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Nonclassical propositional logics
Classical propositional logic corresponds to Boolean algebras

For many applications, classical logic is unnecessarily strong

Intuitionistic propositional logic does not derive ϕ ∨ ¬ϕ

Good for algorithmic reasoning and type theory

Intuitionistic logic corresponds to Heyting algebras

Relevance logic does not derive ψ → (ϕ→ ψ)

Considers ϕ→ ψ true only if ϕ is used in the derivation of ψ

Substructural logic generalizes many such weaker logics

It uses a (possibly) noncommutative dynamic conjunction (fusion),
denoted ·, which is associative but lacks some of the structural laws, e.g.,
contraction ϕ·ϕ⇒ψ

ϕ⇒ψ or weakening ϕ⇒ψ
ϕ·θ⇒ψ
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Substructural logics – Residuated lattices
Substructural logics correspond to residuated lattices

A residuated lattice (A,∨,∧, ·, 1, \, /) is an algebra where (A,∨,∧) is a
lattice, (A, ·, 1) is a monoid and for all x , y , z ∈ A

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y

FL = Full Lambek calculus = the starting point for substructural logics

An FL-algebra is a residuated lattices with a new constant 0

Extensions of substructural logic correspond to subvarieties of
FL-algebras

Residuated lattices and FL-algebras generalize many algebras related to
logic, e. g. Boolean algebras, Heyting algebras, MV-algebras, Gödel
algebras, Product algebras, Hajek’s basic logic algebras, linear logic
algebras, lattice-ordered (pre)groups, . . .
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Hiroakira Ono

(California, September 2006)

[1985] Logics without the contraction rule

(with Y. Komori)

Provides a framework for studying many substructural

logics, relating sequent calculi with semantics

The name substructural logics was suggested

by K. Dozen, October 1990

[2007] Residuated Lattices: An algebraic glimpse

at substructural logics (with Galatos, J., Kowalski)
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Some axioms for subclasses of RL

Logic Algebra Axioms w/o 0
Full Lambek Calculus FL-algebras Lattice+Mon+\, /, 0 RL
Intuition. Linear Logic FLe-algebras FL + xy=yx CRL
FL+exchange+weak. FLew -algebras FLe+ 0∧x=0, 1∨x=1 CIRL
Intuitionistic Logic Heyting algs FLew + x∧y=xy GHA

Classical Logic Boolean algebra HA + ¬¬x=x GBA

Most results proved for residuated lattices apply to all subclasses

Peter Jipsen — Chapman University — WoLLIC 2015 July 22



Some propositional logics extending FL
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Algebraic terms = propositional formulas
Residuated lattices form an equational class:

(x ∨ y) ∨ z = x ∨ (y ∨ z) (xy)z = x(yz) x(x\z ∧ y) ∨ z = z
(x ∧ y) ∧ z = x ∧ (y ∧ z) x1 = x = x1 x\(xz ∨ y) ∧ z = z

x ∨ y = y ∨ x x ∨ (x ∧ y) = x (y ∧ z/x)x ∨ z = z
x ∧ y = y ∧ x x ∧ (x ∨ y) = x (y ∨ zx)/x ∧ z = z

Define x ≤ y if and only if x ∧ y = x

ϕ ` ψ holds in substructural logic iff ϕ ≤ ψ is valid in all residuated
lattices

In particular, ` ψ is a theorem iff 1 ≤ ψ is valid in all residuated lattices

So we can use Birkhoff’s equational logic to understand substructural
logics

More importantly, we have algebraic semantics for counterexamples
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Homomorphic images of Residuated Lattices
A map h : A→ B is a homomorphism if h(x � y) = h(x) � h(y) for
� ∈ {∨,∧, ·, \, /} and h(1) = 1

If h is surjective, we say that B is a homomorphic image of A

Recall that for groups the homomorphic images are (up to isomorphism) in
1-1 correspondence with normal subgroups of the domain

This is not true for lattices or monoids, so the next result is interesting:

Theorem
[Blount, Tsinakis 2003] Homomorphic images of residuated lattices
are determined by convex normal subalgebras.

A subset N is convex if x , y ∈ N and x ≤ z ≤ y imply z ∈ N

N is normal if for all a ∈ A and x ∈ N, a\xa ∧ 1 and ax/a ∧ 1 are in N

N is a subalgebra if it is closed under the operations {∨,∧, ·, 1, \, /}
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Structure of finite residuated lattices
Call an element e ∈ A a negative central idempotent if ee = e ≤ 1 and
ex = xe for all x ∈ A

Then an example of a convex normal subalgebra is the interval [e, 1/e]

Theorem
In a finite residuated lattice this describes all convex normal subalgebras

An equivalence relation θ ⊆ A2 is a congruence if

(a, b), (c , d) ∈ θ implies (a � c , b � d) ∈ θ for all � ∈ {∨,∧, ·, 1, \, /}

The set of all congruences forms a complete lattice under
subset-inclusion (in any universal algebra)

Theorem
[Galatos 03] Let A be finite and let C (A) be its set of negative central
idempotents. Then C (A) with the induced order of A is a distributive
lattice and is dually isomorphic to the congruence lattice of A.
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Expansions of Residuated Lattices
Can add an unlimited number of operations

In practice: 0,⊥,>, !, ?,∗ ,♦,�,+,→

Adding 0 is most common, producing FL-algebras

=⇒ linear negations: ∼x = 0\x and −x = x/0

Involutive FL-algebras are defined by ∼−x = x = −∼x

Cyclic FL-algebras are defined by ∼x = −x
Add commutativity and exponentials !, ? to get linear logic
Add ∗ to FLo to get residuated Kleene lattices
Add ♦,� to FL to get modal FL-algebras

All of these expansions are examples of Lattices with Operators
I.e., lattices with operations that are order-preserving or order-reversing
in each argument
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Lattices with operators and subclasses

LO ⊇ Residuated lattices
| |

HAO ⊇ Generalized bunched implication algebras
| |

BAO ⊇ Residuated Boolean monoids
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Generalized bunched implication algebras
Recall that a Heyting algebra is an FL-algebra with 0 = ⊥ as bottom
element and xy = x ∧ y

In this case we write x → y instead of x\y (= y/x)

Also define ¬x = x → ⊥ and > = ¬⊥

A generalized bunched implication algebra or GBI-algebra is an
algebra (A,∨,∧,→,⊥, ·, 1, \, /) where (A,∨,∧,→,⊥) is a Heyting
algebra, and (A,∨,∧, ·, 1, \, /) is a residuated lattice

Theorem
The equational theory of GBI-algebras is decidable

BI-algebras are commutative GBI-algebras

Applications in computer science; basis of separation logic
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Another example: Heyting relation algebras

A Heyting relation algebra has the form (A,∨,∧,→,⊥, ; , 1, \, /,∼)
where (A,∨,∧,→,⊥) is a Heyting algebra and
(A,∨,∧,→,⊥, ; , 1, \, /,∼) is a cyclic involutive residuated lattice

Hence (A,∨,∧,→,⊥,∼) is a symmetric Heyting algebra in the sense of
A. Monteiro

Connection to relation algebras: Let (P,v) be a preorder

R ⊆ P2 is a weakening relation if v;R;v = R

The set W (P) of all weaking relations is closed under
⋃
,
⋂
, ;

v is the identity element w.r.t. composition

\, / and → exist since ; and ∩ distribute over
⋃
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Algebraic logic

Alfred Tarski

(May 1967, visiting at U. of Michigan)

According to the MacTutor Archive,
Tarski is recognised as one of the
four greatest logicians of all time, the
other three being Aristotle, Frege, and
Gödel

Of these Tarski was the most prolific as
a logician

His collected works, excluding the 20
books, runs to 2500 pages

Peter Jipsen — Chapman University — WoLLIC 2015 July 22



Boolean algebras with operators

Bjarni Jónsson

(AMS-MAA meeting in Madison, WI 1968)

Boolean Algebras with operators, Part I and
Part II [1951/52] with Alfred Tarski

One of the cornerstones of algebraic logic

Constructs canonical extensions and pro-
vides semantics for multi-modal logics

Gives representation for abstract relation
algebras by atom structures
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Boolean algebras with operators

Let τ = {fi : i ∈ I} be a set of operation symbols, each with a fixed finite
arity

BAOτ is the class of algebras (A,∨,∧,¬,⊥,>, fi (i ∈ I )) such that
(A,∨,∧,¬,⊥,>) is a Boolean algebra and the fi are operators on A

i.e., fi (. . . , x ∨ y , . . .) = fi (. . . , x , . . .) ∨ fi (. . . , y , . . .)

and fi (. . . ,⊥, . . .) = ⊥ for all i ∈ I (so the fi are strict)

BAOs are the algebraic semantics of classical multimodal logics

Main result: every BAO A can be embedded in its canonical extension
Aσ, a complete and atomic Boolean algebra with operators

The set of atoms of this Boolean algebra is the Kripke frame of the
multimodal logic
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Example: Residuated Boolean monoids
A residuated Boolean monoid is an algebra (A,∨,∧,¬,⊥,>, ·, 1, ., /)
such that (A,∨,∧,¬,⊥,>) is a Boolean algebra, (A, ·, 1) is a monoid
and for all x , y , z ∈ A

(x · y) ∧ z = ⊥ ⇐⇒ (x . z) ∧ y = ⊥ ⇐⇒ (z / y) ∧ x = ⊥

Rewrite this as

x · y ≤ z ⇐⇒ y ≤ ¬(x . ¬z) ⇐⇒ x ≤ ¬(¬z / y)

Define x\z = ¬(x . ¬z) and z/y = ¬(¬z / y), to see that the variety of
residuated Boolean monoids is term-equivalent to the variety of Boolean
GBI-algebras (i.e., ¬¬x = x where ¬x = x → ⊥)

Theorem
[Jónsson, Tsinakis 1992] Relation algebras are a subvariety of residuated
Boolean monoids

=⇒ Relation algebras are (term-equivalent to) ⊆ Boolean
GBI-algebras

Peter Jipsen — Chapman University — WoLLIC 2015 July 22



Boolean + associative operator ⇒ undeciable

Theorem
[Tarski 1941] The class of representable relation algebras has an
undecidable equational theory, and the same holds for the variety of
(abstract) relation algebras

Theorem
[Andreka, Kurucz, Nemeti, Sain, Simon 95, 96] The equational theories of
Boolean GBI-algebras (= residuated Boolean monoids) and Boolean
BI-algebras (= commutative residuated Boolean monoids), as well as a
large interval of other varieties, are undecidable
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Lattices with operators

Gehrke and Harding [2001] develop canonical extensions for lattices with
operators

Dunn, Gehrke, Palmigiano [2005] define generalized Kripke frames using
(maximally disjoint) filter–ideal pairs

For the lattice reducts, this is based on G. Birkhoff’s polarities,
A. Urquhart’s lattice spaces and the notion of contexts from R. Wille’s
Formal Concept Analysis

Expansions of residuated lattices by operators fit into this theory

However, integrating the proof theory of residuated lattices and their
reducts/expansions requires further ideas
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A glimpse of algebraic proof theory

Gentzen [1936] defined sequent calculi, including LK (for classical logic)
and LJ (for intuistionistic logic)

For proof search and proof normalization, he proved that the cut rule
can be omitted without affecting provability

Example: A a sequent calculus for residuated lattices

Let RL be the equational theory of residuated lattices

Let T = Fm∨,∧,·,1,\,/(x1, x2, . . .), W = FMon(◦,ε)(T ), W ′ = U × T

where U = {u ∈ FMon(◦,ε)(T ∪ {x0}) : u contains exactly one x0}
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The Gentzen system GL

A Horn formula ϕ1& · · ·&ϕn → ψ is written ϕ1 ··· ϕn

ψ

Let a, b, c ∈ T , s, t ∈W and u ∈ U

GL: a⇒a
t⇒a

t⇒a∨b
t⇒b

t⇒a∨b
u(a)⇒c u(b)⇒c

u(a∨b)⇒c
t⇒a u(a)⇒b

u(t)⇒b (cut) u(a)⇒c
u(a∧b)⇒c

u(b)⇒c
u(a∧b)⇒c

t⇒a t⇒b
t⇒a∧b

u(a◦b)⇒c
u(a·b)⇒c

s⇒a t⇒b
s◦t⇒a·b ε⇒1

u(ε)⇒a
u(1)⇒a

a·t⇒b
t⇒a\b

t⇒a u(b)⇒c
u(t◦(a\b))⇒c

t·b⇒a
t⇒a/b

t⇒b u(a)⇒c
u((a/b)◦t)⇒c

Example of a cut-free RL proof

z⇒z x⇒x
z◦(z\x)⇒x

z◦(z\x∧z\y)⇒x

z⇒z y⇒y
z◦(z\y)⇒y

z◦(z\x∧z\y)⇒y
z◦(z\x∧z\y)⇒x∧y

z\x∧z\y⇒z\(x∧y)
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Semantics of sequent calculi: Residuated frames

Let GLcf be the sequent calculus GL without the cut rule

Define a binary relation N ⊆W ×W ′ by

wN(u, a) ⇐⇒ u(w)⇒ a is provable in GLcf

Define the accessibility relations R◦ ⊆W 3, R\\,R// by

R◦(v1, v2,w) ⇐⇒ v1 ◦ v2 = w

R\\ = {((u, a), x , (u(_◦x), a)) : u ∈ U, a ∈ T , x ∈W }

R// = {(x , (u, a), (u(x ◦_), a)) : u ∈ U, a ∈ T , x ∈W }

Then (W ,W ′,N,R◦,R\\,R//) is a residuated frame

(A general residuated frame is (W ,W ′,N,Ri (i ∈ I )))
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Algebraic cut-admissibility
Theorem
[Okada, Terui 1999, Galatos, J. 2013]. The following are equivalent:

1 t ⇒ a is provable in GL
2 t ≤ a holds in RL
3 t ⇒ a is provable in GLcf

Proof (outline): (3⇒1) is obvious. (1⇒2) Assume t ⇒ a is provable with
cut. Show that all sequent rules hold as quasiequations in RL (where
⇒, ◦ are replaced by ≤, ·)

(2⇒3) Assume t ≤ a holds in RL and define an algebra
W+ = (C [P(W )],∪,∩, ·, 1, \, /) using the closed sets C (X ) of the
polarity (W ,W ′,N) and

X · Y = C ({w : R(v1, v2,w) for some v1 ∈ X , v2 ∈ Y })

X\Y = {w ∈W : X · {w} ⊆ Y } Y /X = {w ∈W : {w} · X ⊆ Y }.
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Proof outline (continued)
Then W+ is a residuated lattice, hence satisfies t ≤ a

Let f : T →W+ be a homomorphism

Extend to f̄ : W →W+, so t ≤ a implies f̄ (t) ⊆ f̄ (a)

Define {b}/ = {w ∈W : wN(x0, b)}

Prove by induction that b ∈ f̄ (b) ⊆ {b}/ for all b ∈ T

Then t ∈ f̄ (t) ⊆ f̄ (a) ⊆ {a}/, hence tN(x0, a)

Therefore t ⇒ a holds in GLcf �

Theorem
The equational theory of residuated lattices is decidable. Moreover, RL
has the finite model property
[Galatos, J. 2013] The variety of integral RL (i.e., x ∧ 1 = x) has the finite
embedding property, hence the universal theory is decidable.
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Expanding this approach to GBI-algebras
A similar approach can be used to prove that the equational theory of
GBI-algebras is decidable

Add Gentzen rules for an external connective ∧ corresponding to ∧, and
rules for →

Expand the residuated frame with a ternary relation for ∧

Theorem
[Galatos, J.] The equational theory of GBI-algebras is decidable.
Moreover, (G)BI-algebras have the finite model property

Theorem
[Galatos, J.] The variety of integral GBI-algebras (i.e., x ∧ 1 = x) has the
finite embedding property, hence the universal theory is decidable.
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How to compute finite residuated lattices

First compute all lattices with n elements (up to isomorphism)

[J. and Lawless 2015]: For n = 19 there are 1 901 910 625 578

Then compute all lattice-ordered monoids with zero (⊥) over each
lattice

The residuals are determined by the monoid

There are 295292 residuated lattices of size n = 8

[Belohlavek and Vychodil 2010]: For commutative integral residuated
lattices there are 30 653 419 of size n = 12

Demo (?)
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Conclusion

Substructural logics and residuated lattices are an excellent framework
for investigating and comparing propositional logics

By considering expansions many more propositional logics are covered

Between (D)LOs and BAOs there is much uncharted territory

The success of bunched implication logic and separation logic in
program verification provide justification for more research in this area

Algebraic, semantic and proof theoretic techniques can often be
adapted to the expansions
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