A full description of finite commutative idempotent involutive residuated lattices

Peter Jipsen, Olim Tuyt, Diego Valota

Chapman University, California University of Bern, Switzerland University of Milan, Italy

November 18, 2019

- Definition of commutative idempotent involutive residuated lattices
- Examples
- Some properties
- Gluing construction
- Ungluing decomposition
- Applications
- Extensions: remove commutativity, finiteness?

Definition

An involutive residuated lattice $\textbf{A}=\langle \textbf{A}, \lor, \cdot, \sim, -, 0\rangle$ is

- a semilattice $\langle A, \vee \rangle$ and
- a semigroup $\langle A, \cdot \rangle$ such that

$$x \le y \iff x \cdot \sim y \le 0 \iff -y \cdot x \le 0$$
 for all $x, y \in A$

where $x \leq y \iff x \lor y = y$.

It follows that ${\sim}{-x} = x = -{\sim}x$ and 1 = -0 is an identity for \cdot

- A is commutative if $x \cdot y = y \cdot x$ for all $x, y \in A$
- A is **idempotent** if $x \cdot x = x$ for all $x \in A$

Meet is definable: $x \wedge y = -(\sim x \vee \sim y)$, and commutativity gives $\sim x = -x$

More general definition

Definition

A (pointed) residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, /, 1, 0 \rangle$ is

- a lattice $\langle A, \wedge, \vee \rangle$ and
- a monoid $\langle A, \cdot, 1 \rangle$ such that

$$x \cdot y \le z \iff x \le z/y \iff y \le x \setminus z$$
 for all $x, y, z \in A$.

A is **involutive** if $\sim -x = x = -\infty x$, where $\sim x = x \setminus 0$ and -x = 0/x.

The concise definition is equivalent to this one via $x \setminus y = -(y \cdot x)$ and $x/y = -(y \cdot -x)$.

CldInRL denotes the variety of commutative idempotent involutive residuated lattices.

Let $\mathbf{A} \in \mathsf{CIdInRL}.$

 ⟨A, ·, 1⟩ is a meet-semilattice with top element 1 and order ⊑ (monoidal order) defined as

$$a \sqsubseteq b \iff a \cdot b = a.$$

Hence, the orders \leq and \sqsubseteq together with the involution - completely determine **A**, allowing us to work in the signature $\langle A, \lor, \cdot, -, 0, 1 \rangle$

• Boolean algebras (where $\leq = \sqsubseteq$)

• Sugihara monoids (algebraic semantics for relevance logic RM^t)

They are defined as **distributive** commutative idempotent involutive residuated lattices.

Dunn [1970] proved that the subdirectly irreducible members in this variety are linearly ordered.

Up to isomorphism, there is one such algebra \mathbf{S}_n for each chain with n elements.

Examples II

Some more properties

For each $x \in A$, let

$$0_{x} \coloneqq x \land -x = x \cdot -x$$

$$1_{x} \coloneqq x \lor -x = -(x \cdot -x) = x/x$$

$$\mathbb{B}_{x} \coloneqq \{y \in A \mid 0_{x} \sqsubseteq y \sqsubseteq 1_{x}\}$$

$$\downarrow 0 \coloneqq \{y \in A \mid y \le 0\} = \{0_{x} \mid x \in A\}$$

Lemma

- For each $x \in A$, $\langle \mathbb{B}_x, \wedge, \vee, -, 0_x, 1_x \rangle$ is a Boolean algebra
- For each $x \in A$, the monoidal order and the lattice order agree on \mathbb{B}_x
- The monoidal intervals \mathbb{B}_{x} partition A
- $\langle \downarrow 0, \cdot, \lor \rangle$ is a distributive lattice with top element 0

Hence, the monoidal semilattice is a disjoint union of Boolean algebras over the 'skeleton' of a distributive lattice.

Jipsen, Tuyt, Valota

Structure of finite CldInRLs

Even more properties

Lemma

Let $\mathbf{A} \in \mathsf{CIdInRL}$ and $a \in A$ such that $a \leq 1$. For $x \in A$,

$$a \sqsubseteq x \iff a \le x \le 1_a.$$

Moreover, $\{x \in A \mid a \sqsubseteq x\} = \{x \in A \mid a \le x \le 1_a\}$ is a subuniverse exactly when $a \le 0$.

Jipsen, Tuyt, Valota

Goal: Give a structural characterization of all finite members of CldInRL.

Construction idea: "Consider two algebra $\mathbf{A}, \mathbf{B} \in \mathsf{CIdInRL}$ that are 'compatible'.

Construct a new member of the variety **C** by **gluing** the monoidal semilattice of **B** on top of that of **A** and the lattice of **B** in the middle of the lattice of **A**."

Construction: example

 $f A=\langle A,ee{A},\cdot^{A},-^{A},0^{A},1^{A}
angle$ (the bottom algebra) and

 ${f B}=\langle B,ee^B,\cdot^B,-^B,0^B,1^B
angle$ (the top algebra) are $arphi ext{-compatible}$ if

- φ is a **bijection** $\Uparrow a \to \Downarrow b$ for some $a \le 1^A$ and $0^B \le b \le 1^B$ such that
- φ preserves join, i.e. $\varphi(x \vee^A y) = \varphi(x) \vee^B \varphi(y)$
- φ preserves fusion, i.e. $\varphi(x \cdot^A y) = \varphi(x) \cdot^B \varphi(y)$ and

•
$$0^B = \varphi(a \vee^A 0^A).$$

For φ -compatible algebras we define a glueing construction \oplus_{φ}

$$\mathbf{A} \oplus_{\varphi} \mathbf{B} \coloneqq \langle A \uplus B, \lor, \cdot, -, \mathbf{1}^{\mathbf{B}}, \mathbf{0}^{\mathbf{B}} \rangle$$

$$x \lor y = \begin{cases} x \lor^{A} y & x, y \in A \\ x \lor^{B} y & x, y \in B \\ \varphi(x \lor^{A} a) \lor^{B} y & x \in A, \ y \in B, \ x \leq^{A} - Aa \\ x \lor^{A} \varphi^{-1}(y \cdot^{B} b) & x \in A, \ y \in B, \ x \not\leq^{A} - Aa \end{cases}$$

$$x \cdot y = \begin{cases} x \cdot^{A} y & x, y \in A \\ x \cdot^{B} y & x, y \in B \\ x \cdot^{A} \varphi^{-1}(y \cdot^{B} b) & x \in A, y \in B \end{cases}$$

$$-x = \begin{cases} -^A x & x \in A \\ -^B x & x \in B \end{cases}$$

Theorem

For φ -compatible **A**, **B** \in CldInRL the algebra **A** \oplus_{φ} **B** is in CldInRL.

The proof is by case analysis and direct computation.

For finite $\mathbf{C} \in \text{CIdInRL}$, consider a co-atom c in the underlying distributive lattice with universe $\downarrow 0 = \{0_x \mid x \in C\}$.

By distributivity, there exists c^* such that $\langle c, c^* \rangle$ is a splitting pair of $\downarrow 0$.

Note: $c = 0_c$, hence $-c = 1_c$.

Lemma

The pair $\langle 1_c, c^* \rangle$ is a splitting pair of C (in the monoidal order).

Moreover, $\Uparrow c^*$ is a subuniverse of **C**, and $\Downarrow 1_c$ is closed under $\lor, \cdot, -$

Unglueing decomposition

Let
$$\mathbf{A} = \langle \Downarrow \mathbf{1}_c, \lor, \cdot, -, \mathbf{1}_c, \mathbf{0}_c \rangle$$
.

Let **B** be the subalgebra of **C** with subuniverse $\uparrow c^*$.

Choose
$$a = 1_c \cdot c^*$$
 and $b = (1_c \vee -a) \vee c^*$, and define

$$\varphi(x) = (x \wedge -a) \vee c^*$$
 for $a \sqsubseteq x \sqsubseteq 1_c$.

Lemma

•
$$a \leq 1_c$$
 and $0 \leq b \leq 1$

•
$$arphi$$
 is a bijection to $\{y \mid c^* \sqsubseteq y \sqsubseteq b\}$ with $arphi^{-1}(y) = y \cdot 1_c$

•
$$\varphi(c \lor a) = 0_b$$

Theorem

The algebra $\mathbf{C} \in \mathsf{CIdInRL}$ is isomorphic to $\mathbf{A} \oplus_{\varphi} \mathbf{B}$.

Theorem

Any finite member **A** of CldInRL can be constructed using the gluing construction, starting from finite Boolean algebras.

Corollary

Any finite $\mathbf{A} \in CIdInRL$ is determined by its fusion semilattice and also by its lattice reduct.

To do: An algorithm for constructing all CldInRLs

Fusion semilattices that **cannot** support a CldInRL:

Fusion semilattices that can support a CldInRL:

Fusion semilattices that **cannot** support a CldInRL:

Fusion semilattices that can support a CldInRL:

Fusion semilattices that **cannot** support a CldInRL:

Fusion semilattices that can support a CldInRL:

Two more examples and a question for the audience

Two more examples and a question for the audience

Which one can occur as the fusion semilattice of a CldInRL?

As an application, call an $\mathbf{A} \in \text{CldInRL}$ fusion-distributive if the meet-semilattice $\langle A, \cdot \rangle$ is distributive, i.e. if for all $x, y, z \in A$,

$$x \cdot y \sqsubseteq z \implies \exists x', y' \in A \text{ such that } x \sqsubseteq x', y \sqsubseteq y', \text{ and } z = x' \cdot y'.$$

Lemma

For compatible fusion-distributive $A, B \in CldInRL$, their gluing C is fusion-distributive.

Corollary

Any finite $\mathbf{A} \in \mathsf{CldInRL}$ is fusion-distributive.

Let *D* be a finite distributive lattice of height *n*. Then *D* can be embedded in the Boolean algebra 2^n .

Let S_4 be the 4-element Sugihara monoid. The fusion semilattice is the ordinal sum $2\oplus 2.$

 $(\mathbf{S}_4)^n$ is a glueing of 2^n copies of $\mathbf{2}^n$ over the distributive lattice $\mathbf{2}^n$.

This fusion semilattice contains a sublattice that is the glueing of |D| copies of 2^n over the distributive lattice D.

CldInRL contains many subvarities:

BA = Boolean algebras = variety generated by 2-element BA

 SC_n = variety generated by a Sugihara chain of length n

 $\mathbf{OddSugi} = \text{variety generated by a countable Sugihara chain with } \mathbf{0} = \mathbf{1}$

 $\boldsymbol{Sugi} = \mathsf{variety}$ generated by a countable Sugihara chain with $0 \neq 1$

V(A) for any finite commutative idempotent involutive residuated lattice

All these varieties are locally finite

Is CIdInRL locally finite?

Jipsen, Tuyt, Valota

Extensions

- How far can we extend this structural characterization of this variety? From the reverse construction we obtain a structural characterization for all members **A** of CldInRL for which $\downarrow 0 = \{0_x \mid x \in A\}$ is finite. Can we push this further?
- How much of the results can be generalized to idempotent involutive residuated posets?
- All finite idempotent involutive residuated lattices with ≤ 17 elements are known to be commutative. Is this true for all finite ones?
- Can the glueing construction be used for (some subclass) of non-idempotent (involutive) residuated lattices?
- Can we apply this construction to obtain amalgamation for finite V-formations in CldInRL?

An involutive residuated lattice is **cyclic** if $\sim x = -x$

Idempotence for cyclic involutive residuated posets is a strong restriction.

Lemma (José Gil-Ferez and PJ)

Any involutive idempotent residuated posets satisfies:

$$x(\sim x) \leq \sim x \text{ and } (-x)x \leq -x,$$

$$x(\sim x) \leq x \text{ and } (-x)x \leq x.$$

Assuming cyclicity implies the following additional identities:

$$x(\sim x)x = x(\sim x),$$

$$x(\sim x) = (\sim x)x.$$

Proof.

In any involutive residuated poset $\sim(yx) \leq \sim(yx)$, so $yx(\sim(yx)) \leq 0$, whence $x(\sim(yx)) \leq \sim y$.

• Follows from this identity and idempotence by substituting x for y.

2 Replace x by $\sim x$ in the second identity of (1).

Multiplying (1) by x on the right we obtain x(~x)x ≤ (~x)x. By cyclicity (~x)x ≤ 0, and using idempotence gives xx(~x)x ≤ 0, or equivalently x(~x)x ≤ ~x. Multiplying by x on the left shows that x(~x)x ≤ x(~x). Multiplying (2) by x(~x) on the left produces x(~x)x(~x) ≤ x(~x)x, whence x(~x) ≤ x(~x)x follows from idempotence. Therefore (3) holds.

Again multiplying (1) by x on the right we obtain x(~x)x ≤ (~x)x, hence by (3) we get x(~x) ≤ (~x)x. Using cyclicity we can replace x by ~x to deduce the reverse inequality.

Every cyclic idempotent involutive poset is commutative

Theorem (José Gil-Ferez and PJ)

Every cyclic idempotent involutive residuated poset is commutative.

Proof.

The identity $y \cdot \sim (xy) \leq \sim x$ holds in any InRL, hence

$$xy \cdot \sim (xy) \leq x \cdot \sim x \leq \sim x.$$

Applying (4) of the preceeding lemma on the left, we have $\sim(xy)xy \leq \sim x$, from which we deduce $\sim(xy)xyx \leq (\sim x)x \leq 0$. Therefore $xyx \leq xy$.

Now multiply both sides by y on the left and use idempotence to deduce the identity $yx \le yxy$. Renaming variables proves xyx = xy.

A similar argument shows xyx = yx, whence xy = xyx = yx.

A noncyclic idempotent involutive residuated lattice

There exist noncommutative idempotent involutive residuated lattices:

Example (Jóse Gil-Ferez and PJ)

Let $A = \mathbb{Z} \oplus \{1\} \oplus \mathbb{Z}^{\partial}$, where \oplus is the ordinal sum.

Lattice order:

 $\cdots a_{-2} < a_{-1} < a_0 < a_1 < a_2 \cdots < 1 < \cdots b_2 < b_1 < b_0 < b_{-1} < b_{-2} \cdots$

Monoid preorder:

$$\cdots a_{-2} \equiv b_{-2} \sqsubset a_{-1} \equiv b_{-1} \sqsubset a_0 \equiv b_0 \sqsubset a_1 \equiv b_1 \sqsubset a_2 \equiv b_2 \sqsubset \cdots \sqsubset \mathbf{1}$$

Linear negations:

$$1 = 0$$
, $\sim a_i = b_i$, $\sim b_i = a_{i-1}$, $-a_i = b_{i+1}$, $-b_i = a_i$

Hence $\sim \sim a_i = a_{i-1}$ and $-a_i = a_{i+1}$ and the same for b_i .

Conjecture: All finite idempotent involutive res. posets are commutative.

Theorem

Finite idempotent involutive residuated chains are commutative.

The following results have been obtained using Prover9 [McCune]

Theorem

- The po-subvariety of IdInRP determined by the identity ----x = x satisfies --x = x, hence is cyclic and thus commutative.
- **2** The po-subvariety of IdInRP determined by the identity ----x = x satisfies ---x = x.

Let -nx be the term with n copies of -. Then -nx is a permutation on A, hence if A is **finite** it satisfies -nx = -mx for some $n > m \ge 0$. Applying m copies of \sim on both sides shows A satisfies -n-mx = x.

- K. Blount and C. Tsinakis: The structure of residuated lattices, *Internat. J. Algebra Comput.* 13, no. 4, 437–461 (2003).
- [2] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, *Residuated Lattices: An Algebraic Glimpse at Substructural Logics*, Studies in Logic and the Foundations of Mathematics, vol. 151, Elsevier B. V., 2007.
- [3] W. McCune: Prover9 and Mace4 (2010), available at https://www.cs.unm.edu/~mccune/mace4/.

Thank you!