ b = e. Let c < e be a generator of the minimum non-trivial filter F of
C. Then c belongs both to the filter generated by a and to the filter generated
by b (note that such filters are normal, because C is normal). Then for some
n, an ≤ c and bn ≤ c. Now (a ∨ b)2n ≤ an ∨ bn, because · distributes over ∨,
and therefore (a ∨ b)2n is a join of products of 2n factors of which, for some
i ≤ 2n, i factors are equal to a and 2n − i are equal to b. Since either i ≥ n
or 2n− i ≥ n, we have that each factor is bounded above by an ∨ bn. Then we
deduce e = (a∨ b)2n ≤ an ∨ bn ≤ c < e, which is a contradiction. Thus e is join
irreducible.

By Proposition 2.6 (c) C is either an integral GMV-algebra or an `-group.
In the first case, by Proposition 2.5, C satisfies the identity x\y ∨ y\x ≥ e, and
in the second case the same identity holds since `-groups satisfy y\x = (x\y)−1

and z∨ z−1 ≥ e (cf [Gl99]). Since e is join irreducible and e = (x\y∨ y\x)∧ e =
(x\y ∧ e) ∨ (y\x ∧ e), we conclude that either e ≤ x\y or e ≤ y\x. Therefore
x ≤ y or y ≤ x, and hence C is totally ordered.

Note that there are totally ordered GMV-algebras that are not normal, see
for example Clifford’s o-group (cf [Da95], p. 57).

Lemma 5.2. For any variety V of residuated lattices, the class of normal mem-
bers of V is closed under quotients, subalgebras and finite products.

Proof. By Corollary 10 of [GOR08], a residuated (semi)lattice is normal iff for
all x, y there exists n such that x(y∧e)n ≤ yx and (y∧e)nx ≤ xy. This property
is clearly preserved under taking quotients, subalgebras and finite products.

An `-group example showing that normality is not preserved under arbitrary
products can be found in [Da95] (p. 325; note that the property of normality
for `-groups is called Hamiltonian).

Theorem 5.3. (i) Let A be any integral normal GBL-algebra, and let ∆(A)
and WF (F ∈ ∆(A)) have the usual meaning. Then WF is totally ordered
and A embeds into the poset product A∆(A) =

⊗
F∈∆(A) W∗

F . Thus every
integral normal GBL-algebra embeds into a poset product of totally ordered,
integral and bounded GMV-algebras.
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(ii) Every normal GBL-algebra embeds into a poset product of totally ordered
integral and bounded GMV-algebras and totally ordered `-groups.

Proof. (i) By Proposition 2.9 (i) for all F ∈ ∆(A), A/F decomposes as A/F =
BF ⊕ WF , where BF is an integral GBL-algebra and WF is a non-trivial
subdirectly irreducible integral GMV-algebra. Note that WF is normal, because
a filter of WF is also a filter of A/F , which is normal, since A is normal and
normality is preserved under quotients. Thus by Lemma 5.1, WF is totally
ordered. By Corollary 2.7, it is either a totally ordered integral and bounded
GMV-algebra or the negative cone of a totally ordered `-group. In both cases,
W∗

F is a totally ordered, integral and bounded GMV-algebra. Thus in order to
derive the claim it suffices to prove that the poset ∆(A) and the indexed family
(BF ,WF : F ∈ ∆(A)) defined above satisfy conditions (a), (b), (c) and (d) of
Theorem 3.3.

(a) Clear.
(b) This follows from the definition of �.
(c) Let F ∈ ∆(A) and a /∈ F . If a/F ∈ WF , then a/F ∈ WF \ {e} and

we are done. Otherwise, let G0 = {x ∈ A : x/F ∈WF }. Then G0 is a normal
filter, F ⊂ G0 and a /∈ G0. By Zorn’s Lemma there is a normal filter G which is
maximal with respect to the property that G0 ⊆ G and a /∈ G. Then G ∈ ∆(A),
a/G 6= e and F � G. Moreover a/G is in the minimum normal filter of A/G.
Since WG is a normal filter of A/G, a/G ∈WG\ {e}.

(d) Clear.
This ends the proof of (i).

(ii) By Proposition 2.6, any normal GBL-algebra A decomposes as a product
of a normal integral GBL-algebra B and an `-group G. Now by (i), B embeds
into an algebra of the form

⊗
F∈∆(B) W∗

F , where ∆(B) is the set of values
of B partially ordered by the relation � defined just before Theorem 5.3 and
each W∗

F is a totally ordered integral and bounded GMV-algebra. Moreover G,
being a quotient of A, is normal, as normality is preserved under quotients. By
Lemma 5.1, G has a subdirect embedding into an algebra of the form

∏
i∈I Gi,

where each Gi is a totally ordered `-group. Without loss of generality we may
assume that I ∩∆(B) = ∅. Now consider the poset P = (∆(B) ∪ I,v), where
v is defined by x v y iff either x = y or x, y ∈ ∆(B) and x � y. Thus
every element of I is comparable only with itself. Now let for x ∈ ∆(B) ∪ I,
Ax = W∗

x if x ∈ ∆(B) and Ax = Gx if x ∈ I. Then it is readily seen that⊗
x∈P Ax = (

⊗
F∈∆(B) WF )× (

∏
i∈I Gi), therefore A embeds into

⊗
x∈P Ax.

This ends the proof.

Corollary 5.4. (i) Every commutative and integral GBL-algebra embeds into
a poset product of an indexed family of totally ordered MV-algebras.

(ii) Every commutative GBL-algebra embeds into a poset product of an indexed
family of totally ordered MV-algebras and totally ordered abelian `-groups.
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6. Poset product embedding theorems for classes of GBL-algebras

It is clear that a normal GBL-algebra is integral iff it embeds into a poset
product of integral totally ordered, normal and bounded GMV-algebras and
that a GBL-algebra is commutative iff it embeds into a poset product of totally
ordered MV-algebras and of totally ordered abelian `-groups. In this section
we give similar characterizations for other classes of GBL-algebras. We start
from the class of representable GBL-algebras. Our characterization is again in
terms of poset product embeddability and involves the following notion. A root
system is a poset (P,≤) such that for all p ∈ P the set {q ∈ P : q ≥ p} is totally
ordered. The dual of a root system is called a forest.

Theorem 6.1. Let A be a GBL-algebra. The following are equivalent:
(i) A is representable.
(ii) A is embeddable into a poset product

⊗
x∈P Ax such that each Ax is a

totally ordered GMV-algebra and the poset P is a root system.

Proof. By Proposition 2.6 and along the lines of the proof of Theorem 5.3, (ii),
we can prove the theorem separately for integral GBL-algebras and for `-groups.
Thus suppose first that A is integral.

(i)⇒ (ii) Let us decompose A as a subdirect product of totally ordered integral
GBL-algebras (Ai : i ∈ I). Next let us apply Dvurečenskij’s Theorem 2.11,
thus getting an ordinal sum decomposition Ai =

⊕
j∈Ji

Wi,j , where each Wi,j

is a totally ordered integral GMV-algebra. Thus W∗
i,j is a totally ordered,

integral and bounded GMV-algebra. Now let P = {(i, j) : i ∈ I, j ∈ Ji}. Define
a partial order � on P by (i, j) � (i′, j′) iff i = i′ and j ≥ j′. Clearly P = (P,�)
is a root system. We associate to each a ∈ A the function ha on P , defined by

ha(i, j) =

 e if ai ∈Wi,k for some k < j
ai if ai ∈Wi,j

0 if ai ∈Wi,k \ {e} for some k > j

It is readily seen that the map a 7→ ha is an embedding of A into
⊗

(j,i)∈P W∗
j,i

and this shows (i) ⇒ (ii).

(ii)⇒ (i) Since representability is preserved under taking subalgebras, it suffices
to show that if for all p ∈ P , Ap is totally ordered and P = (P,≤) is a root
system, then the algebra AP =

⊗
p∈P Ap is representable. For h, k ∈ AP and

for p ∈ P , define h ≡p k iff for all q ≥ p, h(q) = k(q). Note that in a poset
product, for every operation ◦, (h ◦ k)(p) only depends on the restrictions of
h and k to the set {q ∈ P : q ≥ p}. It follows that ≡p is a congruence of AP.
Moreover

⋂
{≡p: p ∈ P} is the minimum congruence, because if h ≡p k for

all p ∈ P , then h and k coincide. Thus AP has a subdirect embedding into∏
p∈P (AP/ ≡p), and it suffices to prove that each AP/ ≡p is totally ordered.

In other words, it suffices to prove that for every p ∈ P and for every h, k ∈ AP ,
either h(q) ≤ k(q) for all q ≥ p or h(q) ≥ k(q) for all q ≥ p. Suppose not.
Then there are q, r ≥ p such that h(q) < k(q) and k(r) < h(r). Since P is a
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root system, the set {q ∈ P : q ≥ p} is totally ordered, therefore either q > r or
r > q. Suppose e.g. q > r. Then h(q) < k(q) ≤ e, therefore by the definition
of poset product, h(s) = 0 for all s < q. In particular, h(r) = 0 ≤ k(r), and a
contradiction has been reached.

The case where A is an `-group is easy:

(i) ⇒ (ii) Suppose that A is representable. Consider a subdirect embedding
of A into

∏
i∈I Ai, where each Ai is a totally ordered `-group. Define for

i, j ∈ I, i ≤ j iff i = j. Then I = (I,≤) is a root system and A embeds into⊗
i∈I Ai =

∏
i∈I Ai.

(ii) ⇒ (i) If an `-group A is the poset product
⊗

i∈I Ai of an indexed family of
totally ordered GBL-algebras then it is readily seen that each Ai must be an
`-group. Now a non-trivial `-group is not integral, therefore the definition of
poset product implies that every i ∈ I must be minimal. Hence for all i, j ∈ I
one has i ≤ j iff i = j. Thus

⊗
i∈I Ai =

∏
i∈I Ai, which is a representable

`-group. This ends the proof.

Several classes of representable GBL-algebras, arising from many-valued
logic, have a simple characterization in terms of poset product embeddabil-
ity. We collect all of them in the next theorem, whose easy proof is left to the
reader.

Theorem 6.2. A GBL-algebra is

• a BL-algebra iff it is isomorphic to a subalgebra A of a poset product⊗
p∈P Ap such that

(a) each Ap is a totally ordered MV-algebra,

(b) P = (P,≤) is a root system and

(c) the function on P which is constantly equal to 0 is in A;

• an MV-algebra iff it is isomorphic to a subalgebra A of a poset product⊗
p∈P Ap such that conditions (a) and (c) above hold and

(d) P = (P,≤) is a poset such that ≤ is the identity on P ;

• an abelian `-group iff it is isomorphic to a subalgebra A of a poset prod-
uct

⊗
p∈P Ap such that each Ap is a totally ordered abelian `-group and

condition (d) above holds;

• n-potent iff it is embeddable into a poset product of totally ordered n-potent
MV-algebras;

• a Heyting algebra iff it is isomorphic to a subalgebra A of a poset product⊗
p∈P Ap where condition (c) holds and in addition

(e) every Ap is the two-element MV-algebra W1;

• a Gödel algebra iff it is isomorphic to a subalgebra A of a poset product⊗
p∈P Ap where (b), (c) and (e) hold;
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• a boolean algebra iff it is isomorphic to a subalgebra A of a poset product⊗
p∈P Ap where (c), (d) and (e) hold.

7. Conrad-Harvey-Holland-style embedding theorems for commuta-
tive GBL-algebras

A simplified version of the Conrad-Harvey-Holland theorem says that every
abelian `-group can be embedded into an `-group of functions from a root system
into the set R of reals, with pointwise addition as group operation. In this
section we aim to extend the result to commutative GBL-algebras.

Definition 7.1. Let ∆ = (∆,≤) be a root system and for every function f from
∆ into R, let Supp(f) = {δ ∈ ∆ : f(δ) 6= 0}. We define a structure V (∆,R) as
follows:
(a) The universe of V (∆,R) is the set of all functions f from ∆ into R such
that every non-empty subset of Supp(f) has a maximal element.
(b) The group operation is pointwise addition (hence the neutral element is the
constantly 0 function 0 and the inverse operation −1 is defined, for f ∈ V (∆,R)
and for δ ∈ ∆, by (f−1)(δ) = −f(δ)).
(c) The positive cone of V (∆,R) consists of 0 together with all f ∈ V (∆,R)
such that f(δ) > 0 for each maximal element δ ∈ Supp(f).

Then we have:

Proposition 7.2. (Conrad-Harvey-Holland, simplified version, cf [Gl99]).

(a) The algebra V (∆,R) is an `-group with respect to the operations and to
the positive cone introduced in Definition 7.1.

(b) Every abelian `-group G embeds into an `-group of the form V (∆,R) for
a suitable root system ∆ = (∆,≤).

Note that lattice operations in V (∆,R) are induced by its positive cone. They
may be explicitly defined as follows: let f, g ∈ V (∆,R) and let δ ∈ ∆. If for all
ρ ≥ δ we have f(ρ) = g(ρ), then (f∨g)(δ) = (f∧g)(δ) = f(δ) = g(δ). Otherwise,
since ∆ is a root system and f, g ∈ V (∆,R), the set {ρ ∈ Supp(g − f) : δ ≤ ρ}
has a maximum element, δ0 say. Then if g(δ0) < f(δ0) we have (f ∨g)(δ) = f(δ)
and (f∧g)(δ) = g(δ). Otherwise we have (f∨g)(δ) = g(δ) and (f∧g)(δ) = f(δ).

For totally ordered `-groups G, the result was shown first by Hahn:

Proposition 7.3. (Hahn, simplified version, cf [Gl99]).

(a) If ∆ = (∆,≤) is totally ordered, then V (∆,R) is a totally ordered abelian
`-group.

(b) Every totally ordered abelian `-group G embeds into an `-group of the form
V (∆,R) for a suitable totally ordered set ∆.
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Note that the proofs of both Hahn’s theorem and of the Conrad-Harvey-Holland
theorem provide for an explicit construction of the root system ∆. More pre-
cisely, recall that a convex subgroup of an `-group G is an `-subgroup H of G
such that for all h, g ∈ G, if h ∈ H and g ∨ g−1 ≤ h ∨ h−1, then g ∈ H. We
also recall that a value of an abelian `-group G is a convex subgroup H of G for
which there exists a ∈ G such that H is maximal among all convex subgroups
not containing a. Then ∆ may be assumed to be the set ∆(G) of all values of
G, partially ordered by set-theoretic inclusion.

In order to extend the (simplified version of the) Conrad-Harvey-Holland
embedding theorem to commutative GBL-algebras, it suffices to extend it to
poset products of totally ordered MV-algebras and totally ordered abelian `-
groups. To begin with, we give some embedding theorems for the factors of
such poset products. We already have an embedding theorem for totally ordered
abelian `-groups, namely, Hahn’s theorem. For totally ordered MV-algebras we
will use a variant of Mundici’s functor Γ. This functor allows us to represent
any MV-algebra as an interval [e, u] of an abelian ` group G such that u is a
strong unit of G. However, since integral residuated lattices are regarded as
negative cones and not as positive cones, we prefer to represent MV-algebras as
intervals of the form [u−1, e] and not of the form [e, u].

We start from an analogue of Hahn’s theorem for negative cones.

Definition 7.4. Let ∆ = (∆,≤) be a totally ordered set. Let 0↓ be the set of
all f ∈ V (∆,R) such that either f = 0 or f(max(Supp(f))) < 0. We define a
structure V −(∆,R) as follows:

• The domain of V −(∆,R) is 0↓.

• The monoid operation is pointwise addition and the lattice operations are
the restrictions of the lattice operations on V (∆,R).

• The residual → is defined as follows: if g − f ∈ 0↓ (here g − f denotes
the pointwise difference of g and f), then f → g = g − f . Otherwise,
f → g = 0.

Hahn’s theorem immediately gives the following result.

Proposition 7.5. (a) If ∆ is a totally ordered set, then V −(∆,R) is the neg-
ative cone of a totally ordered abelian `-group.
(b) For every negative cone, G−, of a totally ordered abelian `-group G, there
is a totally ordered set ∆ such that G− embeds into V −(∆,R).

Now we treat totally ordered MV-algebras. Recall that a strong unit of a lattice
ordered abelian group G with group operation + is an element u ∈ G such that
for all g ∈ G there is a positive integer n such that g ≤ u + · · · + u (n times).
Then after reversing the order, Mundici’s Γ functor can be rewritten as follows:

Definition 7.6. Let u be a strong unit of an abelian `-group G with group
operation +, with neutral element 0 and with inverse operation −x. Then
Γ(G,−u) denotes the algebra A = (A,�,→,∨,∧,−u, 0) where:
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• A = {x ∈ G : −u ≤ x ≤ 0} .

• The lattice operations ∨ and ∧ are the restriction of the lattice operations
in G.

• For x, y ∈ A, x� y = (x+ y) ∨ (−u) and x→ y = (y − x) ∧ 0.

After reversing the order and restricting our attention to totally ordered MV-
algebras, Mundici’s equivalence [Mu86] between MV-algebras and lattice or-
dered abelian groups with a strong unit immediately implies the following re-
sult.

Proposition 7.7. For every totally ordered MV-algebra A there are a totally
ordered abelian `-group G and a strong unit u of G such that A is isomor-
phic to Γ(G,−u). Hence for every totally ordered MV-algebra A there are a
totally ordered set ∆ and a strong unit u ∈ V (∆,R) such that A embeds into
Γ(V (∆,R),−u).

Note that for every totally ordered abelian `-group G it is possible to choose a
totally ordered set ∆ such that G is cofinal in V (∆,R), that is, every element
of V (∆,R) has an upper bound in G. This property implies that every strong
unit of G is a strong unit of V (∆,R). Moreover V (∆,R) has a strong unit iff
∆ has a maximum element. Indeed, if u is a strong unit and δ = max(Supp(u)),
then δ must be the maximum of ∆, otherwise if σ > δ, then the function f such
that f(σ) = 1 and f(ρ) = 0 for ρ 6= σ is such that f ∈ V (∆,R) and for every
positive integer n, f > u + · · · + u (n times). Moreover, if δ = max(∆), then
any u ∈ V (∆,R) such that u(δ) > 0 is a strong unit of V (∆,R).

Remark. For a more general representation theorem of GMV-algebras by
means of an algebra of real-valued functions, the reader is invited to consult
[GRW03].

Since we want that all non-minimal factors in a poset product share the same
minimum, and since 0 is already booked (it is the neutral element of the group
of the reals), we will replace −u by −∞ (where we assume that −∞ /∈ R and
that −∞ /∈ V (∆,R)), and we will call the resulting structure Γ′(V (∆,R),−u).
Thus Γ′(V (∆,R),−u) is defined as follows:

Definition 7.8. Let ∆ be a totally ordered set with maximum and let u be a
strong unit of V (∆,R). Let 0↓ be as in Definition 7.4 and let (−u)↑ = {f ∈
V (∆,R)\{−u} : max(Supp(f + u)) > 0}. Then Γ′(V (∆,R),−u) is defined as
follows:

• The domain of Γ′(V (∆,R),−u) is (0↓ ∩ (−u)↑) ∪ {−∞}.

• Lattice operations on 0↓ ∩ (−u)↑ are the restrictions of lattice operations
on V (∆,R), and for all f ∈ Γ′(V (∆,R),−u), f ∧ −∞ = −∞∧ f = −∞
and f ∨ −∞ = −∞∨ f = f .
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• For all f ∈ Γ′(V (∆,R),−u), f · −∞ = −∞ · f = −∞. Moreover, if
f, g ∈ 0↓ ∩ (−u)↑, then

f · g =
{

f + g if f + g ∈ (−u)↑
−∞ otherwise .

• For all f ∈ Γ′(V (∆,R),−u), −∞→ f = 0 and if f 6= 0 and f 6= −∞, then
f → −∞ = −u− f . Moreover 0→ −∞ = −∞, and if f, g ∈ 0↓ ∩ (−u)↑,
then

f → g =
{

g − f if g − f ∈ 0↓
0 otherwise .

Then we have:

Proposition 7.9. Every totally ordered MV-algebra embeds into an algebra of
the form Γ′(V (∆,R),−u) for some totally ordered set (∆,≤) with maximum
and for some strong unit u of V (∆,R).

It follows from Corollary 5.4 and from Propositions 7.3 and 7.9 that every com-
mutative GBL-algebra embeds into a poset product

⊗
p∈P Ap of algebras Ap

having one of the forms V (∆p,R) or Γ′(V (∆p,R),−up) for some totally or-
dered set ∆p and for some strong unit up of V (∆p,R). Such poset products are
uniquely determined by the poset P = (P,≤), by the totally ordered sets ∆p,
by the choice, for each p, of one of the forms V (∆p,R) or Γ′(V (∆p,R),−up)
and in the last case, by the choice of the strong unit up of V (∆p,R), that is,
of a function up from ∆p into R such that every non-empty subset of Supp(up)
has a maximum and up(max(∆p)) > 0. Thus the only algebraic structure in
the definition of such algebras is the group structure of the reals, the rest of
the construction essentially depends on order. The algebras of the form shown
above will be called real-valued GBL-algebras.

We want to describe real-valued GBL-algebras more closely. First of all,
every element F of a real-valued GBL-algebra

⊗
p∈P Ap is a function which

associates to every p ∈ P either −∞ or a function Fp from ∆p into R. Up to
isomorphism we may safely replace such a function F by the function H from
the set P∆ = {(p, δ) : p ∈ P, δ ∈ ∆p} into R ∪ {−∞} defined by

H(p, δ) =
{
−∞ if F (p) = −∞
(F (p))(δ) otherwise.

In the sequel, given a function H(p, δ) on P∆ such that for all p ∈ P , either
for all δ ∈ ∆p, H(p, δ) = −∞, or for all δ ∈ ∆p, H(p, δ) ∈ R, we define Hp as
follows: if for all δ ∈ ∆p, H(p, δ) = −∞, then we set Hp = −∞; otherwise we
set Hp to be the function on ∆p defined by Hp(δ) = H(p, δ). Then real-valued
GBL-algebras can be defined as follows:

Definition 7.10. Let P = (P,≤) be a poset and let {PG, PMV } be a partition
of P such that every p ∈ PG is incomparable with the other elements with
respect to ≤. Let us label each element of p ∈ PG by a totally ordered set
∆p = (∆p,≤p) and each q ∈ PMV by a totally ordered set ∆q = (∆q,≤q) with
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maximum δq and by a function uq ∈ V (∆q,R) such that u(δq) > 0. Then the
real-valued GBL-algebra associated to the poset P, to the partition {PG, PMV }
and to the labeling ΛG = (∆p : p ∈ PG) and ΛMV = (∆q, uq : q ∈ PMV ) is the
algebra A = GBL(P, PG, PMV ,ΛG,ΛMV ) defined as follows:

• The domain of A is the set of all functions H from P∆ into R ∪ −{∞}
such that

– for all p ∈ PG, H(p, δ) ∈ R for all δ ∈ ∆p;

– for all p ∈ PMV we have that either H(p, δ) = −∞ for all δ ∈ ∆p or
H(p, δ) ∈ R for all δ ∈ ∆p;

– if p ∈ PG (p ∈ PMV respectively) then Hp ∈ V (∆p,R) (Hp ∈
Γ′(V (∆p,R),−up) respectively), and

– if for some δ ∈ ∆p, H(p, δ) 6= 0, then H(q, σ) = −∞ for all q < p
and for all σ ∈ ∆q.

• For every operation ◦ of commutative GBL-algebras, let ◦p denote its
realization in V (∆p,R) if p ∈ PG and in Γ′(V (∆p,R),−up) if p ∈ PMV .
Then

– for ◦ ∈ {∨,∧, ·}, for H,K ∈ A and for (p, δ) ∈ P∆, (H ◦K)(p, δ) =
(Hp ◦p Kp)(δ);

– if for all q > p we have that Hq = −∞ implies Kq = −∞ and
Hq,Kq 6= −∞ implies that either Hq = Kq or max(Supp(Hq −
Kq)) < 0, then (H → K)(p, δ) = (Hp →p Kp)(δ); otherwise (H →
K)(p, δ) = −∞.

The next theorem is a almost a rephrasing of the results of the previous section
for commutative GBL-algebras, in terms of embeddability into real-valued GBL-
algebras. We use the notation A ⊆ B to indicate that A is a subalgebra of B.

Theorem 7.11. Every commutative GBL-algebra embeds into a real-valued
GBL-algebra of the form GBL(P, PG, PMV ,ΛG,ΛMV ), cf Definition 7.10.

Moreover, a commutative GBL-algebra is

• integral iff it embeds into an algebra GBL(P, PG, PMV ,ΛG,ΛMV ) in which

(a) PG = ΛG = ∅;

• an `-group iff it embeds into some GBL(P, PG, PMV ,ΛG,ΛMV ) in which

(b) PMV = ΛMV = ∅;

• representable iff it embeds into some GBL(P, PG, PMV ,ΛG,ΛMV ) in which

(c) P is a forest;

• a BL-algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,ΛMV )
in which (a) and (c) hold and

(d) the constantly −∞ function is in A;
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• an MV-algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,
ΛMV ) in which (a) and (d) hold and

(e) any two distinct elements of P are incomparable with respect to ≤;

• a Heyting algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,
ΛMV ) in which (a) and (d) hold and

(f) for all H ∈ A and for all (p, δ) ∈ P∆, H(p, δ) ∈ {−∞, 0};

• a Gödel algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,
ΛMV ) in which (a), (c), (d) and (f) are satisfied;

• a boolean algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG
ΛMV ) in which (a), (d), (e) and (f) are satisfied. 2

8. Explicit constructions of generic commutative GBL-algebras

Recall that a quasivariety is a class of algebras that can be axiomatized by
quasi-identities (i.e. strict universal Horn formulas). An algebra A in a variety
V is said to be generic for V if it generates V as a variety, and strongly generic for
V if it generates V as a quasivariety. In this section we present a commutative
and integral countable GBL-algebra which is strongly generic for the variety of
commutative and integral GBL-algebras and a commutative GBL-algebra which
is strongly generic for the variety of commutative GBL-algebras. We start with
the integral case.

Lemma 8.1. Every finite GBL-algebra A embeds into a poset product
⊗

p∈P Ap

where each Ap is a finite MV-chain and P = (P,�) is a finite forest.

Proof. By Proposition 3.2, we know that A is isomorphic to an algebra of
the form

⊗
d∈D Bd where D = (D,≤) is a finite poset and for all d ∈ D, Bd

is a finite MV-chain. Now let P be the set of all finite non-empty sequences
(d1, . . . , dn) of elements of D such that d1 is a minimal element of D and for
i = 1, . . . , n − 1, di+1 is a cover of di, that is, di < di+1 and for all z if di ≤
z ≤ di+1, then either z = di or z = di+1. For p, p′ ∈ P , define p′ � p iff p is
an end extension of p′, that is, if either p = p′ or there is a finite sequence σ of
elements of D such that p is the juxtaposition of p′ and σ. Clearly, P = (P,�) is
a forest. Now for p = (d1, . . . , dn) ∈ P , let Ap = Bdn . We define a map Φ from⊗

d∈D Bd into
⊗

p∈P Ap letting for h ∈
⊗

d∈D Bd and for p = (d1, . . . , dn) ∈ P ,
Φ(h)(p) = h(dn). We claim that Φ is an embedding of

⊗
d∈D Bd into

⊗
p∈P Ap.

The proof follows from the claims listed below.

Claim (a) If h ∈
⊗

d∈D Bd, then Φ(h) ∈
⊗

p∈P Ap.

Proof of claim (a). For p = (d1, . . . , dn) ∈ P , Φ(h)(p) = h(dn) ∈ Bdn
= Ap.

Moreover, if Φ(h)(p) = h(dn) < e and p � p′ = (d1, . . . , di), then di < dn,
therefore Φ(h)(p′) = h(di) = 0. This ends the proof of claim (a).

Claim (b) Φ is one-one and preserves ·, ∨ and ∧.
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Proof of claim (b). If h, k ∈
⊗

d∈D Bd and h 6= k, then h(d) 6= k(d) for
some d ∈ D. Clearly there is p = (d1, . . . , dn) ∈ P such that dn = d. Therefore
Φ(h)(p) = h(d) 6= k(d) = Φ(k)(p). Thus Φ is one-one. Moreover for ◦ ∈ {·,∨,∧}
we have that for p = (d1, . . . , dn) ∈ P , Φ(h◦k)(p) = (h◦k)(dn) = h(dn)◦k(dn) =
Φ(h)(p) ◦ Φ(k)(p). This ends the proof of claim (b).

Claim (c). Φ preserves →.

Proof of claim (c). Let h, k ∈
⊗

d∈D Bd and let p = (d1, . . . , dn) ∈ P . We first
compute Φ(h→ k)(p). Distinguish two cases:

(c1) If for all d > dn h(d) ≤ k(d), then Φ(h → k)(p) = (h → k)(dn) =
h(dn)→ k(dn);

(c2) Otherwise, Φ(h→ k)(p) = 0.
Now we compute (Φ(h)→ Φ(k))(p). Again, distinguish two cases:

(c1’) If for all p′ � p, Φ(h)(p′) ≤ Φ(k)(p′), then (Φ(h) → Φ(k))(p) =
Φ(h)(p)→ Φ(k)(p) = h(dn)→ k(dn).

(c2’) Otherwise (Φ(h)→ Φ(k))(p) = 0.
Thus it suffices to show that (c1) and (c1’) are equivalent. Now (c1’) reads: for
all p′ = (d1, . . . , dn, . . . , d) ∈ P , h(d) ≤ k(d), which is clearly equivalent to: for
all d ∈ D with d > dn, h(d) ≤ k(d), that is, to (c1). This concludes the proof
of Lemma 8.1.

Definition 8.2. An initial segment of a poset P = (P,≤) is a subset I of P
such that if x ∈ I, y ∈ P and y ≤ x, then y ∈ I.

Notation. In the sequel we denote by MV(Q) the MV-algebra with domain
[−1, 0] ∩ Q (Q is the set of rationals), with max and min as lattice opera-
tions, with monoid operation x · y = max {x+ y,−1} and residual x → y =
min {y − x, 0}.

Lemma 8.3. Let A =
⊗

p∈P Ap be a poset product of integral residuated lat-
tices, and let I be an initial segment of P. Let I be the subposet of P determined
by I, and let B =

⊗
p∈I Ap. Then:

(a) The map Φ defined, for all h ∈ B and for all p ∈ P , by

Φ(h)(p) =
{
h(p) if p ∈ I
e otherwise

is an embedding of B into A.
(b) For h ∈ A, let Nh = {p ∈ P : h(p) 6= e} and Afin = {h ∈ A : Nh is finite}.

Then Afin is the domain of a subalgebra of A.
(c) If for p ∈ P , Bp is a subalgebra of Ap, then

⊗
p∈P Bp is a subalgebra of⊗

p∈P Ap.

Proof. (a) First of all, we prove that Φ maps B into A. Let h ∈ B and p ∈ P .
Then clearly Φ(h)(p) ∈ Ap. Moreover, if p > q and Φ(h)(p) < e, then p ∈ I and
q ∈ I, since I is an initial segment. Hence Φ(h)(q) = h(q) = 0. It follows that
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Φ(h) ∈ A. That Φ is one-one and that it preserves ·, ∨ and ∧ is clear, as these
operations are defined pointwise. Now we prove that Φ preserves \. Let h, k ∈ A
and p ∈ P be given. If p /∈ I, then Φ(h\k)(p) = (Φ(h)\Φ(k))(p) = e. If p ∈ I
and for all q ∈ I such that q > p we have h(q) ≤ k(q), then for all q ∈ P with
q > p we have Φ(h)(q) ≤ Φ(k)(q), because if q /∈ I, then Φ(h)(q) = Φ(k)(q) = e.
Thus in this case, Φ(h\k)(p) = (Φ(h)\Φ(k))(p) = Φ(h)(p)\Φ(k))(p). If there is
q ∈ I such that q > p and h(q) � k(q), then Φ(h\k)(p) = (Φ(h)\Φ(k))(p) = 0.
This shows compatibility with \. The proof that Φ is compatible with / is
symmetric, and part (a) is proved.

(b) Just note that Nh·k = Nh∧k = Nh ∪Nk, Nh∨k = Nh ∩Nk, Nh\k ⊆ Nk and
Nk/h ⊆ Nk. Thus if h, k ∈ Afin, then h · k, h ∧ k, h ∨ k, h\k and k/h are in A
and Nh·k, Nh∧k, Nh∨k, Nh\k and Nk/h are all finite. Thus h · k, h ∧ k, h ∨ k,
h\k and k/h are in Afin. Clearly the function which is constantly equal to e is
in Afin and (b) is proved.

(c) Almost trivial.

Remark. The image of B under the embedding Φ defined in the proof of
Lemma 8.3 (a) is the subalgebra of A consisting of all h ∈ A such that h(p) = e
for all p /∈ I. This subalgebra will be denoted by A(I) and will be called the
relativization of A to I.

Notation. In the sequel, given a poset P, Q(P) will denote the algebra⊗
p∈P Ap with Ap = MV(Q) for every p ∈ P . Moreover, given a poset product

A =
⊗

p∈P Ap, Afin will denote the subalgebra of A whose domain is the set
of all h ∈ A such that Nh is finite, cf Lemma 8.3, (b).

Theorem 8.4. Let P = (P,�) be a poset such that every finite forest is iso-
morphic to an initial segment of it. Then every finite GBL-algebra embeds into
Q(P)fin. Therefore by Proposition 2.9 (iii), Q(P)fin generates the variety of
commutative and integral GBL-algebras as a quasivariety.

Proof. Let A be any finite GBL-algebra. By Proposition 3.2 and by Lemma
8.1, A embeds into a poset product

⊗
d∈D Ad such that D = (D,≤) is a finite

forest, and for d ∈ D, Ad is a finite MV-chain. Now D is isomorphic to an initial
segment of P. Since any finite MV-chain embeds into MV(Q), by Lemma 8.3
(a) and (c),

⊗
d∈D Ad is a subalgebra of Q(P). Moreover, after identifying

each element h ∈
⊗

d∈D Ad with its image under the embedding Φ defined in
Lemma 8.3, we have that for h ∈

⊗
d∈D Ad, Nh ⊆ D, therefore Nh is finite and⊗

d∈D Ad is a subalgebra of Q(P)fin. Since A is a subalgebra of
⊗

d∈D Ad, the
claim is proved.

By Theorem 8.4, a strongly generic algebra for the variety CIGBL of com-
mutative and integral GBL-algebras is given by Q(P)fin, where P is a poset
such that every finite forest embeds into it as an initial segment. An example of
such a poset is given by the set ω<ω of all finite non-empty sequences of natural
numbers, partially ordered by the relation � defined by σ � τ iff either σ = τ or
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τ is an end extension of σ. Let Ω = (ω<ω,�). Then, recalling that the variety
of abelian `-groups is generated as a quasivariety by the `-group Z of integers,
by Theorem 8.4 and by Proposition 2.6, we have:

Theorem 8.5. (a) Q(Ω)fin is a countable strongly generic algebra for the
variety CIGBL.

(b) Q(Ω)fin × Z is a countable strongly generic algebra for the variety CGBL
of commutative GBL-algebras. 2

We now investigate strongly generic models for some notable subvarieties of
CIGBL. Strongly generic models for the variety of MV-algebras and for the
variety of BL-algebras are easy to obtain: for the variety of MV-algebras, just
take MV(Q), which corresponds to Qfin(P) with P the one-element poset.
For the variety of BL-algebras, it follows from [AM03] that a strongly generic
model is given by the ordinal sum of ω copies of MV(Q). This ordinal sum
corresponds to the dual poset product Q(N)fin, where N = (ω,≤) is the poset of
natural numbers with the usual order. We now consider the variety of Heyting
algebras. This variety is also generated as a quasivariety by their finite members.
These are poset products of copies of the two-element MV-algebra W1. Now
let for every n > 0, Wn denote the MV-chain with n + 1 elements, and let
Wn(Ω) =

⊗
σ∈Ω Aσ with Aσ = Wn. Then by Lemma 8.3 we have that every

finite Heyting algebra embeds into W1(Ω)fin, therefore W1(Ω)fin is strongly
generic for the variety of Heyting algebras. By a similar argument we have
that the variety GBL2 of 2-potent GBL-algebras is generated as a quasivariety
by W2(Ω)fin. This depends on the fact that every 2-potent MV-chain is a
subalgebra of W2. However, it is not true that for every n the algebra Wn(Ω)fin

is strongly generic for the variety GBLn of n-potent GBL-algebras. For instance,
let x′ = x→ x3 and 2x = (x′ · x′)′. Then the identity x ∨ x′ = 2(x ∨ x′)2 is not
valid in the 3-potent MV-algebra W2, but is valid in W3(Ω)fin.

A countable strongly generic algebra for GBLn is obtained as follows: let for
every natural number k, r(k) denote the remainder of the division of k by n,
and let w(k) = r(k) + 1. Let for every σ = (k1, . . . , kn) ∈ ω<ω, Aσ = Ww(kn)

and let W≤n(Ω) =
⊗

σ∈Ω Aσ. Then we have:

Theorem 8.6. W≤n(Ω)fin is strongly generic for GBLn.

Proof. It suffices to show that any finite n-potent GBL-algebra A embeds
into W≤n(Ω)fin. By Proposition 3.2 and by Lemma 8.1, we can embed A into
a poset product

⊗
p∈P Ap where P is a finite forest and for p ∈ P , Ap is an

MV-chain with cardinality ≤ n+ 1. We prove by induction on the cardinality n
of P that there is a one-one map Ψ from P into ω<ω such that for every p ∈ P
the following conditions hold:

(a) If p is minimal with respect to ≤, then Ψ(p) has length 1 (hence it is a
minimal element in Ω).

(b) If p′ is a cover of p, then Ψ(p′) is a cover of Ψ(p) (thus in particular, p ≤ p′
iff Ψ(p) � Ψ(p′)).
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(c) Let m be the last element of the sequence Ψ(p). Then Ap = Ww(m).

For n = 1, the claim is easy: let p be the unique element of P , let h ≤ n be such
that Ap = Wh, and let Ψ(p) = (h − 1) (the sequence whose unique element is
h− 1). Since w(h− 1) = h, (a), (b) and (c) are satisfied.

Now suppose that the claim is true for every forest of cardinality less than
n (with n > 1) and consider a forest P of cardinality n. Let p be a maximal
element of P , and consider the subposet (P ′,≤) with domain P ′ = P\ {p}. By
the induction hypothesis there is a map Ψ′ on (P ′,≤) satisfying (a), (b) and
(c). We distinguish two cases:

(i) If p is also minimal (thus p is incomparable with the remaining elements),
then let h such that Ap = Wh, let k be big enough such that the one-element
sequence (kn + h − 1) is not in the range of Ψ′ and extend Ψ′ to a function Ψ
on P letting

Ψ(x) =
{

Ψ′(x) if x 6= p
(kn+ h− 1) if x = p

.

It is readily seen that Ψ meets our requirements.
(ii) If p is not minimal, then since P is a finite forest, there is a unique

element p′ that is covered by p. Let Ψ(p′) = (k1, . . . , kr) and let k be big
enough so that the sequence (k1, . . . , kr, kn + h − 1) is not in the range of Ψ′.
Now extend Ψ′ to a function Ψ on P letting

Ψ(x) =
{

Ψ′(x) if x 6= p
(k1, . . . , kr, kn+ h− 1) if x = p

.

It is readily seen that Ψ meets our requirements.
Now by (a) and (b) the image Ψ[P ] of P under Ψ is an initial segment of

Ω which is isomorphic to P. Moreover by (c) we have Ap = AΨ(p), therefore
the relativization W≤n(Ω)(Ψ[P ]) of W≤n(Ω) to Ψ([P ]) (cf Lemma 8.3) is a
subalgebra of W≤n(Ω)fin which is isomorphic to

⊗
p∈P

Ap. Therefore A embeds
into W≤n(Ω)fin. This ends the proof.

9. Normal GBL-algebras and GMV-algebras with a conucleus.

It is well known that every Heyting algebra can be represented as the algebra
of open elements of a boolean algebra with an interior operator. In this section
we partially extend this result to normal GBL-algebras. More precisely, we show
that every normal GBL-algebra embeds into the image of a GMV-algebra under
a conucleus.

Definition 9.1. A conucleus on a residuated lattice A is a unary operation σ
on A such that for all x, y ∈ A the following conditions hold:

• x ≤ y implies σ(x) ≤ σ(y),

• σ(x) ≤ x,
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• σ(x) = σ(σ(x)),

• σ(σ(x) · σ(y)) = σ(x) · σ(y), and

• σ(e) = e.

Definition 9.2. Let A be a residuated lattice and σ be a conucleus on A. Then
σ(A) denotes the structure (σ(A), ·σ,∨σ,∧σ, \σ, /σ, e), where σ(A) is the image
of A under σ, and for all x, y ∈ σ(A), the operations ·σ,∨σ,∧σ, \σ and /σ are
defined as follows:
(x ·σ y) = x · y, x ∨σ y = x ∨ y, x ∧σ y = σ(x ∧ y), x\σy = σ(x\y) and
x/σy = σ(x/y).

The next lemma is proved in [MT].

Lemma 9.3. (cf [MT]). If A is a residuated lattice and σ is a conucleus
on A, then σ(A) is a residuated lattice (in particular, σ(A) is closed under
·σ,∨σ,∧σ, \σ and /σ).

Lemma 9.4. Let A =
⊗

p∈P Ap be a poset product of a family of integral and
bounded residuated lattices with common top element e and with common bottom
element 0, and let B =

∏
p∈P Ap. Define for all f ∈ B and for all p ∈ P

σ(f)(p) =
{

f(p) if f(q) = e for all q > p
0 otherwise.

Then σ is a conucleus and A = σ(B).

Proof. Clearly, properties (1), (2), (3) and (5) of conuclei are satisfied by
σ. We verify property (4), that is, we prove that for all f, g ∈ B and for all
p ∈ P we have σ(σ(f) · σ(g))(p) = (σ(f) · σ(g))(p). The claim is clear if either
σ(f)(p) = 0 or σ(g)(p) = 0. If σ(f)(p) 6= 0 and σ(g)(p) 6= 0, then for all q > p
we have (σ(f) · σ(g))(q) = e, therefore by the definition of σ it follows that
σ(σ(f) ·σ(g))(p) = (σ(f) ·σ(g))(p). Thus σ is a conucleus. Now note that for all
f ∈ B we have that f ∈ A iff f = σ(f). It follows that

⊗
p∈PAp = σ(B) and

for all f ∈ B, σ(f) is the greatest element g of A such that g ≤ f . Thus since
the order on A is the restriction to A of the order on B, σ(B) and A have the
same order, and therefore they have the same lattice operations. Moreover, the
monoid operation is defined pointwise in both σ(B) and A. Hence σ(B) and
A coincide as lattice ordered monoids. It follows that residuals in σ(B) and A
also coincide, and the claim is proved.

Theorem 9.5. Every normal GBL-algebra A embeds into a GBL-algebra of the
form σ(B) for some GMV-algebra B and for some conucleus σ on B.

Proof. By Proposition 2.6, A can be represented as A = C × G for some
integral and normal GBL-algebra C and for some `-group G. Moreover C
embeds into a poset product of the form D =

⊗
p∈P Dp where for every p ∈ P ,
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Dp is an integral GMV-algebra. Now by Lemma 9.4, there is an integral GMV-
algebra H and a conucleus τ on H such that D = τ(H). Clearly A embeds into
D ×G. Now let F = H ×G and let for (x, y) ∈ H × G, σ(x, y) = (τ(x), y).
Clearly F is a GMV-algebra, σ is a conucleus on F, D × G = σ(F) and A
embeds into σ(F), as desired.

Note that the converse of Theorem 9.5 does not hold, that is, the image
σ(B) of a GMV-algebra B under a conucleus σ need not be a GBL-algebra. For
instance, let B be the algebra MV(Q) defined in Section 8. Define a map σ on
B as follows:

σ(x) =
{

1 if x = 1
x ∧ 1

2 otherwise .

It is readily seen that σ is a conucleus on B. However σ(B) is not a GBL-
algebra, because 1

4 = 1
2 ∧σ

1
4 , but 1

2 ·σ ( 1
2 →σ

1
4 ) = 1

2 · (
3
4 ∧

1
2 ) = 1

2 ·
1
2 = 0. Of

course for every GMV-algebra B and for every conucleus σ on B, we have that
σ(B) is a GBL-algebra iff it satisfies the translation of the divisibility condition,
namely the equation
(divσ) σ(x)·σ (σ(x)\σσ(y))∧σ e) = (σ(y)/σσ(x))∧σ e)·σσ(x) = σ(x)∧σσ(y).

This remark and Theorem 9.5 can be summarized as follows:

Theorem 9.6. 1. Let A be a normal residuated lattice. Then the following
are equivalent:
(a) A is a GBL-algebra.
(b) A embeds into an algebra of the form σ(B) where B is a GMV-algebra
and σ is a conucleus on B such that (divσ) holds.
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