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Concise definition

An involutive residuated lattice A = (A, V,-,~,—,0) is

e a semilattice (A, V) and

@ a semigroup (A, -) such that
x<y <= x-~y<0 << —y-x<0 for all x,y € A
where x<y <= xVy=y.

It follows that ~—x = x= —~xand 1 = —0 is an identity for -

@ A is commutative if x-y=y-xforall x,y € A

@ A is idempotent if x- x= xfor all xe A

v

Meet is definable: x A y = —(~xV ~y), and commutativity gives ~x = —x
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More general definition

Definition

A (pointed) residuated lattice A = (A, A,V, -, \,/,1,0) is
@ a lattice (A, A, V) and
@ a monoid (A, -,1) such that

xy<z <= x<z/y < y<x\z for all x,y,z € A.

A is involutive if ~—x = x = —~x, where ~x = x\0 and —x = 0/x.

The concise definition is equivalent to this one via x\y = ~(—y - x) and
x/y=—(y-~x).

CldInRL denotes the variety of commutative idempotent involutive
residuated lattices.
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Some properties

Let A € CldInRL.

e (A, 1) is a meet-semilattice with top element 1 and order C
(monoidal order) defined as

albhb <«<— a-b=a

Hence, the orders < and C together with the involution — completely
determine A, allowing us to work in the signature (A, V,-, —,0,1)
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Examples |

e Boolean algebras (where < =10C)

@ Sugihara monoids (algebraic semantics for relevance logic RM")

They are defined as distributive commutative idempotent involutive
residuated lattices.

Dunn [1970] proved that the subdirectly irreducible members in this
variety are linearly ordered.

Up to isomorphism, there is one such algebra S, for each chain with n
elements.
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Examples |

T 100
a
a —a
100 d
—a —d
—b T
1 1
(S7,<) (S7.5)
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Examples |

T 100
b al
a —a
100 d
—a —d
—b T
1 i)
(§7,<) (§7.6)
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Some more properties

For each x € A, let

0y = XA —Xx=Xx-—X

1y =xV—x=—(x-—x) = x/x
By ={ycA[0kEyC 1}
J0={yeAly<0}={0«|xec A}

Lemma

@ For each x€ A, (Bx, A\,V,—,04 1x) is a Boolean algebra

@ For each x € A, the monoidal order and the lattice order agree on B
@ The monoidal intervals By partition A

e (10,-,V) is a distributive lattice with top element 0

Hence, the monoidal semilattice is a disjoint union of Boolean algebras
over the ‘skeleton’ of a distributive lattice.

v
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Even more properties

Lemma

Let A € CldInRL and a € A such that a< 1. For x € A,
alx < a<x<l1,.

Moreover, {x€ A|aC x} = {xe€ A| a < x<1,} is a subuniverse exactly
when a < 0.

(A.E) (A, <)
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Construction: idea

Goal: Give a structural characterization of all finite members of CldInRL.

Construction idea: “Consider two algebra A, B € CldInRL that are
‘compatible’.

Construct a new member of the variety C by gluing the monoidal
semilattice of B on top of that of A and the lattice of B in the middle of
the lattice of A"
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Construction: example
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Construction: formally

A = (A VA A —A 04 14) (the bottom algebra) and
B = (B,Vv5B,.B, B 0B 1B) (the top algebra) are p-compatible if
@ ¢ is a bijection fta — |b for some a < 14 and 08 < b < 18 such that
o ¢ preserves join, i.e. p(xVAy) = p(x) VB o(y)
e ¢ preserves fusion, i.e. o(x-"y) = ¢(x)-Bp(y) and
o 08 = p(avA0A).

For ¢-compatible algebras we define a glueing construction @,
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Glueing construction

Ap,B=(AyB Vv, — 18 08)

xVAy x,y €A

y xVEBy x,y€ B

X =

T lexvAa By  xc A yeB x<A-Aa

xVAp l(y-Bb) x€ A, ye B, x£A -Aa
xAy Xy €A

x-y=4xBy xy€B

A, —-1(,.B

xAp T (y®"b) x€A yeB

~Ax x€ A
—x= 5
—-Px x€B

Jipsen, Tuyt, Valota Structure of finite CldInRLs November 18, 2019 14 / 32



Glueing construction

For po-compatible A, B € CldInRL the algebra A ®, B is in CldInRL.

The proof is by case analysis and direct computation.
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Unglueing decomposition

For finite C € CldInRL, consider a co-atom c in the underlying distributive
lattice with universe |0 = {04 | x € C}.

By distributivity, there exists ¢* such that (c, ¢*) is a splitting pair of ]0.

Note: ¢ = 0., hence —c=1..

The pair (1¢, c*) is a splitting pair of C (in the monoidal order).

Moreover, fic"is a subuniverse of C, and ||1. is closed under V/, -, —
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Unglueing decomposition

Let A= (J1,V, -, —,1c0).

Let B be the subalgebra of C with subuniverse {c*.
Choose a=1.-c¢" and b= (1.V —a) V ¢*, and define
©(x) = (xAN—a)Vvcforal xC 1.

@ a<lcand0<b<1

e ¢ is a bijection to {y | ¢* T y C b} with o=(y) =y 1.
@ p(cVa)=0,

The algebra C < CldInRL is isomorphic to A @, B.
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Structural characterization

Any finite member A of CldInRL can be constructed using the gluing
construction, starting from finite Boolean algebras.

| N\

Corollary

Any finite A € CldInRL is determined by its fusion semilattice and also by
its lattice reduct.

To do: An algorithm for constructing all CldInRLs
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Some examples

Fusion semilattices that cannot support a CldInRL:
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Fusion semilattices that can support a CldInRL:
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Two more examples and a question for the audience
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Two more examples and a question for the audience

Which one can occur as the fusion semilattice of a CldInRL?
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Fusion-distributivity

As an application, call an A € CldInRL fusion-distributive if the
meet-semilattice (A, ) is distributive, i.e. if for all x,y,z € A,

x-yCz = I,y €Asuchthat xC X, yCy, and z=x - y.

For compatible fusion-distributive A, B € CldInRL, their gluing C is
fusion-distributive.

Any finite A € CldInRL is fusion-distributive. \
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Every finite distributive lattice can occur as skeleton

Let D be a finite distributive lattice of height n. Then D can be embedded
in the Boolean algebra 2".

Let S4 be the 4-element Sugihara monoid. The fusion semilattice is the
ordinal sum 2 @ 2.

(S4)" is a glueing of 2" copies of 2" over the distributive lattice 2".

This fusion semilattice contains a sublattice that is the glueing of |D|
copies of 2" over the distributive lattice D.
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Locally finite subvarieties

CldInRL contains many subvarities:

BA = Boolean algebras = variety generated by 2-element BA

SC, = variety generated by a Sugihara chain of length n

OddSugi = variety generated by a countable Sugihara chain with 0 =1
Sugi = variety generated by a countable Sugihara chain with 0 # 1
V(A) for any finite commutative idempotent involutive residuated lattice
All these varieties are locally finite

Is CldInRL locally finite?
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A one-generated infinite CldInRL
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The fusion semilattice of a one-generated infinite CldInRL
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Extensions

@ How far can we extend this structural characterization of this variety?
From the reverse construction we obtain a structural characterization
for all members A of CldInRL for which [0 = {04 | x € A} is finite.
Can we push this further?

How much of the results can be generalized to idempotent involutive
residuated posets?

o All finite idempotent involutive residuated lattices with < 17 elements
are known to be commutative. Is this true for all finite ones?

Can the glueing construction be used for (some subclass) of
non-idempotent (involutive) residuated lattices?

@ Can we apply this construction to obtain amalgamation for finite
V-formations in CldInRL?
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Towards removing commutativity

An involutive residuated lattice is cyclic if ~x= —x
Idempotence for cyclic involutive residuated posets is a strong restriction.

Lemma (José Gil-Ferez and PJ)

Any involutive idempotent residuated posets satisfies:
Q x(~x) < ~xand (—x)x < —x,
Q@ x(~x) < xand (—x)x < x.
Assuming cyclicity implies the following additional identities:
Q x(~x)x = x(~x),
Q x(~x) = (~x)x.
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In any involutive residuated poset ~(yx) < ~(yx), so yx(~(yx)) <0,

whence x(~(yx)) < ~y.

© Follows from this identity and idempotence by substituting x for y.

@ Replace x by ~x in the second identity of (1).

© Multiplying (1) by x on the right we obtain x(~x)x < (~x)x. By
cyclicity (~x)x <0, and using idempotence gives xx(~x)x < 0, or
equivalently x(~x)x < ~x. Multiplying by x on the left shows that
x(~x)x < x(~x). Multiplying (2) by x(~x) on the left produces
x(~x)x(~x) < x(~x)x, whence x(~x) < x(~x)x follows from
idempotence. Therefore (3) holds.

@ Again multiplying (1) by x on the right we obtain x(~x)x < (~x)x,
hence by (3) we get x(~x) < (~x)x. Using cyclicity we can replace x
by ~x to deduce the reverse inequality.

[]
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Every cyclic idempotent involutive poset is commutative

Theorem (José Gil-Ferez and PJ)

Every cyclic idempotent involutive residuated poset is commutative.

Proof.

The identity y - ~(xy) < ~x holds in any InRL, hence
xy - ~(xy) < x-~ox < ~ox.

Applying (4) of the preceeding lemma on the left, we have ~(xy)xy < ~x,
from which we deduce ~(xy)xyx < (~x)x < 0. Therefore xyx < xy.

Now multiply both sides by y on the left and use idempotence to deduce
the identity yx < yxy. Renaming variables proves xyx = xy.

A similar argument shows xyx = yx, whence xy = xyx = yx. [
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A noncyclic idempotent involutive residuated lattice

There exist noncommutative idempotent involutive residuated lattices:

Example (Jése Gil-Ferez and PJ)

Let A=7Z @ {1} @ Z2, where @ is the ordinal sum.

Lattice order:

32 < a1 < g < a <82--'<1<-'-b2<b1 <b0<b_1 <b_p---
Monoid preorder:
vvas=bosCaj=biCag=hCa=bhCa=bCc---C1
Linear negations:

1= 0, ~aj = b,‘, Nb,‘ = adj—1, —aj= b,'+1, —b,‘ = aj

Hence ~~a; = a;_1 and ——a; = aj+1 and the same for b;.

v

Conjecture: All finite idempotent involutive res. posets are commutative.
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Some partial results
Finite idempotent involutive residuated chains are commutative.

The following results have been obtained using Prover9 [McCune]

© The po-subvariety of IdInRP determined by the identity ————x = x
satisfies ——x = x, hence is cyclic and thus commutative.

@ The po-subvariety of IdInRP determined by the identity
—————— X = x satisfies ————x = x.

Let —,x be the term with n copies of —. Then —,x is a permutation on A,
hence if A is finite it satisfies —,x = —,x for some n > m > 0. Applying
m copies of ~ on both sides shows A satisfies —,_,x = x.
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