CAT axioms

CAT001-0.ax Category theory axioms defined $(x, y) \Rightarrow x \cdot y = x \circ y$ cnf(closure_of_composition, axiom) $x \cdot y = z \Rightarrow \text{defined}(x, y)$ $cnf(associative_property_1, axiom)$ $(x \cdot y = xy \text{ and defined}(xy, z)) \Rightarrow \text{defined}(y, z)$ cnf(associative_property₂, axiom) $(x \cdot y = xy \text{ and } y \cdot z = yz \text{ and defined}(xy, z)) \Rightarrow \text{defined}(x, yz)$ $cnf(category_theory_axiom_1, axiom)$ $(x \cdot y = xy \text{ and } xy \cdot z = xyz \text{ and } y \cdot z = yz) \Rightarrow x \cdot yz = xyz$ cnf(category_theory_axiom₂, axiom) $(y \cdot z = yz \text{ and } defined(x, yz)) \Rightarrow defined(x, y)$ cnf(category_theory_axiom₃, axiom) $(y \cdot z = yz \text{ and } x \cdot y = xy \text{ and defined}(x, yz)) \Rightarrow \text{defined}(xy, z)$ cnf(category_theory_axiom₄, axiom) $(y \cdot z = yz \text{ and } x \cdot yz = xyz \text{ and } x \cdot y = xy) \Rightarrow xy \cdot z = xyz$ $cnf(category_theory_axiom_5, axiom)$ $(\operatorname{defined}(x, y) \text{ and } \operatorname{defined}(y, z) \text{ and } \operatorname{identity}_map(y)) \Rightarrow \operatorname{defined}(x, z)$ $cnf(category_theory_axiom_6, axiom)$ $\operatorname{identity}_{\operatorname{map}}(\operatorname{dom}(x))$ cnf(domain_is_an_identity_map, axiom) $\operatorname{identity}_{\operatorname{map}}(\operatorname{cod}(x))$ cnf(codomain_is_an_identity_map, axiom) $\operatorname{defined}(x, \operatorname{dom}(x))$ cnf(mapping_from_x_to_its_domain, axiom) defined(cod(x), x) cnf(mapping_from_codomain_of_x_to_x, axiom) $x \cdot \operatorname{dom}(x) = x$ cnf(product_on_domain, axiom) $cod(x) \cdot x = x$ cnf(product_on_codomain, axiom) $(\operatorname{defined}(x, y) \text{ and } \operatorname{identity}_\operatorname{map}(x)) \Rightarrow x \cdot y = y$ $cnf(identity_1, axiom)$ $(\operatorname{defined}(x, y) \text{ and } \operatorname{identity}_{\operatorname{map}}(y)) \Rightarrow x \cdot y = x$ $cnf(identity_2, axiom)$ $(x \cdot y = z \text{ and } x \cdot y = w) \Rightarrow z = w$ cnf(composition_is_well_defined, axiom) CAT002-0.ax Category theory (equality) axioms $\operatorname{cod}(\operatorname{dom}(x)) = \operatorname{dom}(x)$ cnf(codomain_of_domain_is_domain, axiom) $\operatorname{dom}(\operatorname{cod}(x)) = \operatorname{cod}(x)$ cnf(domain_of_codomain_is_codomain, axiom) $\operatorname{dom}(x) \circ x = x$ cnf(domain_composition, axiom) $x \circ \operatorname{cod}(x) = x$ cnf(codomain_composition, axiom) $cod(x) = dom(y) \Rightarrow dom(x \circ y) = dom(x)$ $cnf(codomain_domain_1, axiom)$ $cod(x) = dom(y) \Rightarrow cod(x \circ y) = cod(y)$ $cnf(codomain_domain_2, axiom)$ $(\operatorname{cod}(x) = \operatorname{dom}(y) \text{ and } \operatorname{cod}(y) = \operatorname{dom}(z)) \Rightarrow x \circ (y \circ z) = (x \circ y) \circ z$ cnf(star_property, axiom) CAT003-0.ax Category theory axioms $equivalent(x, y) \Rightarrow there_exists(x)$ cnf(equivalence_implies_existence_1, axiom) $equivalent(x, y) \implies x = y$ cnf(equivalence_implies_existence₂, axiom) $(\text{there_exists}(x) \text{ and } x = y) \Rightarrow \text{equivalent}(x, y)$ cnf(existence_and_equality_implies_equivalence_1, axiom) there_exists(dom(x)) \Rightarrow there_exists(x) cnf(domain_has_elements, axiom) there_exists(cod(x)) \Rightarrow there_exists(x) cnf(codomain_has_elements, axiom) there_exists($x \circ y$) \Rightarrow there_exists(dom(x)) cnf(composition_implies_domain, axiom) there_exists $(x \circ y) \Rightarrow \operatorname{dom}(x) = \operatorname{cod}(y)$ $cnf(domain_codomain_composition_1, axiom)$ (there_exists(dom(x)) and dom(x) = cod(y)) \Rightarrow there_exists(x \circ y) cnf(domain_codomain_composition₂, axiom) $x \circ (y \circ z) = (x \circ y) \circ z$ cnf(associativity_of_compose, axiom) $x \circ \operatorname{dom}(x) = x$ cnf(compose_domain, axiom) $\operatorname{cod}(x) \circ x = x$ cnf(compose_codomain, axiom) $equivalent(x, y) \Rightarrow there_exists(y)$ cnf(equivalence_implies_existence₃, axiom) $(\text{there_exists}(x) \text{ and there_exists}(y) \text{ and } x = y) \Rightarrow \text{equivalent}(x, y)$ cnf(existence_and_equality_implies_equivalence₂, axion cnf(composition_implies_codomain, axiom) there_exists($x \circ y$) \Rightarrow there_exists(cod(x)) there_exists $(f_1(x, y))$ or x = y $cnf(indiscernibles_1, axiom)$ $x = f_1(x, y)$ or $y = f_1(x, y)$ or x = ycnf(indiscernibles₂, axiom) $(x = f_1(x, y) \text{ and } y = f_1(x, y)) \Rightarrow x = y$ $cnf(indiscernibles_3, axiom)$ CAT004-0.ax Category theory axioms $\operatorname{equivalent}(x, y) \Rightarrow \operatorname{there_exists}(x)$ $cnf(equivalence_implies_existence_1, axiom)$ equivalent $(x, y) \Rightarrow x = y$ cnf(equivalence_implies_existence₂, axiom) $(\text{there_exists}(x) \text{ and } x = y) \Rightarrow \text{equivalent}(x, y)$ cnf(existence_and_equality_implies_equivalence_1, axiom) there_exists(dom(x)) \Rightarrow there_exists(x) cnf(domain_has_elements, axiom) there_exists(cod(x)) \Rightarrow there_exists(x) cnf(codomain_has_elements, axiom) there_exists $(x \circ y) \Rightarrow$ there_exists(dom(x))cnf(composition_implies_domain, axiom) there_exists $(x \circ y) \Rightarrow \operatorname{dom}(x) = \operatorname{cod}(y)$ $cnf(domain_codomain_composition_1, axiom)$ (there_exists(dom(x)) and dom(x) = cod(y)) \Rightarrow there_exists(x \circ y) cnf(domain_codomain_composition₂, axiom) $x \circ (y \circ z) = (x \circ y) \circ z$ cnf(associativity_of_compose, axiom)

 $x \circ \operatorname{dom}(x) = x$ cnf(compose_domain, axiom) cod(x) $\circ x = x$ cnf(compose_codomain, axiom)

CAT problems

CAT001-1.p XY monomorphism => Y monomorphism

If xy is a monomorphism, then y is a monomorphism.

include('Axioms/CAT001-0.ax')

 $a \cdot b = c$ $cnf(ab_equals_c, hypothesis)$

 $(c \cdot x_1 = x_2 \text{ and } c \cdot x_3 = x_2) \Rightarrow x_1 = x_3 \quad \text{cnf(cancellation_for_product, hypothesis)}$

 $b \cdot h = d$ cnf(bh_equals_d, hypothesis)

 $b \cdot q = d$ cnf(bg_equals_d, hypothesis)

 $h \neq g$ cnf(prove_h_equals_g, negated_conjecture)

CAT001-2.p XY monomorphism => Y monomorphism

If xy is a monomorphism, then y is a monomorphism.

include('Axioms/CAT002-0.ax')

 $\begin{array}{ll} (\operatorname{cod}(x) = \operatorname{dom}(a \circ b) \text{ and } x \circ (a \circ b) = y \text{ and } \operatorname{cod}(z) = \operatorname{dom}(a \circ b) \text{ and } z \circ (a \circ b) = y) \implies x = z & \operatorname{cnf}(c_1, \operatorname{hypothesis}) \\ \operatorname{cod}(a) = \operatorname{dom}(b) & \operatorname{cnf}(\operatorname{codomain_of_a_equals_domain_of_b}, \operatorname{hypothesis}) \\ \operatorname{cod}(a) = \operatorname{dom}(b) & \operatorname{cnf}(\operatorname{codomain_of_a_equals_domain_of_b}, \operatorname{hypothesis}) \\ \operatorname{cod}(a) = \operatorname{dom}(g) & \operatorname{cnf}(\operatorname{codomain_of_a_equals_domain_of_g}, \operatorname{hypothesis}) \\ a \circ h = a \circ g & \operatorname{cnf}(\operatorname{ah_equals_ag}, \operatorname{hypothesis}) \\ h \neq g & \operatorname{cnf}(\operatorname{prove_h_equals_g}, \operatorname{negated_conjecture}) \end{array} \right)$

CAT001-3.p XY monomorphism => Y monomorphism

If xy is a monomorphism, then y is a monomorphism. include ('Ariama (CATOO2 0 ari))

include('Axioms/CAT003-0.ax') there_exists($a \circ b$) cnf(assume_ab_exists, hypothesis)

 $((a \circ b) \circ x = y \text{ and } (a \circ b) \circ z = y) \Rightarrow x = z \quad \text{cnf(monomorphism, hypothesis)}$

there_exists $(b \circ h)$ cnf(assume_bh_exists, hypothesis)

 $b \circ h = b \circ g$ cnf(bh_equals_bg, hypothesis)

 $h \neq g$ cnf(prove_h_equals_g, negated_conjecture)

CAT001-4.p XY monomorphism => Y monomorphism

If xy is a monomorphism, then y is a monomorphism.

include('Axioms/CAT004-0.ax')

there_exists $(a \circ b)$ cnf(assume_ab_exists, hypothesis)

 $((a \circ b) \circ x = y \text{ and } (a \circ b) \circ z = y) \Rightarrow x = z \qquad \operatorname{cnf}(\text{monomorphism, hypothesis})$

 $\texttt{there_exists}(b \circ h) \qquad \texttt{cnf}(\texttt{assume_bh_exists}, \texttt{hypothesis})$

 $b \circ h = b \circ g$ cnf(bh_equals_bg, hypothesis)

 $h \neq g$ cnf(prove_h_equals_g, negated_conjecture)

CAT002-1.p X and Y monomorphisms, XY well-defined => XY monomorphism If x and y are monomorphisms and xy is well-defined then xy is a monomorphism. include('Axioms/CAT001-0.ax')

 $\begin{array}{ll} (a \cdot x = w \text{ and } a \cdot y = w) \Rightarrow x = y & \operatorname{cnf}(\operatorname{cancellation_for_product_1}, \operatorname{hypothesis}) \\ (b \cdot x = w \text{ and } b \cdot y = w) \Rightarrow x = y & \operatorname{cnf}(\operatorname{cancellation_for_product_2}, \operatorname{hypothesis}) \\ a \cdot b = c & \operatorname{cnf}(\operatorname{ab_equals_c}, \operatorname{hypothesis}) \\ c \cdot h = d & \operatorname{cnf}(\operatorname{ch_equals_d}, \operatorname{hypothesis}) \end{array}$

 $c \cdot g = d$ cnf(cg_equals_d, hypothesis)

 $h \neq g$ cnf(prove_h_equals_g, negated_conjecture)

CAT002-2.p X and Y monomorphisms, XY well-defined => XY monomorphism If x and y are monomorphisms and xy is well-defined then xy is a monomorphism. include('Axioms/CAT002-0.ax')

cnf(monomorphism₁, hypothesis) cnf(monomorphism₂, hypothesis)

CAT002-3.p X and Y monomorphisms, XY well-defined => XY monomorphism If x and y are monomorphisms and xy is well-defined then xy is a monomorphism. include('Axioms/CAT003-0.ax')

there_exists $(a \circ b)$ cnf(assume_ab_exists, hypothesis) $(a \circ x = y \text{ and } a \circ z = y) \Rightarrow x = z$ cnf(cancellation_for_compose_1, hypothesis) $cnf(cancellation_for_compose_2, hypothesis)$ $(b \circ x = y \text{ and } b \circ z = y) \Rightarrow x = z$ there_exists(h)cnf(assume_h_exists, hypothesis) $(a \circ b) \circ h = (a \circ b) \circ g$ cnf(ab_h_equals_ab_g, hypothesis) $g \neq h$ cnf(prove_g_equals_h, negated_conjecture)

CAT002-4.p X and Y monomorphisms, XY well-defined => XY monomorphism If x and y are monomorphisms and xy is well-defined then xy is a monomorphism. include('Axioms/CAT004-0.ax')

there_exists $(a \circ b)$ cnf(assume_ab_exists, hypothesis) $(a \circ x = y \text{ and } a \circ z = y) \Rightarrow x = z$ cnf(cancellation_for_compose_1, hypothesis) $(b \circ x = y \text{ and } b \circ z = y) \Rightarrow x = z$ $cnf(cancellation_for_compose_2, hypothesis)$ there_exists(h)cnf(assume_h_exists, hypothesis) $(a \circ b) \circ h = (a \circ b) \circ g$ cnf(ab_h_equals_ab_g, hypothesis) $g \neq h$ cnf(prove_g_equals_h, negated_conjecture)

CAT003-1.p XY epimorphism => X epimorphism

If xy is an epimorphism, then x is an epimorphism.

include('Axioms/CAT001-0.ax')

 $a \cdot b = c$ cnf(ab_equals_c, hypothesis)

 $(x \cdot c = w \text{ and } y \cdot c = w) \Rightarrow x = y$ cnf(cancellation_for_product, hypothesis)

cnf(ha_equals_d, hypothesis) $h \cdot a = d$

 $g \cdot a = d$ cnf(ga_equals_d, hypothesis)

 $h \neq g$ cnf(prove_h_equals_g, negated_conjecture)

CAT003-2.p XY epimorphism = X epimorphism

If xy is an epimorphism, then x is an epimorphism.

include('Axioms/CAT002-0.ax')

 $(\operatorname{cod}(a \circ b) = \operatorname{dom}(x) \text{ and } (a \circ b) \circ x = y \text{ and } \operatorname{cod}(a \circ b) = \operatorname{dom}(z) \text{ and } (a \circ b) \circ z = y) \Rightarrow x = z$ cnf(endomorphism, hypothesis) cod(a) = dom(b)cnf(codomain_of_a_equals_domain_of_b, hypothesis)

 $\operatorname{cod}(b) = \operatorname{dom}(h)$ cnf(codomain_of_b_equals_domain_of_h, hypothesis)

cnf(codomain_of_b_equals_domain_of_g, hypothesis) $\operatorname{cod}(b) = \operatorname{dom}(q)$

cnf(bh_equals_bg, hypothesis) $b \circ h = b \circ g$

 $g \neq h$ cnf(prove_g_equals_h, negated_conjecture)

CAT003-3.p XY epimorphism = X epimorphism If xy is an epimorphism, then x is an epimorphism.

include('Axioms/CAT003-0.ax')

there_exists $(a \circ b)$ cnf(assume_ab_exists, hypothesis)

 $(x \circ (a \circ b) = y \text{ and } z \circ (a \circ b) = y) \Rightarrow x = z$ cnf(epimorphism, hypothesis)

there_exists(h)cnf(assume_h_exists, hypothesis)

cnf(ha_equals_ga, hypothesis) $h \circ a = g \circ a$

 $g \neq h$ cnf(prove_g_equals_h, negated_conjecture)

CAT003-4.p XY epimorphism = X epimorphism

If xy is an epimorphism, then x is an epimorphism.

include('Axioms/CAT004-0.ax')

cnf(assume_ab_exists, hypothesis) there_exists $(a \circ b)$

 $(x \circ (a \circ b) = y \text{ and } z \circ (a \circ b) = y) \Rightarrow x = z$ cnf(epimorphism, hypothesis) cnf(assume_h_exists, hypothesis) there_exists(h) $h \circ a = q \circ a$ cnf(ha_equals_ga, hypothesis)

cnf(prove_g_equals_h, negated_conjecture) $g \neq h$

CAT004-1.p X and Y epimorphisms, XY well-defined => XY epimorphism If x and y are epimorphisms and xy is well-defined, then xy is an epimorphism. include('Axioms/CAT001-0.ax')

 $(x \cdot a = w \text{ and } y \cdot a = w) \Rightarrow x = y$ $cnf(cancellation_for_product_1, hypothesis)$ $(x \cdot b = w \text{ and } y \cdot b = w) \Rightarrow x = y$ cnf(cancellation_for_product₂, hypothesis) $a \cdot b = c$ cnf(ab_equals_c, hypothesis)

 $h \cdot c = d$ cnf(hc_equals_d, hypothesis)

 $g \cdot c = d$ cnf(gc_equals_d, hypothesis)

 $h \neq g$ cnf(prove_h_equals_g, negated_conjecture)

CAT004-2.p X and Y epimorphisms, XY well-defined => XY epimorphism If x and y are epimorphisms and xy is well-defined, then xy is an epimorphism. include('Axioms/CAT002-0.ax')

 $\begin{array}{ll} (\operatorname{cod}(a) = \operatorname{dom}(x) \text{ and } a \circ x = y \text{ and } \operatorname{cod}(a) = \operatorname{dom}(z) \text{ and } a \circ z = y) \implies x = z \\ (\operatorname{cod}(b) = \operatorname{dom}(x) \text{ and } b \circ x = y \text{ and } \operatorname{cod}(b) = \operatorname{dom}(z) \text{ and } b \circ z = y) \implies x = z \\ \operatorname{cod}(a) = \operatorname{dom}(b) & \operatorname{cnf}(\operatorname{codomain_of_a_equals_domain_of_b}, \operatorname{hypothesis}) \\ \operatorname{cod}(a \circ b) = \operatorname{dom}(b) & \operatorname{cnf}(\operatorname{codomain_of_a_equals_domain_of_h}, \operatorname{hypothesis}) \\ \operatorname{cod}(a \circ b) = \operatorname{dom}(g) & \operatorname{cnf}(\operatorname{codomain_of_a_equals_domain_of_g}, \operatorname{hypothesis}) \\ (a \circ b) \circ h = (a \circ b) \circ g & \operatorname{cnf}(\operatorname{a_b_h_equals_ab_g}, \operatorname{hypothesis}) \\ h \neq g & \operatorname{cnf}(\operatorname{prove_h_equals_g}, \operatorname{negated_conjecture}) \end{array}$

CAT004-3.p X and Y epimorphisms, XY well-defined => XY epimorphism If x and y are epimorphisms and xy is well-defined, then xy is an epimorphism. include('Axioms/CAT003-0.ax')

 $\begin{array}{ll} \text{there_exists}(a \circ b) & \text{cnf}(\text{assume_ab_exists}, \text{hypothesis}) \\ (x \circ a = y \text{ and } z \circ a = y) \Rightarrow x = z & \text{cnf}(\text{cancellation_for_product}_1, \text{hypothesis}) \\ (x \circ b = y \text{ and } z \circ b = y) \Rightarrow x = z & \text{cnf}(\text{cancellation_for_product}_2, \text{hypothesis}) \\ \text{there_exists}(h) & \text{cnf}(\text{assume_h_exists}, \text{hypothesis}) \\ h \circ (a \circ b) = g \circ (a \circ b) & \text{cnf}(\text{h_ab_equals_g_ab}, \text{hypothesis}) \\ h \neq g & \text{cnf}(\text{prove_h_equals_g}, \text{negated_conjecture}) \end{array}$

CAT004-4.p X and Y epimorphisms, XY well-defined => XY epimorphism If x and y are epimorphisms and xy is well-defined, then xy is an epimorphism. include('Axioms/CAT004-0.ax')

 $\begin{array}{ll} \text{there_exists}(a \circ b) & \text{cnf}(\text{assume_ab_exists}, \text{hypothesis}) \\ (x \circ a = y \text{ and } z \circ a = y) \Rightarrow x = z & \text{cnf}(\text{cancellation_for_product}_1, \text{hypothesis}) \\ (x \circ b = y \text{ and } z \circ b = y) \Rightarrow x = z & \text{cnf}(\text{cancellation_for_product}_2, \text{hypothesis}) \\ \text{there_exists}(h) & \text{cnf}(\text{assume_h_exists}, \text{hypothesis}) \\ h \circ (a \circ b) = g \circ (a \circ b) & \text{cnf}(\text{h_ab_equals_g_ab}, \text{hypothesis}) \\ h \neq g & \text{cnf}(\text{prove_h_equals_g}, \text{negated_conjecture}) \end{array}$

CAT005-3.p Domain is the unique right identity domain(x) is the unique identity i such that xi is defined.

include('Axioms/CAT003-0.ax')

 $\begin{array}{ll} \text{there_exists}(a \circ d) & \text{cnf}(\text{ad_exists}, \text{hypothesis}) \\ \text{there_exists}(x \circ d) \Rightarrow x \circ d = x & \text{cnf}(\text{xd_equals_x}, \text{hypothesis}) \\ \text{there_exists}(d \circ y) \Rightarrow d \circ y = y & \text{cnf}(\text{dy_equals_y}, \text{hypothesis}) \\ \text{dom}(a) \neq d & \text{cnf}(\text{prove_domain_of_a_is_d}, \text{negated_conjecture}) \end{array}$

CAT005-4.p Domain is the unique right identity domain(x) is the unique identity i such that xi is defined. include('Axioms/CAT004-0.ax') there_exists($a \circ d$) cnf(ad_exists, hypothesis) there_exists($x \circ d$) $\Rightarrow x \circ d = x$ cnf(xd_equals_x, hypothesis) there_exists($d \circ y$) $\Rightarrow d \circ y = y$ cnf(dy_equals_y, hypothesis) dom(a) $\neq d$ cnf(prove_domain_of_a_is_d, negated_conjecture)

 $identity_map(h)$ $cnf(h_is_the_identity_map, hypothesis)$

cnf(epimorphism₁, hypothesis) cnf(epimorphism₂, hypothesis)

4

CAT006-3.p Codomain is the unique left identity

codomain(x) is the unique identity j such that jx is defined. include('Axioms/CAT003-0.ax')

 $\begin{array}{ll} \text{there_exists}(d \circ a) & \text{cnf}(\text{da_exists}, \text{hypothesis}) \\ \text{there_exists}(x \circ d) \Rightarrow x \circ d = x & \text{cnf}(\text{xd_equals_x}, \text{hypothesis}) \\ \text{there_exists}(d \circ x) \Rightarrow d \circ x = x & \text{cnf}(\text{dx_equals_x}, \text{hypothesis}) \\ \text{cod}(a) \neq d & \text{cnf}(\text{prove_codomain_of_a_is_d}, \text{negated_conjecture}) \end{array}$

CAT006-4.p Codomain is the unique left identity codomain(x) is the unique identity j such that jx is defined. include('Axioms/CAT004-0.ax') there_exists($d \circ a$) cnf(da_exists, hypothesis) there_exists($x \circ d$) $\Rightarrow x \circ d = x$ cnf(xd_equals_x, hypothesis) there_exists($d \circ x$) $\Rightarrow d \circ x = x$ cnf(dx_equals_x, hypothesis) cod(a) $\neq d$ cnf(prove_codomain_of_a_is_d, negated_conjecture)

CAT007-1.p If domain(x) = codomain(y) then xy is defined include('Axioms/CAT001-0.ax') dom(a) = cod(b) cnf(domain_of_a_equals_codomain_of_b, hypothesis) \neg defined(a, b) cnf(prove_ab_is_defined, negated_conjecture)

CAT007-3.p If domain(x) = codomain(y) then xy is defined

x=x cnf(reflexivity, axiom)

cnf(symmetry, axiom) $x=y \Rightarrow y=x$ $(x=y \text{ and } y=z) \Rightarrow x=z$ cnf(transitivity, axiom) there_exists(dom(x)) \Rightarrow there_exists(x) cnf(domain_has_elements, axiom) (there_exists(dom(x)) and dom(x)=cod(y)) \Rightarrow there_exists(x \circ y) cnf(domain_codomain_composition₂, axiom) there_exists($f_1(x, y)$) or x=y $cnf(indiscernibles_1, axiom)$ $x=f_1(x,y)$ or $y=f_1(x,y)$ or x=y $cnf(indiscernibles_2, axiom)$ $(x=f_1(x,y) \text{ and } y=f_1(x,y)) \Rightarrow x=y$ $cnf(indiscernibles_3, axiom)$ there_exists(dom(c_2)) cnf(domain_of_c2_exists, hypothesis) there_exists $(dom(c_1))$ cnf(domain_of_c1_exists, hypothesis) $\operatorname{dom}(c_2) = \operatorname{cod}(c_1)$ cnf(domain_of_c2_equals_codomain_of_c1, hypothesis) \neg there_exists $(c_2 \circ c_1)$ cnf(prove_c1_c2_is_defined, negated_conjecture)

CAT008-1.p If xy is defined then domain(x) = codomain(y)

include('Axioms/CAT001-0.ax')

defined(a, b) cnf $(ab_defined, hypothesis)$

 $dom(a) \neq cod(b)$ cnf(prove_domain_of_a_equals_codomain_of_b, negated_conjecture)

CAT009-1.p If xy is defined, then domain(xy) = domain(y)

include('Axioms/CAT001-0.ax')

defined(b, a) cnf(ba_defined, hypothesis)

 $dom(b \circ a) \neq dom(a)$ $cnf(prove_domain_of_ba_equals_domain_of_a, negated_conjecture)$

CAT009-3.p If xy is defined, then domain(xy) = domain(y)

include('Axioms/CAT003-0.ax')

there_exists $(a \circ b)$ cnf(ab_exists, hypothesis)

 $dom(a \circ b) \neq dom(b)$ $cnf(prove_domain_of_ab_equals_domain_of_b, negated_conjecture)$

CAT009-4.p If xy is defined, then domain(xy) = domain(y)

include('Axioms/CAT004-0.ax')

there_exists($a \circ b$) $cnf(ab_exists, hypothesis)$

 $dom(a \circ b) \neq dom(b)$ $cnf(prove_domain_of_ab_equals_domain_of_b, negated_conjecture)$

CAT010-1.p If xy is defined, then codomain(xy) = codomain(x)

include('Axioms/CAT001-0.ax')

 $defined(b, a) \qquad cnf(ba_defined, hypothesis)$

 $cod(b \circ a) \neq cod(b)$ $cnf(prove_codomain_of_ba_equals_codomain_of_b, negated_conjecture)$

CAT010-4.p If xy is defined, then codomain(xy) = codomain(x) include('Axioms/CAT004-0.ax')

there_exists $(a \circ b)$ cnf(ab_exists, hypothesis)

 $cod(a \circ b) \neq cod(a)$ cnf(prove_codomain_of_ab_equals_codomain_of_a, negated_conjecture) **CAT011-1.p** domain(domain(x)) = domain(x)include('Axioms/CAT001-0.ax') $\operatorname{dom}(\operatorname{dom}(a)) \neq \operatorname{dom}(a)$ cnf(prove_domain_is_idempotent, negated_conjecture) **CAT011-2.p** domain(domain(x)) = domain(x)include('Axioms/CAT002-0.ax') $\operatorname{dom}(\operatorname{dom}(a)) \neq \operatorname{dom}(a)$ cnf(prove_domain_is_idempotent, negated_conjecture) **CAT011-3.p** domain(domain(x)) = domain(x)include('Axioms/CAT003-0.ax') there_exists(dom(a)) cnf(assume_domain_exists, hypothesis) $\operatorname{dom}(\operatorname{dom}(a)) \neq \operatorname{dom}(a)$ cnf(prove_domain_is_idempotent, negated_conjecture) **CAT011-4.p** domain(domain(x)) = domain(x)include('Axioms/CAT004-0.ax') cnf(assume_domain_exists, hypothesis) there_exists(dom(a)) cnf(prove_domain_is_idempotent, negated_conjecture) $\operatorname{dom}(\operatorname{dom}(a)) \neq \operatorname{dom}(a)$ **CAT012-1.p** codomain(domain(x)) = domain(x)include('Axioms/CAT001-0.ax') $\operatorname{cod}(\operatorname{dom}(a)) \neq \operatorname{dom}(a)$ cnf(prove_codomain_of_domain_is_domain, negated_conjecture) **CAT012-3.p** codomain(domain(x)) = domain(x)include('Axioms/CAT003-0.ax') there_exists(dom(a)) cnf(assume_domain_exists, hypothesis) $\operatorname{cod}(\operatorname{dom}(a)) \neq \operatorname{dom}(a)$ cnf(prove_codomain_of_domain_is_domain, negated_conjecture) **CAT012-4.p** codomain(domain(x)) = domain(x)include('Axioms/CAT004-0.ax') there_exists(dom(a)) cnf(assume_domain_exists, hypothesis) $\operatorname{cod}(\operatorname{dom}(a)) \neq \operatorname{dom}(a)$ cnf(prove_codomain_of_domain_is_domain, negated_conjecture) **CAT013-1.p** domain(codomain(x)) = codomain(x)include('Axioms/CAT001-0.ax') $\operatorname{dom}(\operatorname{cod}(a)) \neq \operatorname{cod}(a)$ cnf(prove_domain_of_codomain_is_codomain, negated_conjecture) **CAT013-3.p** domain(codomain(x)) = codomain(x)include('Axioms/CAT003-0.ax') there_exists(cod(a)) cnf(assume_codomain_exists, hypothesis) $\operatorname{dom}(\operatorname{cod}(a)) \neq \operatorname{cod}(a)$ cnf(prove_domain_of_codomain_is_codomain, negated_conjecture) **CAT013-4.p** domain(codomain(x)) = codomain(x)include('Axioms/CAT004-0.ax') there_exists(cod(a)) cnf(assume_codomain_exists, hypothesis) $\operatorname{dom}(\operatorname{cod}(a)) \neq \operatorname{cod}(a)$ cnf(prove_domain_of_codomain_is_codomain, negated_conjecture) **CAT014-1.p** codomain(codomain(x)) = codomain(x)include('Axioms/CAT001-0.ax') $\operatorname{cod}(\operatorname{cod}(a)) \neq \operatorname{cod}(a)$ cnf(prove_codomain_is_idempotent, negated_conjecture) **CAT014-2.p** codomain(codomain(x)) = codomain(x)include('Axioms/CAT002-0.ax') $\operatorname{cod}(\operatorname{cod}(a)) \neq \operatorname{cod}(a)$ cnf(prove_codomain_is_idempotent, negated_conjecture) **CAT014-3.p** codomain(codomain(x)) = codomain(x)include('Axioms/CAT003-0.ax') there_exists(cod(a)) cnf(assume_codomain_exists, hypothesis) $\operatorname{cod}(\operatorname{cod}(a)) \neq \operatorname{cod}(a)$ cnf(prove_codomain_is_idempotent, negated_conjecture) **CAT014-4.p** codomain(codomain(x)) = codomain(x)include('Axioms/CAT004-0.ax') there_exists(cod(a)) cnf(assume_codomain_exists, hypothesis) $\operatorname{cod}(\operatorname{cod}(a)) \neq \operatorname{cod}(a)$ cnf(prove_codomain_is_idempotent, negated_conjecture) CAT015-3.p Prove something exists

Can anything be proven to exist, directly from the axioms? Using all the kinds of resolution steps possible, no. include('Axioms/CAT003-0.ax')

x = y or there_exists(x) or there_exists(y) cnf(equal_things_exist, axiom) \neg there_exists(x) cnf(prove_something_exists, negated_conjecture)

CAT015-4.p Prove something exists

Can anything be proven to exist, directly from the axioms? Using all the kinds of resolution steps possible, no. include('Axioms/CAT004-0.ax')

x = y or there_exists(x) or there_exists(y) $cnf(equal_things_exist, axiom)$ \neg there_exists(x) $cnf(prove_something_exists, negated_conjecture)$

CAT016-3.p If x exists, then domain(x) exists

include('Axioms/CAT003-0.ax')

there_exists(a) cnf(assume_a_exists, hypothesis)

 \neg there_exists(dom(a)) cnf(prove_domain_of_a_exists, negated_conjecture)

CAT016-4.p If x exists, then domain(x) exists

include('Axioms/CAT004-0.ax')

there_exists(a) cnf(assume_a_exists, hypothesis)

 \neg there_exists(dom(a)) cnf(prove_domain_of_a_exists, negated_conjecture)

CAT017-3.p If x exists, then codomain(x) exists

include('Axioms/CAT003-0.ax')

there_exists(a) cnf(assume_a_exists, hypothesis)

 \neg there_exists(cod(a)) cnf(prove_codomain_of_a_exists, negated_conjecture)

 ${\bf CAT017\text{-}4.p}$ If x exists, then ${\rm codomain}({\rm x})$ exists

include('Axioms/CAT004-0.ax')

there_exists(a) cnf(assume_a_exists, hypothesis)

 \neg there_exists(cod(a)) cnf(prove_codomain_of_a_exists, negated_conjecture)

CAT018-1.p If xy and yz exist, then so does x(yz)

include('Axioms/CAT001-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a,b) & \operatorname{cnf}(\operatorname{assume_ab_exists}, \operatorname{hypothesis}) \\ \operatorname{defined}(b,c) & \operatorname{cnf}(\operatorname{assume_bc_exists}, \operatorname{hypothesis}) \\ \neg \operatorname{defined}(a,b\circ c) & \operatorname{cnf}(\operatorname{prove_a_bc_exists}, \operatorname{negated_conjecture}) \end{array}$

CAT018-3.p If xy and yz exist, then so does x(yz)

include('Axioms/CAT003-0.ax')

 ${\bf CAT018\text{-}4.p}$ If xy and yz exist, then so does x(yz)

include('Axioms/CAT004-0.ax')

CAT019-1.p Axiom of Indiscernibles

 $[all z (x=z \leftrightarrow y=z)] \rightarrow x=y.$

include ('Axioms/CAT001-0.ax') $c_2 = z \Rightarrow c_1 = z$ cnf(equality_to_c1_and_c2_1, hypothesis) $c_1 = z \Rightarrow c_2 = z$ cnf(equality_to_c1_and_c2_2, hypothesis) $c_2 \neq c_1$ cnf(prove_c1_equals_c_2, negated_conjecture)

 $\begin{array}{l} \textbf{CAT019-2.p Axiom of Indiscernibles} \\ [all z (x=z < \rightarrow y=z)] \rightarrow x=y. \\ include('Axioms/CAT002-0.ax') \\ c_2 = z \Rightarrow c_1 = z \qquad cnf(equality_to_c1_and_c2_1, hypothesis) \\ c_1 = z \Rightarrow c_2 = z \qquad cnf(equality_to_c1_and_c2_2, hypothesis) \\ c_2 \neq c_1 \qquad cnf(prove_c1_equals_c_2, negated_conjecture) \end{array}$

CAT019-3.p Axiom of Indiscernibles

 $\begin{array}{l} [\mathrm{all}\ \mathbf{z}\ (\mathbf{x}{=}\mathbf{z}<{\rightarrow}\ \mathbf{y}{=}\mathbf{z})] \rightarrow \mathbf{x}{=}\mathbf{y}. \\ \mathrm{include}(\mathrm{'Axioms/CAT003-0.ax'}) \\ (\mathrm{there_exists}(z)\ \mathrm{and}\ a=z)\ \Rightarrow\ b=z \qquad \mathrm{cnf}(\mathrm{equality_of_a_and_b_1},\mathrm{hypothesis}) \\ (\mathrm{there_exists}(z)\ \mathrm{and}\ b=z)\ \Rightarrow\ a=z \qquad \mathrm{cnf}(\mathrm{equality_of_a_and_b_2},\mathrm{hypothesis}) \end{array}$

8

 $a \neq b$ cnf(prove_a_equals_b, negated_conjecture)

 $\begin{array}{l} \textbf{CAT019-4.p} \text{ Axiom of Indiscernibles} \\ [all z (x=z < \rightarrow y=z)] \rightarrow x=y. \\ \text{include}(\text{'Axioms/CAT004-0.ax'}) \\ (\text{there_exists}(z) \text{ and } a=z) \Rightarrow b=z \quad \text{cnf}(\text{equality_of_a_and_b_1}, \text{hypothesis}) \\ (\text{there_exists}(z) \text{ and } b=z) \Rightarrow a=z \quad \text{cnf}(\text{equality_of_a_and_b_2}, \text{hypothesis}) \\ a \neq b \quad \text{cnf}(\text{prove_a_equals_b}, \text{negated_conjecture}) \end{array}$

CAT019-5.p Axiom of Indiscernibles

 $\begin{array}{ll} [\mathrm{all}\ \mathbf{z}\ (\mathbf{x}{=}\mathbf{z}<{\rightarrow}\ \mathbf{y}{=}\mathbf{z})] \rightarrow \mathbf{x}{=}\mathbf{y}. \\ \mathrm{include}(\mathrm{'Axioms/CAT004-0.ax'}) \\ \mathrm{there_exists}(c) & \mathrm{cnf}(\mathrm{assume_c_exists},\mathrm{hypothesis}) \\ (\mathrm{there_exists}(z)\ \mathrm{and}\ a=z) \ \Rightarrow \ b=z & \mathrm{cnf}(\mathrm{equality_of_a_and_b_1},\mathrm{hypothesis}) \\ (\mathrm{there_exists}(z)\ \mathrm{and}\ b=z) \ \Rightarrow \ a=z & \mathrm{cnf}(\mathrm{equality_of_a_and_b_2},\mathrm{hypothesis}) \\ a \neq b & \mathrm{cnf}(\mathrm{prove_a_equals_b},\mathrm{negated_conjecture}) \end{array}$

CAT020-1.p Category theory axioms include('Axioms/CAT001-0.ax')

CAT020-2.p Category theory (equality) axioms include('Axioms/CAT002-0.ax')

CAT020-3.p Category theory axioms include('Axioms/CAT003-0.ax')

CAT020-4.p Category theory axioms include('Axioms/CAT004-0.ax')

CAT038 \1.p Swapping function

The proposition can be interpreted in concrete categories and asserts the existence of a certain arrow.

a: \$i thf(a, type)

b: \$i thf(b, type)

 $\exists f: \$i \rightarrow \$i: ((f@a) = b \text{ and } (f@b) = a) \qquad \text{thf(swap, conjecture)}$